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For a differential equation depending on a parameter, there have been numerous 
investigations of the continuation of periodic orbits as the parameter is varied. 
Mallet-Paret and Yorke investigated in generic situations how connected 
components of orbits must terminate. Here we extend the theory to the general case, 
dropping genericity assumptions. 0 1984 Academic Press, Inc. 

1. INTRODUCTION 

Poincare studied (periodic) orbits of parametrized vector fields-orbits of 

(1.1) 

where f : R" x R -+ R". He observed that, by using the (Poincare) return map 
for an orbit at A,,, the implicit function theorem could be employed for 
continuing the fixed point of the return map to nearby values of 1, and 
therefore the orbit itself could be continued locally. In this paper “orbit” 
always refers to periodic orbit and “period” to the orbit’s minimum period. 

The global behavior of families of orbits, however, is somewhat different 
from that of fixed points, since return maps are only defined locally in an 
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(x, I)-neighborhood of an orbit. Global results have been obtained for 
generic families (see Section 2 for a discussion of the residual set of vector 
fields considered)-provided the initial orbit is not a Mobius-type orbit. 
(Briefly, a Mobius orbit is one whose unstable manifold is nonorientable.) 
For a connected component Tc R” X R of the set of points (x, A) on the 
orbits of such an equation and for a locally continuable non-Mobius orbit y 
in r, at least one of the following must hold (see [9]): 

(a) r- y is connected; 
or each of two components ri (i = 1,2) of r- y satisfies one of the 
following: 

(bl) ri is unbounded in (x, A)-space, 

(b2) ri contains a generalized center (i.e., a stationary point (x,, A,,) 
such that DJ(x,&) has some purely imaginary eigenvalues), or 

(b3) the periods of orbits in ri are unbounded. 

DEFINITION 1.2. If an orbit y of (1.1) satisfies any of the above 
conditions, we say y is P-globally continuable. 

In the case of a Mobius orbit, it has been shown that, even if the orbit is 
locally continuable, a family of orbits emanating from it can terminate in 
such a way as not to satisfy any of the above conditions (see [4]). 

The question remained as to whether orbits of a general C’ system exhibit 
the same global behavior as those in the generic class. The principal aim of 
this paper is to demonstrate that for non-Mobius orbits of a general system 
local continuability does in fact imply global continuability (which we define 
after some preliminary concepts). We obtain this result by approximating f 
in (1.1) by a sequence { g,}, where the families of orbits of each 
parameterized vector field g, are of generic type. 

Let fi : Rn + R *, i E N, be a sequence of C’ functions converging to a C’ 
function f, and for each i, let yi be a periodic orbit of the differential equation 
1 =fi(x). Assume there is an upper bound on the periods of the yi)s. The 
limit of {ri}, if it exists, will be a periodic orbit p of i =f(x). For the 
purpose of this discussion, we assume p to be non-constant. Let ri be the 
period of yi, for each i. If limi,co ri exists and is finite, then this limit is some 
integer multiple of the period 7 of the orbit /I. We formalize this idea in the 
following definition: 

Let A be the n - l-dimensional square matrix D,T(x,), where T is the 
Poincare map associated with j? at x,,. If there exists a point y E Rntl with 
Y, AY,..., Am- ‘y distinct, but Amy = y, for some m > 1, then we say Z= m7 is 
a virtual period of @, and m is the order of the virtual period Z: 

For m = 1, the definition is satisfied by y = 0; thus the period is a virtual 
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period of the orbit. For m > 1, y # 0. It has been shown in [8] that in the 
situation described above, where ri is the period of the orbit yi , Z = lim, -roe ri 
is a virtual period of the limit orbit /I. Notice that there can be only a finite 
number of virtual periods for p. In fact, if the above matrix A has no eigen- 
values that are roots of unity, then the period is the only virtual period. 

We incorporate the idea of virtual periods into our definition of global 
continuability. 

DEFINITION 1.3. For an orbit p of (l.l), let B c R” x R be the 
component of the set of points on (periodic) orbits that contains /?. We say p 
is globally continuable if either of the following conditions hold: 

(a) B - p is connected; 

or each of two components Bi (i = 1,2) of B -,LI satisfies one of the 
following: 

(bl) Bi is unbounded in (x, A)-space, 

(b2) & contains a generalized center, or 

(b3) the virtual periods of orbits in Bi are unbounded. 

Section 2 contains a description of the generic properties of orbits for the 
residual set of vector fields used in the limit arguments and a summary of the 
generic theory. The main theorem-global continuability for locally 
continuable non-Mobius orbits of general C’ systems-is proved in Section 
3. In Section 4, we consider a smaller class of C’ vector fields, for which the 
generic notion of global continuability (P-global continuability) holds. 

In introducing the idea of virtual period and using it to obtain global 
results, we have restricted’ourselves to results that use no index or degree 
theory. Also, the results we use from other papers do not depend on index 
theory of any kind. (the development of an orbit index paralleling this theory 
appears in [5]. See also [8] and [9].) F or more difficult problems, such as 
the global continuation of orbits emanating from a generalized center, the 
orbit index appears to be necessary, and such problems are not discussed 
here. 

The results in this paper and in [9] should be contrasted with those of [2], 
[7], and others, in that those papers studied the boundedness of components 
of the set Q = {(t, x, 2): (x, A) is on an orbit of (1. l), and t > 0 is any integer 
multiple of the orbit’s period}. Since t was not necessarily even a virtual 
period, these results were incomplete. 

While we have emphasized differential equations in R” x R, the theory 
extends to M X R, where A4 is any manifold. It also extends to cases where f 
is defined on an open subset U of R” x R, in which case condition (bl) of 
the definition of global continuability should be interpreted as saying “Bi 
does not lie in a compact subset of U.” 
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2. A DESCRIPTION OF GLOBAL RESULTS FOR GENERIC 
FAMILIES OF PERIODIC ORBITS 

The continuation of periodic orbits of a parametrized system of ordinary 
differential equations can be studied locally through techniques of fixed point 
theory and globally in terms of the topological structure of maximal 
connected families of such orbits. Given a differential equation depending on 
a parameter 

$ =.0x, A> (2-l) 

where f : R” X R -+ R” is C’, the main tool for analyzing a periodic solution 
y of (2.1) is the Poincare (or first-return) map. Let (x0, 1,) be a point on y, 
and let D be an n-dimensional disk perpendicular to (f(x,, A,), 0) at (x0, A,). 
The C’ Poincare map T is defined for (xi, A,) in D sufficiently close to 
(x,, 1,) as follows: let T(x,, Jr) be the x-coordinate of the point where the 
trajectory through (xi, A,) next hits D. (The I-coordinate is A1 .) We say ,D is 
a multiplier of y if it is an eigenvalue of the (n - 1) X (n - 1) matrix of 
partial derivatives D, T(x,, 1,). Notice that each point on a periodic orbit is 
a fixed point of the Poincare map associated with the orbit at that point. The 
Poincare index of the orbit is the Brouwer fixed point index of T. Orbits 
which have an odd number of multipliers (counted with multiplicities) in 
(-co, -1) and which, in addition, have no multipliers equal to -1 are called 
Mobius orbits. 

For the remainder of this section we assume that the function f in (2.1) is 
C3. We consider a set of properties of periodic orbits of (2.1) which are 
“generic” in the following sense: the set of C3 vector fields all of whose 
periodic orbits possess these properties is residual in the C3-topology (i.e., 
the set has a subset which is the countable intersection of open dense sets). 

If an orbit y containing (x,,, A,) does not have +l as a multiplier, then 
D,(T - id,) will be non-singular. By the implicit function theorem, there 
exists a neighborhood W of (x,, A,) in R”+’ such that the component of 
zeroes of T - id, containing (x,, A,) extends through W. Since these zeroes 
lie on periodic orbits, the component of orbits containing y will similarly 
extend through W, and we say that y is locally continuable. If an eigenvalue 
of D, T(x,,, &)-or of the derivative of some iterate of T-crosses the value 
+ 1, there will be a bifurcation of orbits from y. Notice that if y has a 
multiplier which is the jth root of unity, then D, Tj(x,, A,) will have an 
eigenvalue equal to 1. When j# 1, a family of longer period orbits can 
bifurcate from y. In the Appendix to [5], a set of generic bifurcations is 
described. We summarize these ideas in the following list of types of orbits 
that may be contained in our “generic” families: 
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Type 0 orbit: an orbit with no multipliers which are roots of unity. In 
particular, since these orbits have no multipliers equal to 1, they are locally 
continuable. 

Type I orbit: an orbit yl, with a single multiplier ,u = + 1 (algebraically 
simple), and no other multipliers which are roots of unity, in a system 
satisfying the following additional conditions: 

(1) the n x (n- 1) matrix DcX,l) (T- id,) has full rank (thus, by the 
implicit function theorem applied to T - id,, there is a path of orbits through 
Y,); and 

(2) the rate of change of the multiplier along the path of orbits 
through y, is non-zero. 

In this case two families of orbits (of approximately the same period) 
approach each other as A increases (respectively, decreases), coalesce when 
1 = A, at the bifurcation orbit y,, and disappear for 1 > A,, (resp., d < 1,). 

Type II orbit: an orbit y2 with a single multiplier p= -1 (algebraically 
simple), and no other multipliers which are roots of unity, in a system 
satisfying the following additional conditions: 

(1) the derivative of the multiplier with respect to the parameter is 
non-zero, in which case (following from a Liapunov-Schmidt argument) a 
unique path of orbits with periods approximately twice those of orbits on the 
original family bifurcates from yZ; and 

(2) +l is not a multiplier for orbits on the double period branch 
within some neighborhood of yZ. 

Since t 1 is not a multiplier of yZ, the original family continues through 
the bifurcation orbit with approximately the same periods. In order for a 
periodic orbit to have a negative multiplier, nearby solutions must twist 
around the orbit (as, for example, in the case of a flow on a Mobius band 
about the center circle). Thus period-doubling bifurcations can occur in R” 
only for n > 3. Under the above hypotheses, period-doubling bifurcations are 
isolated in the following sense: for any bounded subset 0 of R” x R and any 
number q, there are at most a finite number of type II orbits lying wholly in 
R that have period less than q. 

Notice that it is possible for type 0 or I orbits to be Mobius, but not 
possible for type II orbits (since -1 is a multiplier). Also note that for type 0 
and I orbits the only virtual period is the period itself, (a virtual period of 
order l), while each type II orbit has virtual periods of orders 1 and 2. 

We let K be the set of those C3 functions f : R” x R + R” such that every 
periodic orbit of dx/dt =f(x, A) is of type 0, I, or II. We refer the reader to 
[5] for a justification that K is residual in the C3-topology. (This 
justification is based on the local fixed-point results of Brunovskjl [6] 
coupled with the global methods of Peixoto [lo]. For an alternate treatment, 
see Sotomayor [ 11 I.) Throughout the remainder of the paper, we will 
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continue to apply the term “generic” not only to the properties of vector 
fields in K, but also more loosely to the vector fields themselves and to 
families (i.e., components) of orbits of these vector fields. 

In the case of fixed points or zeroes of parametrized maps, local 
continuability in fact implies global continuability. (See [ 1 ] for the 
appropriate definition of global continuability in this case and the theorem.) 
Unfortunately, the analogus result for periodic orbits is impossible to obtain, 
even in the generic case, f E K. An example of a Mobius orbit y with non- 
zero Poincare index which fails to satisfy any of the conditions for P-global 
continuability in Definition 1.2 is presented in [4]. It has been shown in [3] 
that this phenomenon is only realizable when the dimension of the x-space is 
strictly greater than 3. 

If we examine the continuability from the three generic types of orbits, we 
see that in each case there is a l-dimensional path of orbits (branched in the 
case of type II) passing through the given orbit. The two branches emanating 
from a type I orbit must be either both Mobius or both non-Mobius, 
depending on whether the orbit itself is Mobius. Two of the three branches 
emanating from a type II orbit must be non-Mobius, and the third must be 
Mobius. (We refer the reader to [9] for details.) Thus a non-Mobius orbit 
always lies on an (unbranched) path of non-Mobius orbits. We define an 
equivalence relation E on a subset of R” x R: ((x,, A), (x,, ii)) E E if and 
only if x, and x2 lie on the same orbit of (2.1). If we add the hypothesis that 
for a given non-Mobius orbit y, the component n of non-Mobius orbits 
containing y has uniformly bounded periods, then we are able to conclude 
that fl* = I7/E is in fact a l-manifold. (It is a metric space, using, for 
example, the Hausdorff metric on equivalence classes. Since n does not 
contain orbits of arbitrarily high period, we are assured that there exists a 
neighborhood W* of the point y* = y/E such that II* n W* is 
homeomorphic to (0, l).) 

We end this section with a global theorem for generic families (a special 
case of Theorem 4.2 in [9]) and include a proof which is rather different 
from and somewhat simpler than the original. 

THEOREM 2.2 (Mallet-Paret and Yorke). Let y be a periodic solution of 
(2. l), where f E K. If y is not a Mobius orbit, then y is P -globally 
continuable. 

ProoJ Let r be the component of orbits of (2.1) containing y. Assume 
that r- y is not connected and that r+, a component of r- y, is bounded. 
Further assume that the periods of orbits in rt are bounded. Let l7 be the 
subset of r+ U y of non-Mobius orbits. By the previous discussion, l7* is a 
l-manifold, so there exists a homeomorphism h: [0, l)+ n*. For an 
increasing sequence (ti}icN of points in [0, 1) such that limi,, ti = 1, let 
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~7 = h(t,), for each i. It is easily seen that the corresponding sequence {7ci} of 
orbits in 17 converges to an invariant set p. Let ri be the period of xi, for 
each i. Since {ti} is bounded, p must be a stationary point or a (periodic) 
orbit. We conclude that p is a stationary point; otherwise, p E ZZ but 
p* G? h([O, 1)). In other words, since ZZ* is a manifold, it cannot double back 
on itself. The limit point p* cannot be a point of the manifold. Thus Z+ 
contains a generalized center, and y is P-globally continuable. u 

3. A GLOBAL RESULT FOR PERIODIC ORBITS IN THE GENERAL CASE 

Having defined a generic class of C3 vector fields and having described a 
global result for certain periodic orbits of such a system, we proceed in this 
section to prove an analogous theorem (Theorem 3.1) for general C’ 
systems. Let T be the Poincare map of fi at (x,, A,), and let A = D, T(x,, A,). 
Suppose that /I has a virtual period of order m > 1. Then Amy =y, for some 
y # 0. Thus 1 is an eigenvalue of Am. In this case, it is easily seen that the 
rth root of unity is an eigenvalue of A, for some divisor I of m; hence A’ - Z 
is singular. We use this fact about virtual periods in the proof of our main 
result: 

THEOREM 3.1. Let p be a periodic orbit of (2.1), and let T be the 
Poincare’ map of /3 at (x,, I,,). Assume that (D, T(x,, &)y’ - Z is non-singular 
for j > 1 (i.e., ,b has no multipliers that are roots of unity), and assume that /3 
is not a Mobius orbit. Then /I is globally continuable. 

The proof of this theorem depends on the following lemma: 

LEMMA 3.2. Let { gi : R” x R + R”}i,N be a sequence of functions in K 
converging in the C’-topology to a C’ function f : R” x R + R”, and let yi be 
a periodic orbit of i = gi(x, A), for each i, with { yi} converging to a (non- 
stationary) orbit p. Zf { yiJiaN is a sequence of P-globally continuable orbits, tf 
the periods of the yi)s are bounded, and tf the Poincare map of p satisfies the 
hypothesis of Theorem 3.1, then p is globally continuable. 

Proof of Lemma 3.2. Assume that /I is not globally continuable. Denote 
by B’ and B- the two components of B - p, and suppose that B’ satisfies 
none of the conditions (bl)-(b3) of Definition 1.3. In particular, f (x, A) # 0, 
for (x, A) E B’. By the hypothesis on T, p has no virtual periods of order 
greater than one, and there is a neighborhood W of /I in R” X {A,} in which /3 
is the only orbit-except, perhaps, for orbits of very long period. 

Let 

p,, = mtr+ {o: u is the period of p} 
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p1 = pE;t {t: t is a virtual period of /I}. 

Note that p. > 0. If $(t, x, 1) is the solution of (2.1) through (x, /2), we define 

F(x, n> = min 
(1/4)Po<163P, 

I$(4x,~)--xl. 

The set of zeroes of F are points on periodic orbits of (2.1). Loosely 
speaking, F measures how close # is to being periodic, for periods between 
ipp, and 3p,. It is clear that F is continuous in x and A. 

Let N,={(x,L)ER”xR:IF(x,A)I<E} for c>O, and let Nt be the 
component of N, containing B. Choose E small enough so that 

(1) the component M, of Nz of Nz n (R” x {A,}) containing /3 is a 
subset of W, 

(2) Ni\M, has two components, which we denote by N: and N;, 
(B+ c Nl and B- c N;); 

(3) there are no zeroes offin N: ; 

(4) N: is bounded; 

(5) there exists p, > 0 such that the system f = g(x, 1) will have only 
one orbit with period 93p, contained in M,, when lif- gll < pi ; and 

(6) there exists pZ > 0 such that the system 1= g(x, A) will have no 
orbits in N: with periods in the interval J= [(l l/lO)p,, (11/5)p,] or with 
periods smaller than (9/1O)p,, when Ilf- gl) < pZ. 

To show the existence of an E > 0 satisfying condition (5), we argue as 
follows: 

Assume that the period of /3 is 1. By the implicit function theorem, the C’ 
map T, - id, will have only one zero in a neighborhood of (x0, A,) in a cross 
section transverse to p, for T, sufficiently close to Tin the Cl-topology. Thus 
there is an E, > 0 such that 1= g(x, 1) will have only one orbit of period 
near 1 in M,. We claim that for each integerj, 1 <j< 3p,, there exists Ej > 0 
such that M,. contains no orbits of i = g(x, 2) of period near j. Suppose 
otherwise. Then there exists a sequence { gi}ieN of functions and a 
corresponding sequence {Y~}~.,,, of orbits with periods {ti}i.N (where yi is an 
orbit of i = g,(x, A) for each i), such that lim,,, gi =S, limi,oo yi =/I, and 
lim,+a, ri = j. But then j is a virtual period of /I, a contradiction. Let 
Mc= nl<j<3p, MEj. (M, is in fact equal to some M,, since we are inter- 
secting a finite nested family.) Then 1= g(x, A) will have only one orbit with 
period less than 3p, in M,. (This orbit must be of type 0.) 

To show that condition (6) may be satisfied, we argue as follows: 
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Suppose that for every E > 0, there exists a C’ function g: R” X R + R” 
such that I]f- gl] < pz and ,x? = g(x, A) has an orbit entirely in Nl with 
period in J. Then for a decreasing sequence {Ei}icN, we obtain a sequence of 
functions { gi} and a corresponding sequence of orbits (xi} such that 7zi is an 
orbit of ,? = gi(x, A), and the period of 7ci is in J. Choose a point xi on zi, for 
each i. The infinite set {Xi}ieN is bounded and thus will have an 
accumulation point x, which is easily seen to lie on an orbit u in Bt. But 
then u will have a virtual period t in J, contradicting the definition of pi. A 
similar argument shows that E can be chosen so that no orbit of i = g(x, 1) 
in Nl will have period less than (9/1O)p,. 

Following the choice of E, we let g, be a function in K sufficiently close to 
fin the C’-topology so that 

(1) Ilf-gelI < min{p,, p2, P}, where P = min(x,l)EFzf(~, A); and 

(2) IIF- Gcll < 429 h w ere G, is defined analogously to F for solutions 
ofi=gJx,A) (for &<t<3p,). 

To show that g, can be chosen to satisfy condition (2), we argue as 
follows: Let ~(t, x, A) be the solution of 

,t = g&G A) (3.3) 

through (x, A). Since N: is bounded, g, can be chosen so that I#(& x, 2) - 
~(4 4 n)l c 42, for (x, A> E N,+, 4 o, ‘p < t < 3p,. Then it is easily seen that 

lmi%/4~P,s1~3P, I4(6 xv A> -xl - min~L,4~po4163p, I v4, x3 A) -4 I < 42. 
Notice that condition (2) implies that no orbits of (3.3) with periods in 

boy 3~~1 11 nt wi i ersect aN, (the boundary of NJ; condition (1) implies that 
NE+ will contain no stationary solutions of (3.3). 

Suppose that yE is the unique orbit of (3.3) with period less than 3p, 
contained in M,. Let rE be the component of periodic solutions of (3.3) 
containing ye. In a small neighborhood U of y, in R”+ ‘, rE - ye has two 
components. Let I’: be the component of Ta- yE which intersects Un Nl 
(i.e., r: is the component which extends into N$). We want to show that r: 
is in fact contained in N: . Now rl can only escape from N: in one of two 
ways: (1) through Q, = aN,n NJ or (2) through M,. We discuss each case 
separately. 

Suppose x E r: n Q,. Then x must be on an orbit rr with period r, where 
r E (-co, ip,,) u (3p,, co). We assume that yE is sufficiently near /I that the 
period of yE is less that p,. Suppose r > 3p,. Then r: contains orbits with 
periods less that p1 and orbits with periods greater than 3p,. Since periods 
on a generic family increase continuously or with gaps a factor of 2, there 
must be an orbit u on r: with period in [(ll/lO)p,, (11/5)p,], and no 
orbits on the “path” from yE to u with periods greater than (11/5)p,. But 
then it is easily seen that u is in N,f , contradicting condition (6) on the 
choice of E. A similar argument shows r > ap,,. Thus rz and Q, are disjoint. 
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By condition (5) on the choice of E, yE is the only orbit of Ts with period less 
than 3p, in M,. By condition (6) on the choice of E, ZE contains no orbits 
with periods greater than (1 l/lO)p, . Thus Z’: and M, are disjoint. 

By the hypothesis of the lemma, we are assuming that yE is P-globally 
continuable. Hence either Z, - yE is connected, or Z: is unbounded, contains 
a generalized center, or has unbounded periods. Since r: is contained in the 
bounded set N:, there are no stationary solutions of (3.3) in N: , and 
(1 l/lO)p, is an upper bound on periods in r:, we see that rE- yE must be 
connected. However, since y, is not a type I orbit, the only way in which 
r, - y, can be connected is for Z-i to leave N,f , a contradiction. We 
conclude that /.I is globally continuable. 1 

Proof of Theorem 3.1. For a sequence { gi)iEN of functions in K such 
that limi+oo gi =f (as in Lemma 3.2), let {yi} be the corresponding sequence 
of periodic solutions converging to p. If /3 is not a Mobius orbit, then for i 
sufficiently large, yi will not be a Mobius orbit and hence will be P-globally 
continuable. By Lemma 3.2, /3 is globally continuable. [ 

Although the structure of families of orbits in the general case does not 
lend itself to analysis as easily as that of generic families, in certain cases the 
approximation techniques of the previous theorem will yield more infor- 
mation about the set of virtual periods of such a family. Namely, if the 
virtual periods are shown to be unbounded by approximating the family with 
generic ones on which the periods are unbounded, then the set of virtual 
periods will be in some sense as “complete” as the set of periods of the 
nearby generic families. In particular, Proposition 3.5 shows that, given any 
interval I (beginning with a sufficiently large number), there will be a 
compact, connected subset of the component whose virtual periods lie in I 
and take on all values in Z, except perhaps for gaps of a factor of two. For 
an application of the following Proposition and Corollary to continuation in 
dimensions 3 and 4, see Section 4 of [5], where it is shown that global 
continuation implies P-global continuation in these cases. 

In the following, let fE Cl@” x R; R”); let { gi}iEN be a sequence of 
functions in K such that lim,+, gi =f; and, for each i, let yi be an orbit of 

1 = gi(x, A) (3.4) 

at A = A,. We denote by ri the component of orbits of (3.4) containing yi, 
for each i. Assuming that the set of periods of {Y~}~~,,, is bounded, then 
limi+oo yi is an orbit or stationary point of (2.1). In Proposition 3.5, we let 
/I = lim,, yi be an orbit of (2.1) at h = 1, and let B be the component of 
orbits of (2.1) containing p. We further assume g has no generalized centers. 

PROPOSITION 3.5. Suppose that for each i, one component of ri - yi, say, 
r+, has the property that the set of periods of its orbits is unbounded. In 



FAMILIES OF PERIODIC ORBITS 69 

addition, we assume that u,r,f is bounded. Then tf a, and a, > a, are 
suflciently large, there will be a compact, connected set S such that S c B 
and each orbit in S has virtual period in [a,, 2a,]. Furthermore, for each 
a E [a,, a,], there is an orbit in S with virtual period in [a, 2a). 

Proof. First, notice that lim,,,, ri is a subset of B (lim,,, ri is the set of 
all limit points of sequences {x~}~~~, where xi E ri). Let a1 > max{ri: ri is 
the period of yi}. Throughout the remainder of the proof, we use the 
following fact about generic families: for any two orbits yl, yz on ri, there is 
a path of orbits beginning with y1 and ending with yz, along which the 
periods vary continuously or jump by a factor of 2 (or f). 

For each i, let Ai be the subset of r: consisting of all orbits with period in 
[a,, 2a,]. Since each r: has orbits of period less than a, and orbits of 
period greater than 2a,, A i is non-empty, for each i. Let {A ij}, <js,,,i be the 
set of components of Ai. (The number of components is finite, since r,? is 
bounded.) We argue that at least one component of each Ai has the following 
property: for each a E [a,, a21 there exists an orbit in the set with period in 
[a, 2a). Otherwise, for each j (1 <j < mi) there exists a number aI such that 
aj E [a,, a21 and A, has no orbits with period in [a,i, 2aj). Since the period 
of yi is less than a,, and aj < a, for all j, all orbits in each A ij must have 
periods less than a*. But r: has orbits with period greater than 2a,. Let pi 
be one such orbit. Then there exists a path of orbits starting with yi and 
ending with pi. Such a path contains an orbit with period in [a,, 2a,), a con- 
tradiction. 

Let Si be a component of Ai which satisfies the above property, and let 
S = lim,, Si. Since each Si is connected and {Si)iEN is uniformly bounded, 
we conclude by a standard point-set argument that S is connected. Also note 
that S is closed and that every point in S lies on an orbit with virtual period 
in [a,, 2a,]. Finally, for every a E [a,, az], each Si contains an orbit vi with 
period in [a, 2a). Thus q = lim,,, vi is an orbit in S with virtual period in 
[a, 2a). I 

COROLLARY. Let ,LI be an orbit of (2.1) at ;1= A,,, satisfying the 
hypotheses of Theorem 3.1. Suppose that a component B’ of B - p satisfies 
only condition (b3) of Dejkition 1.3. Then tf a, and a2 > a, are sufficiently 
large, there will be a compact, connected set S such that S c B+ and each 
orbit in S has virtual period in [aI, 2a,]. Furthermore, for each a E [a,, a,], 
there is an orbit in S with virtual period in [a, 2a). 

Proof By the hypothesis, B ’ is bounded. As in the proof of Lemma 3.2, 
B’ is contained in a bounded neighborhood Nz. We choose a sequence of 
functions { gi}ieN such that g, E K, for each i, and limi+ gi =$ Let yi be an 
orbit of (3.4) at A = &-, such that limi,, yi = ,8; and let ri be the component 
of orbits of (3.4) containing yi. Then for gi suffkiently near f (as in the proof 
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of Lemma 3.2), r+ is contained in Nz, and I-,? has no generalized centers; 
hence, the periods of orbits on r: are unbounded. Choose a, as in the proof 
of Proposition 3.5. Since ,8 has no virtual periods (except the actual period), 
the set S guaranteed by Proposition 3.5 is contained in B’. m 

Remarks. Notice that if the periods of orbits on a generic family are 
bounded by m, then the virtual periods are bounded by 2m. Thus Theorem 
3.1 is a generalization of Theorem 2.2 (P-global continuability): for fE K 
the condition that the virtual periods are unbounded implies that the actual 
periods are unbounded. 

We reiterate that the Corollary to Proposition 3.5 only applies to cases in 
which no other conditions of Definition 1.3 are satisfied for a component B+ 
of orbits. Otherwise, virtual periods may become unbounded on a branch of 
B’ which is not close to a generic family. As f is perturbed to a function in 
K, that particular branch may even disappear, in which case another branch 
will be globally continuable- but will not necessarily satisfy (b3). 

4. GENERIC FAMILIES REVISITED 

In practice, differential equations often arise that have special symmetries. 
Some of the bifurcations that are likely to occur are not permissible in K. 
The question naturally arises as to how the hypotheses of Theorem 3.1 might 
be strengthened in order to obtain P-global continuability for periodic orbits 
of a class of C’ vector fields larger than K. In this section we define such a 
class and prove another P-global continuability result. 

We let R be the set of C’ functions f : R” x R -+ R” such that the number 
of periodic solutions of (2.1) with virtual periods of order greater than k is 
countable, for k sufficiently large. Clearly K $ J2. For comparison, note that 
for fE K there are at most countably many orbits with virtual periods of 
order strictly greater than one (i.e., only type II orbits); there are no orbits 
with virtual periods of order greater than 2. 

PROPOSITION 4.1. Let p be a periodic orbit of (2. l), where f E R, and let 
T be the Poincare map of p at (x,, , &,). If (D, T(x,, &,)y’ - I is non-singular 
for all j > 1, and if p is not a Mobius orbit, then p is P-globally continuable. 

Proof: Assume /I is not P-globally continuable. As in the proof of 
Lemma 3.2, let B be the component of periodic solutions of (2.1) containing 
p, B ’ be a bounded component of B -/I, and N: be a bounded 
neighborhood of B+. By Theorem 3.1, we know that the virtual periods of 
orbits in B + are unbounded. Since the actual periods in B ’ are bounded, the 
orders of the virtual periods must go to infinity. We will show that the set of 
orbits with orders greater than k is uncountable, V k E N. 
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Fix k. As before, we have connected families r[ of periodic solutions of 
(3.4), where each gi E K and limi+m gi =f: For i sufficiently large, 
r/ E N,‘. Arguing as in the proof of Lemma 3.2, we see that, by the 
conditions imposed on gi, the actual periods of each r,? in N: must go to 
infinity. On such a generic family, the periods change continuously or with 
gaps a factor of 2. Thus, on each r:, a continuum Pi of orbits must have 
periods greater than k. Let P be the set of limit points of sequences {x~}~~~, 
where xi E ni, for orbits ni on Pi. Clearly, P c B. Each Pi is connected and 
{‘ilieN is uniformly bounded, implying that P is connected. Since P is easily 
seen to be non-empty, P must be a single orbit or a continuum or orbits. If P 
is a single orbit rr, then 71 has virtual periods of arbitrarily high order, 
contradicting the fact that an orbit can have only a finite number of virtual 
periods. Thus P is a continuum of orbits each of which has a virtual period 
of order greater than k. Such a continuum exists for each k, contradicting the 
hypothesis onJ 1 
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