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1. Introduction

Let k be a finite field with q elements and denote by k[t] the polynomial ring in one variable t
over k. Let K be a field containing k and θ ∈ K a distinguished element. Write τ for the endomor-
phism ‘Frobenius ⊗ identity’ of K [t] = K ⊗k k[t], in other words: τ (

∑
aiti) = ∑

aq
i ti . In [1] Anderson

defined a t-motive to be a pair (M, σ ) consisting of a K [t]-module M and a function σ : M → M
subject to the conditions that

(i) M is free and finitely generated over K [t];
(ii) σ is semi-linear with respect to τ (σ(m1 + m2) = σ(m1) +σ(m2) and σ( f m) = τ ( f )σ (m) for all

m,m1,m2 ∈ M and f ∈ K [t]);
(iii) the determinant of σ with respect to one (equivalently: any) K [t]-basis of M vanishes only at

t = θ ;
(iv) there exists a finite set S ⊂ M such that

⋃
n σ n(S) spans M as a K -vector space. (M is ‘finitely

generated over K [σ ]’);

He showed in [1] that the category of t-motives contains the (opposite) category of Drinfeld mod-
ules as a full subcategory. But there are plenty of interesting t-motives that are not Drinfeld modules:
for example, the category of t-motives is closed under direct sums and tensor products while the
subcategory of Drinfeld modules is not closed under either operation.
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Recently, Papanikolas has shown [8] that analytically trivial (or uniformisable) t-motifs (see Sec-
tion 3 for the definition) satisfy a Tannakian duality, at least when K is algebraically closed. For the
transcendence applications of [8] it is of course sufficient to work over an algebraically closed field,
but there is also a very arithmetic flavour to t-motifs and it is therefore desirable to have a Tannakian
duality over any base field K .

In this paper we show that such a duality indeed holds over general K : that a suitable category of
t-motifs over K is equivalent to the category of representations of some affine group scheme ΓK over
k(t) (the subscript K is present only to denote dependency on K ). (Sections 2 and 3.)

We follow [8] closely, save in two instances where we simplify the construction a bit:

(i) the closure under internal hom is effected by a formal inversion of the ‘Carlitz twist’;
(ii) there is no condition ‘finitely generated over K [σ ]’ in the definitions.

The first one is of course completely analogous to the inversion of the Tate twist in Algebraic
Geometry. Some form of such inversion in the function field context is already present in [11].

The second one is justified in Section 5.3, where we show that any t-motif (in our terminology)
becomes finitely generated over K [σ ] after a suitable Tate twist. Hence the resulting Tannakian cate-
gory coincides with the one generated by those t-motifs that are finitely generated over K [σ ].

Having established a Tannakian duality for t-motifs over a general K , we show that the group of
components of ΓK is isomorphic with the absolute Galois group of K . (In particular we obtain that
when K is separably closed, the fundamental group ΓK is connected.) This is obtained by a careful
analysis of those t-motifs that are trivialised by a finite separable extension of K . This class of t-motifs
forms the proper analogue of the so-called Artin motifs in Algebraic Geometry; this is why we refer
to them as Artin t-motifs. (Sections 4 and 6.)

1.1. Notation

A few words on notation are in order. Let R be a ring and τ : R → R an endomorphism of R .
An additive function σ between two left R-modules is said to be semi-linear with respect to τ if it
satisfies the identity σ(rm) = τ (r)σ (m). In this note (almost) all semi-linear functions are denoted by
the Greek letter σ , and the different endomorphisms according to which they are semi-linear are all
denoted by τ . This should not lead to confusion.

2. Constructing the category of t-Motifs

2.1. Effective t-Motifs

Let k be a finite field of q elements and K a field containing k. Fix a homomorphism k[t] → K of
k-algebras and denote the image of t by θ . We do not demand that k[t] → K be injective now. We
shall frequently refer to ‘the field K ’, this is silently understood to contain the structure homomor-
phism k[t] → K .

Denote by τ the endomorphism of K [t] determined by τ (x) = xq for all x ∈ K and τ (t) = t . The
following definition goes back to [1], although here a slightly less restrictive form is used.

Definition 2.1.1. An effective t-motif of rank r over K is a pair M = (M, σ ) consisting of

• a free and finitely generated K [t]-module M of rank r, and
• a map σ : M → M satisfying σ( f m) = τ ( f )σ (m) for all f ∈ K [t] and m ∈ M ,

such that the determinant of σ with respect to some (and hence any) K [t]-basis of M is a power of
t − θ up to a unit in K .
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A morphism of effective t-motifs is a morphism of K [t]-modules making the obvious square com-
mute. The group of morphisms is denoted Homσ (M1, M2). The resulting category of effective t-motifs
over K is denoted by t Meff(K ) or simply by t Meff.

Example 2.1.2. For any field k[t] → K , the pair

C
def= K [t]e with σ( f e)

def= τ ( f )(t − θ)e,

is an effective t-motif and we will call it the Carlitz t-motif. This is the function field counterpart to
the Lefschetz motif.

2.1.3. Define the tensor product of two effective t-motifs as

M1 ⊗ M2
def= M1 ⊗K [t] M2 with σ(m1 ⊗ m2)

def= σ(m1) ⊗ σ(m2).

This is again an effective t-motif.
The pair (K [t], τ ) is an effective t-motif which we shall denote 1. We call it the unit t-motif, since

for every M , one has natural isomorphisms M ⊗ 1 = M and 1 ⊗ M = M .

Remark 2.1.4. We shall follow a convention sometimes used in representation theory and write nM
for the direct sum of n copies of M and Mn for the n-fold tensor power of M .

If M1 and M2 are effective t-motifs then Hom(M1, M2) is naturally a k[t]-module. We have the
following [1, Theorem 2]:

Proposition 2.1.5. Hom(M1, M2) is free and finitely generated over k[t].

2.2. Duality

2.2.1. Let M1 and M2 be effective t-motifs over K . Inspired by the theory of linear representations of
groups we could try to assign to M1 and M2 an effective t-motif of internal homomorphisms as

Hom(M1, M2)
def= HomK [t](M1, M2) with σ( f )

def= σ ◦ f ◦ σ−1,

where σ ◦ f ◦ σ−1 is to be read as σ2 ◦ f ◦ σ−1
1 . This does, however, not make sense, since σ1 need

not be invertible. First of all, K need not be perfect, and secondly—more seriously—the determinant
of σ1 is (t − θ)d up to a constant, and hence not invertible if d > 0.

2.2.2. This can be partially resolved. Write K a for some algebraic closure of K . Note that after exten-
sion of scalars from K [t] to K a(t) the induced action of σ on M1 ⊗K [t] K a(t) is invertible.

Proposition 2.2.3. For n sufficiently large, the subgroup

HomK [t]
(
M1, M2 ⊗ Cn) ⊂ HomK a(t)

(
M1 ⊗ K a(t), M2 ⊗ Cn ⊗ K a(t)

)

is stable under f �→ σ ◦ f ◦ σ−1 .

Proof. Choose bases and express σ on M1 and M2 by matrices S1 and S2 respectively. Then M2 ⊗ Cn

has a basis on which σ is expressed by the matrix (t − θ)n S2. The map f �→ σ ◦ f ◦σ−1 translates to
a map

M
(
r2 × r1, K a(t)

) → M
(
r2 × r1, K a(t)

) : F �→ F ′
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with

F ′ = (t − θ)n S2τ
(

Fτ−1(S−1
1

)) = (t − θ)n S2τ (F )S−1
1 .

The Proposition claims that M(r2 × r1, K [t]) is mapped into itself. But since the determinant of S1
is a power of (t − θ), the matrix (t − θ)n S−1

1 has entries in K [t] when n is sufficiently large. This
immediately implies that M(r2 × r1, K [t]) is mapped into itself. �
2.2.4. It follows from the proof that σ( f )

def= σ ◦ f ◦ σ−1 induces the structure of an effective t-motif
on HomK [t](M1, M2 ⊗ Cn) for large n. We shall denote it by Hom(M1, M2 ⊗ Cn). These internal homs
are stable for growing n in the sense that there are natural isomorphisms

Hom
(
M1, M2 ⊗ Cn) ⊗ C → Hom

(
M1, M2 ⊗ Cn+1) (1)

relating them.

2.3. Carlitz twist and t-motifs

The previous section hints that the obstruction to having internal homs will be lifted as soon as
the Carlitz t-motif is made invertible. (Very reminiscent of the inversion of the Lefschetz motif in the
construction of the category of pure motifs: If X is a smooth and projective variety of dimension d,
then �-adic Poincaré duality defines a perfect pairing

Hi
ét(XK s ,Q�) × H2d−i

ét (XK s ,Q�) → Q�(−d)

which suggests that the motif hi(X,Q) is dual to h2d−i(X,Q) shifted by the dth power of the Lefschetz
motif, see [3, §4.1].) This can be done quite easily, because of the following lemma, whose verification
is straightforward.

Lemma 2.3.1. If M1 and M2 are effective t-motifs, then the natural map

Homσ (M1, M2) → Homσ

(
M1 ⊗ Cn, M2 ⊗ Cn)

that takes f to f ⊗ id is an isomorphism.

We are now ready to make the following definition.

Definition 2.3.2. A t-motif is a pair (M, i) consisting of an effective t-motif M and an integer i ∈ Z.
Morphisms between t-motifs are defined by

Homσ

(
(M1, i1), (M2, i2)

) def= Homσ

(
M1 ⊗ Cn+i1 , M2 ⊗ Cn+i2

)
,

for n sufficiently large. The resulting category is denoted by t M(K ) or simply by t M.

It suffices to take n � max(−i1,−i2) in the definition. The module of morphisms is independent of n
by the preceding lemma.

2.3.3. The functor M �→ (M,0) is fully faithful and we will identify t Meff with its image in t M.
The natural isomorphism between M ⊗ Cn+1 and M ⊗ Cn ⊗ C defines a distinguished isomorphism

of t-motifs

(M, i + 1) = (M ⊗ C, i). (2)
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In particular, for i > 0 we can identify C i with (1, i). But note that (1, i) is an object in t M even
when i is negative.

2.3.4. The operations ⊕ and ⊗ and Hom extend from the category of effective t-motifs—or parts
thereof—to the full category of t-motifs:

(M1, i1) ⊕ (M2, i2)
def= (

M1 ⊗ Cn+i1 ⊕ M2 ⊗ Cn+i2 ,−n
)

(M1, i1) ⊗ (M2, i2)
def= (M1 ⊗ M2, i1 + i2)

Hom
(
(M1, i1), (M2, i2)

) def= (
Hom

(
M1, M2 ⊗ C i1−i2+n)

,−n
)

The occurrences of n in these definitions should be read ‘with n sufficiently large’. Using the isomor-
phisms (1) and (2), one verifies that these are independent of n and coincide with the operations on
effective t-motifs, whenever defined.

From now on we will often drop the integer i from the notation and write M for a t-motif, effective
or not.

2.3.5. As usual, we define the dual of a t-motif M to be M∨ def= Hom(M,1). The operations of direct
sum, tensor product, duality and internal hom satisfy the expected relations—those familiar from the
theory of linear representations of groups. In particular, there is an adjunction formula

Hom(M1 ⊗ M2, M3) = Hom
(
M1, Hom(M2, M3)

)
. (3)

Also, taking duals is reflexive: the natural morphism

M → (
M∨)∨

(4)

is an isomorphism. And finally, Hom is distributive over ⊗ in the sense that the natural morphism

Hom(M1, M3) ⊗ Hom(M2, M4) → Hom(M1 ⊗ M2, M3 ⊗ M4), (5)

is an isomorphism. These identities are easily verified.

Remark 2.3.6. The category t M has kernels and cokernels. This can be seen as follows. All morphisms
in t M become morphisms of effective t-motifs after an appropriate shift with a tensor power of the
Carlitz motif. It is thus sufficient to show that t Meff has kernels and cokernels.

Let M1 → M2 be a morphism of effective t-motifs. Its group-theoretic kernel is automatically a
t-motif and a kernel in the category t Meff. The cokernel of f in the pre-abelian category of free
K [t]-modules—the ordinary cokernel modulo torsion—inherits an action of σ and one verifies that
this defines an effective t-motif and a cokernel of f in t Meff. Hence t M is pre-abelian.

Of course t Meff is not abelian, since for example the multiplication-by-t map 1 → 1 has trivial
kernel and cokernel, but is not an isomorphism.

The existence of kernels and cokernels, and the existence of an internal hom bifunctor satisfying
(3), (4) and (5) is summarised in

Theorem 2.3.7. t M K is a rigid k[t]-linear pre-abelian tensor category.



L. Taelman / Journal of Number Theory 129 (2009) 142–157 147
3. The t-motivic Galois group Γ

Passing to the category t M◦
K of objects ‘up to isogeny’ (see Section 3.1 below for the definition)

we obtain a rigid k(t)-linear abelian tensor category.
On a suitable subcategory of t M◦

K (closed under ⊗, ⊕, . . . ) we define a neutral fibre functor:
a fully faithful exact functor to the category of finite-dimensional k(t)-vector spaces. The main the-
orem on Tannakian duality then asserts that this subcategory is equivalent with the category of
k(t)-linear representations of some affine group scheme Γ = ΓK over k(t). (See Section 3.2.)

In constructing this subcategory and fibre functor, we follow closely Papanikolas [8].

3.1. Isogenies

Definition 3.1.1. An isogeny between two effective t-motifs M1 and M2 is by definition a mor-
phism f ∈ Homσ (M1, M2) such that there exist a g ∈ Homσ (M2, M1) and a nonzero h in k[t] with
f g = h id = g f .

The category whose objects are effective t-motifs over K and whose hom-sets are the modules
Homσ (−,−) ⊗k[t] k(t) is denoted by t M◦

eff(K ). Sometimes we will refer to its objects as effective
t-motifs up to isogeny.

Denote by M(t) the K (t)-module M ⊗K [t] K (t). The action of σ on M extends naturally and makes
M(t) into a K (t)[σ ]-module.

Proposition 3.1.2. The natural map

Homσ (M1, M2) ⊗k[t] k(t) → HomK (t)[σ ]
(
M1(t), M2(t)

)

is an isomorphism.

Hence the functor M �→ M(t) is fully faithful on t M◦
eff. We shall identify t M◦

eff with its image in
the category of K (t)[σ ]-modules. If we take M1 and M2 in the proposition to be the unit t-motif 1,
we obtain that the field of invariants K (t)σ equals k(t).

Proof of Proposition 3.1.2. (See also [8].) Note that the map is k(t)-linear. Injectivity is clear.
To show surjectivity, choose K [t]-bases for M1 and M2 and express the action of σ on them

through matrices S1 and S2. Expressed on the induced bases for M1(t) and M2(t), a K (t)[σ ]-
homomorphism from M1(t) to M2(t) is a matrix F over K (t) that satisfies

S−1
2 F S1 = τ (F ). (6)

Let h be the minimal common denominator of the entries of F , that is, the minimal monic polynomial
in K [t] with the property that hF has entries in K [t]. The minimal common denominator of the
entries of the right-hand side τ (F ) is τ (h) and the minimal common denominator of the left-hand
side is (t − θ)rh for some r. Equating them yields r = 0 and τ (h) = h, hence the proposition. �

This proposition has an important consequence:

Corollary 3.1.3. t M◦
eff is an abelian k(t)-linear tensor category. t M◦ is a rigid abelian k(t)-linear tensor

category.

Recall that t Meff is not abelian (Remark 2.3.6).

Proof of Corollary 3.1.3. The kernels and cokernels in t M◦
eff are just the ordinary group-theoretic

kernels and cokernels in the category of left K (t)[σ ]-modules, and it is clear that a morphism whose
kernel and cokernel vanish is an isomorphism, and that t M◦

eff is abelian.
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That t M◦ is abelian is implied by the abelianness of t M◦
eff and that it is rigid is implied by the

rigidity of t M, the required properties of Hom are preserved under extension of scalars from k[t] to
k(t). �
3.2. A fibre functor

In this section we construct a neutral fibre functor on a sub-category of t M◦(K ), where k[t] → K
is assumed to be injective. This construction occurs already in [1] and is interpreted as a fibre functor
in [8]. I do not know if there exists a neutral fibre functor on all of t M◦ .

3.2.1. Let K † be a field containing K that is algebraically closed and complete with respect to a
valuation ‖ · ‖. Denote by K †{t} ⊂ K †[[t]] the subring of restricted power series, that is, those power
series whose coefficients converge to 0. In particular, these series have a radius of convergence greater
than or equal to 1. Note that K †{t} is closed under τ—raising all coefficients to the qth power. A τ -
invariant power series has coefficients in the finite field k and hence is restricted if and only if it is
a polynomial in t . That is, K †{t}τ = k[t]. Denote by K †({t}) the field of fractions of K †{t}. In the next
paragraph we shall show that K †({t})τ = k(t).

3.2.2. Define the functors Han(−,k[t]) and Han(−,k(t)) on the category t Meff of effective t-motifs as

Han
(
M,k[t]) def= (

M ⊗K [t] K †{t})σ ,

Han
(
M,k(t)

) def= (
M ⊗K [t] K †({t}))σ .

The functors Han(−,k[t]) and Han(−,k(t)) are related.

Proposition 3.2.3. Han
(
M,k(t)

) = Han
(
M,k[t]) ⊗ k(t).

Taking M to be 1 yields:

Corollary 3.2.4. K †
({t})τ = k(t).

Proof of Proposition 3.2.3. The ring K †{t} is a principal ideal domain and every nonzero ideal is of
the form

(t − α1)(t − α2) · · · (t − αn)K †{t} ⊂ K †{t}

with ‖αi‖ � 1 for all i [13].
Take a g ∈ Han(M,k(t)) and write it as h−1m with m ∈ M ⊗ K †{t} and h a finite product

h = ∏
(t − αi). Assume that the degree of h is minimal. The invariance of g = h−1m gives

τ (h)m = hσ(m) ∈ M ⊗ K †{t},

hence the minimality of h implies τ (h) = h. �
Proposition 3.2.5. If ‖θ‖ > 1, then Han(C,k[t]) ≈ k[t] and Han(C,k(t)) ≈ k(t).

Proof. (Cf. Lemma 2.5.4 of [2].) Consider the product expansion

Ω
def= 1

q−1
√−θ

∏
i�0

(
1 − t

θqi

)
,
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where q−1
√−θ is any root in K †. (Any two such roots differ by a scalar in k× .) The infinite product

converges for all values of t and all zeroes have absolute value greater than or equal to ‖θ‖ > 1,
thus Ω ∈ K {t}× . By construction Ω = (t − θ)τ (Ω) and therefore Han(C,k[t])) = k[t]Ωe. Similarly
Han(C,k(t)) = k(t)Ωe. �

Henceforth, when considering the functors Han, we shall always assume that ‖θ‖ > 1.

3.2.6. So far, we have only considered effective t-motifs. Shifting back and forth with powers of the
Carlitz motif, we can extend the functors Han to functors defined on all t-motifs as follows

Han
(
(M, i),k[t]) def= Han

(
M,k[t]) ⊗k[t] Han

(
C,k[t])⊗i

,

Han
(
(M, i),k(t)

) def= Han
(
M,k(t)

) ⊗k(t) Han
(
C,k(t)

)⊗i
.

The resulting functor is well-defined by the canonical isomorphisms

Han
(
M ⊗ C,k[t]) = Han

(
M,k[t]) ⊗k[t] Han

(
C,k[t]).

3.2.7. These functors are not faithful. In fact, we shall shortly see that there exist non-trivial M with
Han(M,k[t]) = 0.

Definition 3.2.8. A t-motif (M, i) over K is said to be analytically trivial if one of the following equiv-
alent conditions holds:

• M ⊗K [t] K †{t} has a σ -invariant K †{t}-basis,
• M ⊗K [t] K †({t}) has a σ -invariant K †({t})-basis,
• rkk[t] Han(M,k[t]) = rk M ,
• dimk(t) Han(M,k(t)) = rk M .

Denote by t Ma.t. ⊂ t M and t M◦
a.t. ⊂ t M◦ the full subcategories consisting of the analytically trivial

objects.

The analytic triviality of a t-motif M depends on the embedding of K into K †—see 3.2.10 for an
example. When we are dealing with the category t Ma.t. we will assume that such an embedding has
been fixed.

Proof of equivalence. By paragraph 3.2.2 the first condition is equivalent with the second, and the
third with the fourth. Clearly the first implies the third. To conclude the converse (that the third
implies the first), it suffices to show that for all effective t-motifs M the natural map

(
M ⊗ K †{t})σ ⊗k[t] K †{t} → M ⊗ K †{t}

is injective. This can be done exactly as in [1, Theorem 2], using K †{t}τ = k[t]. �
Some immediate consequences of the definition are:

Theorem 3.2.9. The class of analytically trivial t-motifs is closed under tensor product and duality. Moreover

• Han(−,k[t]) is a faithful k[t]-linear ⊗-functor on t Ma.t. ,
• Han(−,k(t)) is an exact, faithful, k(t)-linear ⊗-functor on t M◦

a.t. .

In particular t M◦
a.t.(K ) is neutral Tannakian with fibre functor Han(−,k(t)).
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It follows from the main theorem on neutral Tannakian categories [4, Theorem 2.11] that t M◦
a.t.(K )

is equivalent with the category of k(t)-linear representations of some affine group scheme ΓK

over k(t).
But note that ΓK depends on the chosen valuation on K . We shall usually tacitly assume that a

valuation (with ‖θ‖ > 1) has been fixed.
We will end this subsection with an example of a t-motif that is not analytically trivial.

Example 3.2.10. Not all t-motifs are analytically trivial. Consider for example, the rank 2 effective
t-motif

Mξ = K [t]e1 + K [t]e2 with

{
σ(e1) = ξte1 + e2,

σ (e2) = e1,

depending on a parameter ξ ∈ K .

Claim. Mξ is analytically trivial if and only if ‖ξ‖ < 1.

In particular there exists no valuation on K for which Mξ is analytically trivial when ξ is algebraic
over k.

Proof of Claim. Assume that K †{t}e1 + K †{t}e2 has an invariant vector ae1 + be2, with a,b in K †{t}.
Expressing the invariance under σ gives

{
a = τ (a)ξt + τ 2(a),

b = τ (a).

Expand a = a0 + a1t + · · · with ai ∈ K †. Then it follows that aq2

0 = a0, that is, a0 lies in the quadratic
extension l/k inside K †, and in particular ‖a0‖ = 1 (assuming a0 �= 0). The higher ai satisfy the recur-
rence equation

an − aq2

n = ξaq
n−1. (7)

If ‖ξ‖ � 1 then ‖an‖ � 1 for all n and the series a0 + a1t + · · · is therefore not a restricted series,
confirming one direction of the proposition. If on the other hand ‖ξ‖ < 1 then define an a recursively
by taking at every step the unique solution an of (7) that has ‖an‖ < 1. This produces a restricted
power series for every a0 ∈ l× and it suffices to take two a0’s independent over k to obtain two
independent invariant vectors for Mξ ⊗K [t] K †{t}. �
4. Artin t-motifs

4.1. Definition

A corollary to Lang’s Theorem [6] asserting the surjectivity of the map

GL
(
n, K s) → GL

(
n, K s) : A �→ τ (A)A−1

is [9, Prop. 4.1]:

Theorem 4.1.1. The category of pairs (V , σ ), consisting of a finite-dimensional K -vector space V and an
additive map σ : V → V satisfying σ(xv) = xqσ(v) and such that Kσ(V ) = V is neutral Tannakian k-linear
with fibre functor
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V �→ (
V ⊗K K s)σ

and fundamental group G K
def= Gal(K s/K ).

Remarks 4.1.2. The invariants (−)σ are taken for the diagonal action V ⊗K K s induced by the given
action of σ on V and the qth power map on K s . This is the unique extension of σ : V → V to a
semi-linear map V ⊗ K s → V ⊗ K s .

If K is not perfect Kσ(V ) need not coincide with σ(V ), as can be seen already when (V , σ ) =
(K , x �→ xq).

We abusively write G K for both the pro-finite group and the corresponding constant affine group
scheme over k (obtained as the limit of the system of finite constant group schemes corresponding to
the finite quotients of the pro-finite group). Their categories of representations on finite-dimensional
k-vector spaces coincide.

A pair (V , σ ) induces an effective t-motif M(V )
def= V ⊗K K [t] where the action of σ is induced

from the action on V .
We would like to interpret the collection of t-motifs M(V ) as a Tannakian subcategory of t M◦ ,

but there are of course many more morphisms M(V 1) → M(V 2) than morphisms V 1 → V 2 and the
kernel and cokernel of a morphism from M(V 1) to M(V 2) are typically not of the form M(V ).

Proposition 4.1.3. Let M be an effective t-motif over K . The following are equivalent:

• M is isomorphic to a sub-quotient of M(V ) for some V ,
• M ⊗K K s ≈ n1 for some n.

Definition 4.1.4. An Artin t-motif is an effective t-motif M satisfying the above equivalent conditions.

Proof of Proposition 4.1.3. If M is a sub-quotient of M(V ), then MK s is a sub-quotient of M(V K s ) ≈
m1 and therefore MK s ≈ n1.

Conversely, assume that MK s has a basis of σ -invariant vectors. There exists some finite extension
K ′/K inside K s such that this basis is already defined over K ′ . The natural map K [t] → K ′[t] defines
the structure of a K [t]-module on M ′ . Denote it by R K ′/K M ′ in order to distinguish it from the K ′[t]-
module M ′ . It is clear that R K ′/K M ′ is naturally an effective t-motif over K of rank rk(M)[K ′ : K ]. (Call
it the Weil restriction of M ′ from K ′ to K .) But, M is a submodule of R K ′/K M ′ ⊗K K s and the latter
is isomorphic to M(R K ′/K W ) with W the sum of a number of copies of K ′ with the diagonal action
of σ , whence the proposition. �

The full subcategory t M◦
Artin(K ) of t M◦(K ) consisting of the Artin t-motifs is rigid abelian k(t)-

linear and has a fibre functor

M �
(
M ⊗K [t] K s[t])σ ⊗k[t] k(t) (8)

and with this fibre functor we have

Proposition 4.1.5. t M◦
Artin(K ) is neutral Tannakian k(t)-linear with fundamental group G K .

Note that it is not needed to use analytic methods to obtain a fibre functor on Artin t-motifs and
in particular it is not needed to demand that k[t] → K be injective.

Proof of Proposition 4.1.5. The functor M(V ) � H(V ) ⊗k k(t) induces a fully faithful embedding of
t M◦

Artin(K ) into the category of k(t)-linear representations of G K . It will be essentially surjective as
soon as every continuous k(t)-linear representation of G K is a sub-quotient of H ⊗k k(t) for some
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k-linear representation H . This is indeed so, since every (algebraic, or continuous) representation of
G K factors though a finite group G and every representation of G is a sub-quotient of the direct
sum of a number of copies of the regular representation k(t)[G], which is nothing but the regular
representation k[G] over k, tensored with k(t). �
4.1.6. Artin t-motifs are the t-counterparts of the algebro-geometric Artin motifs. Let Z → K be any

field. Consider the category of smooth and projective varieties X over K that are of dimension zero.
These are the spectra of the finite étale K -algebras and by Grothendieck’s formulation of Galois
theory the category of such X is equivalent to the category of finite G K -sets. The motifs that are
sub-quotients of the h(X,Q) for zero-dimensional X are called Artin motifs. They form a category
which is equivalent to the category of Q-linear representations of G K , see [3, §4.1].

4.2. Relation between ΓK and ΓK s

Suppose now that k[t] → K is actually injective. Choose K † ⊃ K to be algebraically closed, com-
plete and with ‖θ‖ > 1. Let K s be the separable closure of K inside K †. For an Artin t-motif M we
have that

(
M ⊗K [t] K s[t])σ ⊗k[t] k(t) = (

M ⊗K [t] K †({t}))σ .

That is to say, t M(K )◦Artin is a full sub-category of t M(K )◦a.t. and the analytic fibre functor on the
latter extends the algebraic fibre functor on the former.

Theorem 4.2.1. There is a short exact sequence

0 → ΓK s → ΓK → G K → 0

of affine group schemes over k(t).

Proof. The full subcategory t M◦
Artin(K ) of t M◦

a.t.(K ) is Tannakian with fundamental group G K (4.1.5)
and is closed under sub-quotients in t M◦

a.t. by definition. This implies the existence of a faithfully flat,
and hence surjective, morphism ΓK → G K of affine group schemes (see for example [4, Prop. 2.21(a)]).

If M is an effective t-motif over K s , then it has a model M ′ over a finite extension K ′ of K . The
t-motif M is a submotif of R K ′/K M ′ ⊗K K s . Thus every t-motif over K s is a submotif of a t-motif
that is already defined over K . It follows that the fully faithful functor M � MK s from t M◦

a.t.(K ) to
t M◦

a.t.(K s) defines a closed immersion ΓK s → ΓK (see [4, Prop. 2.21(b)]).
The sequence is exact in the middle if and only if the representations of ΓK on which ΓK s acts

trivially are precisely those coming from a representation of G K . In other words, the exactness is
equivalent with the statement that a t-motif M over K satisfies MK s ≈ n1 for some n if and only
if it is an Artin t-motif. This was one of the equivalent definitions of the notion of an Artin t-motif
(see 4.1.3). �
5. Weights

5.1. Dieudonné t-modules

As usual k is a finite field of q elements and K a field containing k. Denote by τ the continuous
endomorphism of the field of Laurent series K ((t−1)) that fixes t−1 and that restricts to the qth power
map on K .
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Definition 5.1.1. A Dieudonné t-module over K is a pair (V , σ ) of

• a finite-dimensional K ((t−1))-vector space V , and
• an additive map σ : V → V satisfying σ( f v) = τ ( f )σ (v) for all f ∈ K ((t−1)) and all v ∈ V ,

such that Kσ(V ) = V .

A morphism of Dieudonné t-modules is of course a K ((t−1))-linear map commuting with σ .
Dieudonné t-modules are easily classified, at least over a separably closed field. The main ‘building

blocks’ are the following modules:

Definition 5.1.2. Let λ = s/r be a rational number with (r, s) = 1 and r > 0. The Dieudonné t-module
Vλ is defined to be the pair (Vλ,σ ) with

• Vλ
def= K ((t−1))e1 ⊕ · · · ⊕ K ((t−1))er ,

• σ(ei)
def= ei+1 (i < r) and σ(er)

def= tse1.

The classification states:

Proposition 5.1.3. If V is a Dieudonné t-module over a separably closed field K then there exist rational
numbers λ1, . . . , λn such that

• V ≈ Vλ1 ⊕ · · · ⊕ Vλn , and
• the t−1-adic valuations of the roots of the characteristic polynomial of σ expressed on any K ((t−1))-basis

are {−λi}i , each counted with multiplicity dim Vλi .

If λ �= μ, then Hom(Vλ, Vμ) = 0. For all λ, the ring End(Vλ) is a division algebra over k((t−1)). Its Brauer
class is λ + Z ∈ Q/Z = Br(k((t−1))).

Note that this classification is formally identical to the classification of the classical (p-adic)
Dieudonné modules [5].

Proof. This is shown in [7, Appendix B]. Although the statements therein are made only for a par-
ticular field K , nowhere do the proofs make use of anything stronger then the separably closedness
of K . �

The following characterisation of Vλ is useful.

Proposition 5.1.4. Let V be a Dieudonné t-module over a separably closed field K and λ a rational number.
The following are equivalent:

• V ≈ Vλ ⊕ Vλ ⊕ · · · ⊕ Vλ;
• there exists a lattice Λ ⊂ V such that σ r(Λ) = tsΛ where r and s are coprime integers with λ = s/r.

Proof. One ⇒ Two. If V = Vλ and (ei) the basis that occurs in its definition (5.1.2) then the lattice
generated by the same basis (ei) has the required property. For V = Vλ ⊕ · · · ⊕ Vλ it thus suffices to
take the lattice Λ ⊕ · · · ⊕ Λ.

Two ⇒ One. The operator t−sσ r transforms a K [[t−1]]-basis of Λ into a new K [[t−1]]-basis of Λ

and therefore has eigenvalues of valuation 0. �
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5.2. Weights

5.2.1. Let K be separably closed. Let M be an effective t-motif over K . Then

M
((

t−1)) def= M ⊗K [t] K
((

t−1)) = M(t) ⊗K (t) K
((

t−1))

is a Dieudonné t-module. The displayed equality shows that it only depends on the isogeny class of M .
By the classification of Dieudonné t-modules (5.1.2) there exist rational numbers λ1, . . . , λn such that

M
((

t−1)) ≈ Vλ1 ⊕ · · · ⊕ Vλn .

We call these rational numbers the weights of M . If K is not separably closed then we define the
weights of an effective t-motif M to be the weights of MK s . This clearly does not depend on the
choice of a separable closure.

We say that M is pure of weight λ if the only weight occurring is λ. By Proposition 5.1.4, this
coincides with the definition as given in [1].

We now collect a number of facts related to the notions of weights and purity. They are either
immediate consequences of the definitions or well-known facts established in the literature.

Proposition 5.2.2. We have the following:

• If M is pure of weight λ, then every sub-quotient of M is pure of weight λ;
• If M has a filtration in which all successive quotients are pure of weight λ, then M is pure of weight λ;
• If the sets of weights of M1 and M2 are disjoint, then Hom(M1, M2) = 0;
• C is pure of weight 1;
• The weights of M1 ⊗ M2 are the sums of weights of M1 with those of M2;
• The weight of a pure effective t-motif M is non-negative.

Proofs. One. If M ′ is a sub-quotient of M , then M ′((t−1)) is a sub-quotient of M((t−1)) and the
claimed statement follows at once from the classification 5.1.2.

Two. A normal series of M induces a normal series of M((t−1)) and again the contention follows
from 5.1.2.

Three. Hom(M1, M2) is a submodule of Hom(M1((t−1)), M2((t−1))), which is zero by 5.1.2.
Four. The valuation of t − θ at t−1 is −1.
Five. Immediate since the zeroes of the characteristic polynomials are multiplied.
Six. Clear for rank one M , for a general M take the top exterior power. �

5.2.3. If M is an effective t-motif and

M
((

t−1)) ≈ Vλ1 ⊕ · · · ⊕ Vλn ,

then by the proposition

(M ⊗ C)
((

t−1)) ≈ Vλ1+1 ⊕ · · · ⊕ Vλn+1.

It is thus natural to define the weights of a t-motif (M, i) to be the set of λ + i where λ runs through
the weights of M . To be consistent, a t-motif (M, i) is then said to be pure of weight λ if and only if
M is pure of weight λ − i.



L. Taelman / Journal of Number Theory 129 (2009) 142–157 155
5.3. Finite generation over K [σ ]

Let K be algebraically closed.

Theorem 5.3.1. If M is an effective t-motif and all weights of M are positive, then M is finitely generated as a
K [σ ]-module.

Corollary 5.3.2. If M is an effective t-motif then for all n sufficiently large M ⊗ Cn is finitely generated
over K [σ ].

Remark 5.3.3. It follows in particular that the analytically trivial effective t-motifs that are finitely
generated over K [σ ] generate the Tannakian category t M◦

a.t. , and that the t-motivic Galois groups
constructed here coincide with those of [8].

Proof of Theorem 5.3.1. (Cf. [1, Prop. 1.9.2].) There is an isomorphism

M
((

t−1)) ≈ V u1/v ⊕ · · · ⊕ V uk/v .

Let Λ be the K [[t−1]]-lattice in M((t−1)) that corresponds with the standard lattice in the right-hand
side (see 5.1.4). Let u be the minimum of the ui . By the hypothesis u > 0. Then

tuΛ ⊂ σ vΛ.

Define an increasing filtration

M0 ⊂ M1 ⊂ M2 ⊂ · · ·

by

Mn
def= M ∩ tnuΛ,

the intersection taken inside M((t−1)). Clearly M = ⋃
n Mn .

Claim: Mn+1 ⊂ Mn + σ v Mn for all sufficiently big n.
Since the Mn are of finite dimension over K , the claim implies at once that M is finitely generated

over K [σ ].
To prove the claim, note that for all n sufficiently large

M + tnΛ = M
((

t−1)). (9)

For such n we have

Mn+1 = M ∩ tnutuΛ ⊂ M ∩ tnuσ vΛ ⊂ (
M ∩ tnu) + (

σ v M ∩ σ vtnuΛ
) = Mn + σ v Mn

where the second inclusion needs (9). �
6. Connected components of Γ

The morphism k[t] → K is assumed to be injective.
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6.1. The Tate conjecture

Let λ be a monic irreducible element of k[t]. Denote by k(t)λ the λ-adic completion of k(t). To an
effective t-motif M = (M, σ ) over K we associate a λ-adic Galois representation as follows:

M �→ Hλ(M) := lim←−
n

(
MK s /λn MK s

)σ ⊗k[t] k(t).

Here (−)σ denotes invariants for the induced action of σ on MKs /λ
n MK s (note that σ and λn com-

mute). It follows from Lang’s Theorem [6] that Hλ(M) is a vector space over k(t)λ whose dimension
equals the rank of M . By transport of structure G K acts continuously on Hλ(M).

The construction extends to give a k(t)-linear ⊗-functor Hλ from t M◦ to the category of finite-
dimensional continuous λ-adic G K -representations.

Let us now restrict attention to analytically trivial t-motifs. Fix a λ as above. On the category t M◦
a.t.

we now have two fibre functors to k(t)λ-vector spaces: Han(−,k(t)λ) (defined as Han(−,k(t))⊗k(t)λ)
and Hλ(−). By the formalism of Tannakian categories there exists an isomorphism αλ of fibre functors

αλ(−) : Han
(−,k(t)λ

) → Hλ(−).

Also it follows that if M is a t-motif with Tannakian fundamental group G , then the image of the
λ-adic Galois representation is contained in G(k(t)λ), via the identification αλ(M).

We have the following fundamental result ([11,12]; see also [10, §19]):

Theorem 6.1.1 (“Tate conjecture”). Assume K is finitely generated and let λ be a monic irreducible element
of k[t], coprime with the kernel of k[t] → K . Then for all M1, M2 ∈ t M◦(K ) the natural homomorphism

Hom(M1, M2) ⊗k(t) k(t)λ → Homk(t)λ[G K ]
(

Hλ(M1), Hλ(M2)
)

is an isomorphism.

6.2. Connected components of Γ

Theorem 6.2.1. ΓK s has no finite quotients. In particular it is connected.

Proof. Note that Γ → π0(Γ ) is a pro-finite étale quotient, hence the second statement indeed follows
from the first.

Let G be a finite quotient of ΓK s . To a faithful representation (say, the regular representation) of G
corresponds an analytically trivial t-motif M over K s . It suffices to show that M is constant, for then
it is trivial (over K s) and consequently G is trivial.

Now, M is defined over some finitely generated L ⊂ K s , hence the map ΓK s → G factors as

ΓK s → ΓL → G.

Since G(kλ) is finite, the λ-adic representation of G L associated with ML becomes trivial over some
finite extension L′/L inside K s . Thus by the Tate conjecture, ML′ is trivial, hence M was constant. �
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