DIAGNOSTIC VALUE OF TC99M SPECT MYOCARDIAL PERFUSION IMAGING IN COMPLEX CONGENITAL HEART DISEASE

Poster Contributions
Hall C
Sunday, March 30, 2014, 9:45 a.m.-10:30 a.m.

Session Title: SPECT Imaging: Focus on Vasodilators, Interpretation and Newer Applications
Presentation Number: 1173-29

Authors: Sara L. Partington, Anne Marie Valente, John Bruyere, Jr, Michael Landzberg, Marcelo Di Carli, Frederick Grant, Sharmila Dorbala, Boston Children’s Hospital, Boston, MA, USA, Brigham and Women’s Hospital, Boston, MA, USA

Background: Nuclear myocardial perfusion imaging (MPI) is commonly used to assess myocardial ischemia in adults, but MPI in complex congenital heart disease (C-CHD) has not been well defined. We determined the incremental value of MPI over exercise ECG (ex-ECG) to diagnose ischemia in children and adults with C-CHD.

Methods: 58 patients with C-CHD underwent rest/exercise Tc99m SPECT MPI at associated pediatric (81%) and adult (19%) hospitals over an 11 year period (2002-2013)(estimated radiation dose 8.6 ± 2.5 mSv). Ex-ECG was reported as normal, non-diagnostic (ND) or ischemic and MPI as normal or abnormal. The sensitivity and specificity of MPI for detecting coronary obstruction (≥70% narrowing) was calculated in patients with angiography (±12 months of MPI).

Results: The median age was 17.6 yrs (IQR 15.1- 22.5), 66% male, with transposition of great arteries (TGA) (n=41), corrected-TGA (n=6), tetralogy of Fallot (n=5), truncus arteriosus (n=2) and single ventricle physiology (n=4). Coronary artery disease was infrequent (2%) as were cardiac risk factors (hypertension 9%). Concern for structural coronary artery abnormalities was frequent (78%) with 45% of patients being referred for asymptomatic screening MPI. Ex-ECG was ND in the majority (N=37, 64%), ischemic in 2 (3%) and normal in 19 (33%). MPI was normal in the majority (N=45, 78%), including 95% with normal Ex-ECG, 68% with ND Ex-ECG and all with ischemic Ex-ECG. Mean systemic ejection fraction was 55 ± 11%. Angiographic coronary obstruction was present in 4/26 patients all with ND Ex-ECG. The sensitivity of MPI in ND Ex-ECG was 50% with the 2 false negatives having submaximal exercise tests. The specificity of MPI was 57%. Of the 7 false positives, 5 were likely related to prior surgery or anatomical features of C-CHD that mimic perfusion defects.

Conclusions: The high incidence of ND Ex-ECG highlights the importance of imaging to non-invasively assess ischemia in C-CHD. Normal MPI was frequent and angiographic coronary obstruction infrequent in patients with C-CHD. Hence, MPI protocols may be tailored (stress first) to minimize radiation dose. Multicenter registries should be developed to better understand the utility of MPI in C-CHD.