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1. Introduction

This manuscript presents new results regarding the study of uniform decay rates of the energy
related to the damped cubic nonlinear Schrödinger equations (DCNLS henceforth),

{
iut + uxx + ε|u|2u + ia(x)u = 0, in R × (0,+∞),

u(x,0) = u0(x), x ∈ R,
(1.1)
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and

{
iut + uxx + ε|u|2u + ib(x)|u|2u = 0, in R × (0,+∞),

u(x,0) = u0(x), x ∈ R,
(1.2)

where ε = ±1, with the following assumptions:

(A)

{
In Eq. (1.1), a ∈ W 1,∞(R) is a nonnegative function and

• a(x) � α0 > 0 for |x| > R1, R1 > 0.

(B)

{
In Eq. (1.2), b ∈ W 1,∞(R) is a nonnegative function and

• b(x) � β0 > 0 for |x| > R2, R2 > 0.

Functions a(x) and b(x) are responsible for the localized effects of the dissipative mechanism in
L2-level. Further, the damping terms present in Eqs. (1.1) and (1.2), mainly in the second case, might
be caused by collisions in the absence of lower order effects or by trapped particles.

Eqs. (1.1) and (1.2) when a,b ≡ 0 and ε = 1, are the well-known focusing cubic nonlinear Schrö-
dinger equation

iut + uxx + |u|2u = 0. (1.3)

This equation has been extensively studied in the last few years by many authors, mainly in what
concerns the well-posedness questions, see, for instance, [6,10,11] and references therein. Eq. (1.3)

has many physical applications, among them we can cite: fluid mechanics, optical fibre technology
and analysis of nonlinear wave-packets. The last application arises when it is studied the qualitative
theory of special solutions called solitary standing waves, that is, solutions of the form u(x, t) = eiωtφ(x)
where ω > 0 is the wave-speed and φ = φω is a real function which satisfies φω(x) → 0 as |x| → +∞.
In addition, it is well known that Schrödinger equation, specially with cubic interactions, has wide
applications in many physical fields such as nonlinear optics, nonlinear plasmas, condensed matter
and so on.

In this paper, we establish the global well-posedness related to (1.1) and (1.2). It is known that
the behavior of the solution related to the following problem,

{
iut + uxx + g(u) = 0, in R × (0,+∞),

u(x,0) = u0(x), x ∈ R,
(1.4)

where g(u) = λ|u|pu, p � 0 and Imλ �= 0, is subject to dissipative effects. In fact, since we do not
have conserved laws in L2 and H1-norms, we could expect a scenario of blow-up in H1(R) in the
following sense: ‖u(t)‖H1(R) → +∞ as t ↑ Tmax , if Tmax < +∞ (see Theorems 2.1 and 2.2). However,
in order to overcome this critical fact, we use local well-posedness results due to Kato in [11] (see
also [5] and [8]) and a priori estimates.

The main goal of this manuscript is to show exponential and polynomial decay rates related to
the cubic Schrödinger equations with localized damping (1.1) and (1.2), respectively. To obtain these
results we employ the unique continuation principle, proved by Zhang in [19], considering ε = ±1 in
the following Schrödinger equation:

{
iut + uxx + ε|u|2u = 0, in R × (0,+∞),

u(x,0) = u0(x), x ∈ R.
(1.5)

Combining this result and classical arguments, we are in position to establish the exponential
decay rate for Eq. (1.1) given by
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E0(t) � Ce−ωt, t > 0,

where C > 0 is a positive constant which depends on ‖u0‖H1 , ω > 0 and E0(t) = ∫
R

|u(x, t)|2 dx dt is
the energy in L2-level. If we consider the second equation (1.2), a cubic-polynomial decay rate for
the energy in L2-level is obtained, that is,

E0(t) � C

t3
, t > 0.

Current literature. It is important to point out that the stability results presented in this paper are
quite new, since we are concerned with dispersive equations posed on the whole real line. In bounded
domains, many stability results are given in the literature, particularly when a linear and localized dis-
sipative mechanism is considered (g(s) = s), see, for example, [1,2,9,13,15,16] and references therein.

In [17], Rosier and Zhang established exact controllability results in Hs-level for the Schrödinger
equation, posed on a bounded domain Ω ⊂ R

N ,

iut + 	u + γ |u|2u = 0, (1.6)

where γ ∈ R, and either Dirichlet or Neumann boundary conditions are considered (for s > N/2, or
0 � s < N/2 with 1 � N < 2s + 2, or s = 0,1 with N = 2). As far as we are concerned, the stabilization
in L2-level, for the Schrödinger equation posed on whole real line, is an open and interesting problem.

A pioneer study regarding dispersive equations in the whole real line, was presented by Cavalcanti,
Domingos Cavalcanti and Natali in [4]. They showed the exponential decay rates for the Korteweg–de
Vries equation with localized damping

ut + uux + uxxx + d(x)u = 0, in R × (0,+∞), (1.7)

where d ∈ W 2,∞(R) is a nonnegative real function satisfying d(x) � α0 > 0 for |x| > R1, R1 > 0.
In addition, according to our best knowledge, to deal with dissipative effects in the whole line and
assuming that the function a (respectively, b) in hypothesis (A) (respectively, (B)), as in the present
paper, have never been treated so far in the literature. This brings new difficulties when establishing
the uniform stabilization of the energy, namely, E0(t) := ‖u(t)‖2

L2(R)
, t � 0.

In [18], Shimomura studied the asymptotic behavior in time of small solutions for the initial value
problem, given by

⎧⎨
⎩ iut + 1

2
	u + λ|u| 2

N u = 0, in R
N × (0,+∞),

u(x,0) = u0(x), x ∈ R
N ,

(1.8)

where N = 1,2,3 and λ = λ1 + iλ2 is a complex constant. He showed that whether Imλ > 0, there
exists a unique global solution for the initial value problem which decays like (t log t)− N

2 as t →
+∞ in L∞(RN ) for small initial data. In [3], Cavalcanti, Domingos Cavalcanti, Fukuoka and Natali
proved the exponential decay rate of the energy, in L2-level, concerning the following cubic defocusing
nonlinear Schrödinger equation

iut + 	u − |u|2u + iη(x)u = 0, in R
2 × (0,+∞), (1.9)

where η ∈ W 1,∞(R2) and is a nonnegative function verifying η(x) � a0 > 0 a.e. in ΩR := {x ∈
R

2; |x| � R}, R > 0. Since η produces a localized dissipative effect in L2-level, the authors also es-
tablished in [3], a result of unique continuation in order to obtain the desired exponential stability
result.
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Recently, an important contribution due to Ohta and Todorova was established in [14]. They proved
that the Schrödinger equation with linear full damping

{
iut + 	u + |u|p−1u + iλu = 0, in R

N × (0,+∞),

u(x,0) = u0(x), x ∈ R
N ,

(1.10)

where λ > 0, 1 < p < 1 + 4
N−2 , and N � 3 has global existence in H1-norm, considering that the

initial data u0 belongs to an invariant set. They also proved that under certain conditions, a blow-up
phenomena can occur in finite time (see Theorem 2 in [14]) if, for instance, E1(u0) < 0, where E1 is
the energy given by

E1(u) = 1

2
‖∇u‖2

L2(RN )
− 1

p + 1
‖u‖p+1

Lp+1(RN )
. (1.11)

In order to establish the current results, our paper is organized as follows. In Section 2 we prove a
well-posedness result concerning Eqs. (1.1) and (1.2). Exponential and polynomial decay rates asso-
ciated to these equations are presented in Section 3.

Notation. Let us consider m ∈ N and 1 � p < ∞. We consider the usual Sobolev spaces W m,p(R)

given by

W m,p(R) = {
u ∈ Lp(R); ∂

j
x u ∈ Lp(R), j = 1,2, . . . ,m

}
endowed with the norm

‖u‖W m,p = ‖u‖W m,p(R) =
(

m∑
j=0

∫
R

∣∣∂ j
x u(x)

∣∣p

) 1
p

.

In particular, when m = 1 and p = 2, W m,p(R) becomes the Hilbert space H1(R).
If z = x + iy ∈ C, Re z = x and Im z = y will denote the real and imaginary parts of z ∈ C, respec-

tively.

2. Well-posedness for Eqs. (1.1) and (1.2)

In order to obtain a well-posedness result regarding Eqs. (1.1) and (1.2), we shall combine the
techniques due to Kato, established in [11] (see also [5] and [8]), concerning local well-posedness for
Schrödinger-type equations given by

{
iut + uxx + |u|α−1u = 0, in R × (0,+∞),

u(0) = u0(x), x ∈ R,
(2.1)

where α ∈ (1,5). The next results summarize our intentions.

Theorem 2.1. For all u0 ∈ L2(R) there exist T = T (‖u0‖L2 ) and a unique mild solution u related to Eqs. (1.1)

and (1.2) such that

u ∈ C
([0, T ]; L2(R)

) ∩ L8([0, T ]; L4(R)
)
.

Moreover, for all T ′ < T there exists a neighborhood V of u0 in L2(R) such that
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F : V �→ C
([

0, T ′]; L2(R)
) ∩ L8([0, T ′]; L4(R)

)
is Lipschitz.

Proof. See [5] and [8]. �
Theorem 2.2. For all u0 ∈ H1(R) there exist T = T (‖u0‖H1) and a unique mild solution u related to Eqs. (1.1)

and (1.2) such that

u ∈ C
([0, T ]; H1(R)

) ∩ Lr([0, T ]; W 1,ρ(R)
)
,

where (r,ρ) is an admissible pair. Moreover, for all T ′ < T there exists a neighborhood V of u0 in H1(R) such
that

F : V �→ C
([

0, T ′]; H1(R)
) ∩ Lr([0, T ′]; W 1,ρ(R)

)
is Lipschitz.

Proof. See [5] and [8]. �
2.1. Global well-posedness for Eqs. (1.1) and (1.2)

2.1.1. Global well-posedness for Eq. (1.1)
This subsection is devoted to the proof of global well-posedness result associated to Eq. (1.1)

with initial data u0 ∈ H1(R). In fact, multiplying the first equation in (1.1) by ū and integrating over
(0, t) × R, 0 < t < T ′ , we have

∫
R

|u|2 dx = −2

t∫
0

∫
R

a(x)|u|2 dx ds + ‖u0‖2
L2 . (2.2)

Then, we conclude that

u is bounded in L∞([0,+∞); L2(R)
)
. (2.3)

Furthermore, from Eq. (1.1) we obtain the following identity:

i(ut ū − ūt u) + uxxū + ūxxu + 2ε|u|4 = 0. (2.4)

On the other hand, multiplying the first equation in (1.1) by −ūt we obtain

d

dt

[∫
R

(
|ux|2 − 1

2
ε|u|4

)
dx

]
=

∫
R

a(x)
(
i(ūut − ūt u)

)
dx. (2.5)

Then, if we invoke (2.4) we obtain from (2.5), hypothesis (A) and (2.2) that (for the sake of
simplicity, consider ε = 1)

d

dt

[∫ (
|ux|2 − 1

2
|u|4

)
dx

]
� 2‖a‖W 1,∞‖u0‖2

L2 + 2‖a‖W 1,∞

∫
|u|4 dx + 1

4

∫
|ux|2 dx. (2.6)
R R R
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Integrating (2.6) in t ∈ [0, T ′), we obtain from Gagliardo–Nirenberg and Gronwall inequalities that

∥∥u(t)
∥∥2

H1 � C
(
T ′,‖a‖W 1,∞ ,‖u0‖H1

)
e

c0
4 (1+c1‖a‖W 1,∞ )T ′

, (2.7)

where the constant c1 > 0 does not depend on T ′ > 0 and c0 is the Gagliardo–Nirenberg constant.

Remark 2.1. It is important to mention that in the defocusing case, that is when ε = −1, a similar
bound is obtained since we have the following inequality: ‖ux(t)‖2

L2 �
∫

R
|ux|2 + 1

2 |u|4 dx.

Now, we are in position to establish the next result.

Theorem 2.3. Suppose that function a verifies hypothesis (A) and consider u0 ∈ H1(R). Then, there is a unique
mild solution u for the Cauchy problem (1.1) which belongs to

C
([0, T ], H1(R)

) ∩ C1([0, T ], H−1(R)
)
,

for all T > 0 and satisfies the inequality (2.7). Moreover, the map

u0 ∈ H1(R) �→ u ∈ C
([0, T ], H1(R)

)
is continuous for all T > 0.

The next lemma will be useful later. A similar result can be deduced for Eq. (1.2).

Lemma 2.1. Suppose that a ∈ W 1,∞(R) satisfies assumption (A) and consider u a solution related to problem
(1.1) according to Theorem 2.1. Then we have the following estimate:

T ′∫
0

∫
|x|�R

∣∣D1/2
x u(x, t)

∣∣2
dx dt � C

(‖u0‖L2 , T ′,‖a‖L∞
)
, (2.8)

where T ′ > 0 was obtained in Theorem 2.1 and R > 0.

Proof. The arguments in order to establish this result can be found in Constantin and Saut [7] (see
Theorem 3.1 for a more complete explanation) and Linares and Ponce [8] (see p. 108). In fact, from
Theorem 2.1 solution u(·) must satisfy the integral equation

u(t) = S(t)

(
u0 + i

t∫
0

S(−τ )
(
ε|u|2u + ia(·)u

)
(τ )dτ

)
, (2.9)

where S(t), t � 0, denotes the semigroup related to Schrödinger equation and ε = ±1. Let us define

I
(
u(x, t)

) =
( T ′∫

0

∫
|x|�R

∣∣D1/2
x u(x, t)

∣∣2
dx dt

)1/2

,

by using a well-known Strichartz type inequality and the smoothing effect in H1/2-norm associated to
linear Schrödinger equation (see Theorem 4.2 and Corollary 4.2 in Linares and Ponce [8], respectively)
we obtain from (2.9),
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I
(
u(x, t)

)
� C R

(
‖u0‖L2 + sup

[0,T ′]

∥∥∥∥∥
t∫

0

S(τ )
(
ε|u|2u + ia(·)u

)
(τ )dτ

∥∥∥∥∥
L2

)

� C R

(
‖u0‖L2 + T ′‖a‖L∞‖u0‖L2 +

( T ′∫
0

∥∥∣∣u(τ )
∣∣2

u(τ )
∥∥8/7

L4/3 dτ

)7/8)
. (2.10)

The proof can be established by applying the L2-theory related to Schrödinger equation as obtained
in Theorem 2.1 (see Theorem 5.2 in [8]). �
2.1.2. Global well-posedness for Eq. (1.2)

The concept of global well-posedness in this subsection is the same as in the previous subsection,
that is, we only need to prove that Tmax = +∞. We proceed as in Section 2.1. In fact, multiplying
Eq. (1.2) by ū we get, after integrating in x ∈ R, the following identity:

d

dt

∫
R

|u|2 dx + 2
∫
R

b(x)|u|4 dx = 0. (2.11)

Then, we integrate in time and using assumptions in (B), we obtain

u is bounded in L∞([0,+∞); L2(R)
)
. (2.12)

On the other hand, it is possible to deduce a similar identity as in (2.4) in our case, that is,

i(ut ū − ūt u) + uxxū + ūxxu + 2ε|u|4 = 0. (2.13)

Then, multiplying the first equation in (1.2) by −ūt , we deduce the identity

d

dt

[ ∫
R

|ux|2 − 1

2
ε|u|4 dx

]
=

∫
R

b(x)|u|2(i(ūt u + ūut)
)

dx. (2.14)

Considering ε = 1 and taking (2.13) and (2.14) into account, we obtain

d

dt

[ ∫
R

(
|ux|2 − 1

2
|u|4

)
dx

]
� −2

∫
R

b(x)
(
Re

[
(uxū)2] + |u|2|ux|2

)
dx

+ 2
∫
R

b(x)|u|6 dx − 2
∫
R

b′(x)|u|2 Re(uxū)dx. (2.15)

Since |z1|2|z2|2 + Re[(z1 z̄2)
2] = 2[Re(z1 z̄2)]2 � 0, ∀z1, z2 ∈ C, from (2.11), (2.15) and the Gagliar-

do–Nirenberg inequality, we conclude that

d

dt

[ ∫
R

(
|ux|2 − 1

2
|u|4

)
dx

]
�

(
6c2‖b‖W 1,∞‖u0‖4

L2 + 1

2

)∫
R

|ux|2 dx, (2.16)

where c2 > 0 is the constant deriving from Gagliardo–Nirenberg inequality. Integrating (2.16) over
t ∈ [0, T ′) we obtain
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∥∥u(t)
∥∥2

H1 � 2

(
c3‖u0‖4

H1 + 3

2

)
‖u0‖2

H1 +
(

6c4‖b‖W 1,∞‖u0‖4
H1 + 1

2

) t∫
0

∥∥u(s)
∥∥2

H1 ds. (2.17)

Defining K1 = 2(c3‖u0‖4
H1 + 3

2 )‖u0‖2
H1 and K2 = (6c4‖b‖W 1,∞‖u0‖4

H1 + 1
2 ), (2.17) and Gronwall

inequality implies that

∥∥u(t)
∥∥2

H1 � K1eK2 T ′
. (2.18)

Now, we are able to establish the following result:

Theorem 2.4. Let b ∈ W 1,∞(R) satisfy hypothesis (B) and consider u0 ∈ H1(R). Then, there is a unique mild
solution u for the Cauchy problem (1.2) which belongs to

C
([0, T ], H1(R)

) ∩ C1([0, T ], H−1(R)
)
,

for all T > 0, and satisfies inequality (2.18). Moreover, the map

u0 ∈ H1(R) �→ u ∈ C
([0, T ], H1(R)

)
is continuous for all T > 0.

Remark 2.2. Similar results as obtained in Theorems 2.3, 2.4 and Lemma 2.1 can be established if we
consider, in equation (1.2), ε = −1.

3. Exponential and polynomial decay

3.1. Exponential decay concerning Eq. (1.1)

In this subsection we are interested in obtaining exponential decay rate for the energy in L2(R)-
norm related to the DCNLS equation (1.1). In order to obtain the desired result, we begin multiplying
the first equation in (1.1) by ū and integrating over R and then, over [0,+∞):

E0(t) :=
∫
R

∣∣u(x, t)
∣∣2

dx = −2

t∫
0

∫
R

a(x)
∣∣u(x, t)

∣∣2
dx ds + ‖u0‖2

L2 � ‖u0‖2
L2 . (3.1)

From Eq. (1.1) we have that d
dt E0(t) := d

dt

∫
R

|u(x, t)|2 dx = −2
∫

R
a(x)|u(x, t)|2 dx and, consequently,

we have the following energy estimate:

T∫
0

E0(t)dt � −α−1
0

[ ∫
R

|u|2 dx

]T

0
+ 2

T∫
0

∫
{x∈R; |x|�R1}

|u|2 dx dt

︸ ︷︷ ︸
I

. (3.2)

Now, we are in a position to establish the following result:
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Theorem 3.1. Consider the potential a(·) satisfying hypothesis (A). For any L > 0, there are c = c(L) > 0 and
ω = ω(L) such that

E0(t) � ce−ωt,

for all t � 0 and for any solution of (1.1) given in Theorem 2.3 and provided that the initial data satisfies
‖u0‖H1(R) � L.

Before establishing the above result, we need to prove a preliminary lemma which gives an esti-
mate for the integral equation I . Consider T0 a positive constant and suppose that the initial data
lies in a bounded set of H1, then we have the following lemma:

Lemma 3.1. Let u be a mild solution associated to the DCNLS equation (1.1) with initial data u0 belonging to
a bounded set of H1(R). Then, for all T > T0 there exists a positive constant c5 > 0 which depends on T such
that the following inequality holds,

T∫
0

∫
|x|�R1

|u|2 dx dt � c5

T∫
0

∫
R

a(x)|u|2 dx dt. (3.3)

Proof. First of all, we observe that from continuous dependence and density arguments it is sufficient
to establish the result for strong solutions. Consider B R1 := {x ∈ R; |x| � R1, R1 > 0}. We argue by
contradiction. Let us suppose that (3.3) is not true and let {uk(0)}k∈N be a sequence of initial data
where the corresponding solutions {uk}k∈N of (1.1) with Ek

0(0), defined in (3.1) for all k ∈ N, which
is assumed to be uniformly bounded by a positive constant L > 0 in k, verifies

lim
k→+∞

∫ T
0 ‖uk(t)‖2

L2(B R1 )
dt∫ T

0

∫
R
(a(x)|uk|2)dx dt

= +∞, (3.4)

that is,

lim
k→+∞

∫ T
0

∫
R
(a(x)|uk|2)dx dt∫ T

0 ‖uk(t)‖2
L2(B R1 )

dt
= 0. (3.5)

Since,

Ek
0(t) � Ek

0(0) � L,

we obtain a subsequence of {uk}k∈N , still denoted by {uk}k∈N from now on, which verifies the conver-
gence:

uk ⇀ u weakly in L∞([0, T ]; L2(R)
)
. (3.6)

From (3.5) and (3.6) we deduce

lim
k→+∞

T∫ ∫
a(x)|uk|2 dx dt = 0, (3.7)
0 R
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consequently, from hypothesis (A) we have

lim
k→+∞

T∫
0

∫
R\B R1

|uk|2 dx dt = 0. (3.8)

On the other hand, from (2.7) we guarantee that {uk}n∈N is bounded in C([0, T ]; H1(B R1 )) for
T > 0 arbitrary but fixed. Further, since H1(B R1 ) is compactly embedded in L p(B R1 ), 2 � p � ∞, we
guarantee the existence of a subsequence, still denoted by {uk}k∈N , such that

uk → u strong in Lp(
B R1 × [0, T ]), (3.9)

where 2 � p < ∞. Therefore,

uk → u, a.e. in B R1 × (0, T ). (3.10)

Statements (3.8) and (3.10) enable us to deduce the following convergence:

uk → ũ, a.e. in R × (0, T ), (3.11)

where

ũ =
{

u, a.e. in B R1 × (0, T ),

0, a.e. in R \ B R1 × (0, T ).

In addition, from (2.7) we have

ux,k ⇀ ux weakly in L2([0, T ]; L2(R)
)
. (3.12)

At this point we will divide the proof into two cases, namely: when u �= 0 and u = 0.
Case (I): u �= 0.

Passing to the limit in Eq. (1.1), when k → +∞, we get that the mild solution u satisfies{
iut + uxx + ε|u|2u = 0, in C

([0, T ]; H−1(R)
)
,

u = 0, a.e. in R \ B R1 × (0, T ).
(3.13)

From Unique Continuation Principle due to Zhang [19], we conclude that u ≡ 0 a.e. in B R1 × (0, T ).
Being u ≡ 0 a.e. in R \ B R1 × (0, T ) we get u ≡ 0 a.e. in R × (0, T ); which contradicts the fact that
u �= 0.

Case (II): u = 0.

We denote

νk = ‖uk‖L2([0,T ];L2(B R1 )). (3.14)

Then, if we define vk = uk
νk

, we obtain

‖vk‖L2([0,T ];L2(B R1 )) = 1, ∀k ∈ N. (3.15)

Next, we see from (3.2), (3.15) and the energy identity in (2.2) applied to vk that
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∥∥vk(0)
∥∥2

L2(R)
=

‖u0,k‖2
L2(R)

ν2
k

� c6

( T∫
0

∫
R

a(x)
∣∣vk(x, t)

∣∣2
dx dt + 1

)
� M, (3.16)

which establishes a bound for the initial data vk(0) in L2-level. Therefore, from Theorem 2.1 we
obtain that vk satisfies the equation

ivt,k + vxx,k + |uk|2 vk + ia(x)vk = 0, in D′(
R × (0, T )

)
. (3.17)

From (3.4) we have that

lim
k→+∞

∫ T
0 ‖vk(t)‖2

L2(B R1 )
dt∫ T

0

∫
R
(a(x)|vk|2)dx dt

= +∞, (3.18)

and from (3.15) it comes that

lim
k→+∞

T∫
0

∫
R

(
a(x)|vk|2

)
dx dt = 0. (3.19)

Since a(x) � α0 > 0 for |x| � R1, we obtain from (3.19)

lim
k→+∞

T∫
0

∫
R\B R1

|vk|2 dx dt = 0. (3.20)

Thus,

vk → 0 in L2([0, T ]; L2(R \ B R1)
)
. (3.21)

From (3.16), (3.17), (3.19) and (3.20) we get a function v which verifies vk ⇀ ṽ in L2([0, T ];
L2(R)), where

ṽ =
{

v, a.e. in B R1 × (0, T ),

0, a.e. in R \ B R1 × (0, T ),

and

{
ivt + vxx = 0, in D′(

R × [0, T ]),
v = 0, a.e. in R \ B R1 .

(3.22)

Therefore, from Holmgreen’s Theorem we conclude that v ≡ 0 in B R1 × (0, T ). The proof is not
complete. For this purpose we need to use a similar inequality as established in Lemma 2.1. Indeed,
from (2.10), (3.16) and the embedding H1(R) ↪→ L∞(R) we have
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I
(

vk(x, t)
)
� C R1

(
1 + T ‖a‖L∞ +

( T∫
0

∥∥(|uk|2 vk
)
(τ )

∥∥8/7
L4/3 dτ

)7/8)

= C R1

(
1 + T ‖a‖L∞ +

( T∫
0

∥∥ν2
k

(|vk|2 vk
)
(τ )

∥∥8/7
L4/3 dτ

)7/8)

= C R1

(
1 + T ‖a‖L∞ + C

(∥∥uk(0)
∥∥

H1 , T
)( T∫

0

∥∥vk(τ )
∥∥12/7

L2 dτ

)7/8)

� C R1
(
1 + T ‖a‖L∞ + C

(∥∥uk(0)
∥∥

H1 , T
)
T 7/8), (3.23)

for all T > 0, where T > 0 does not depend on k ∈ N. On the other hand, since {uk(0)}k∈N is bounded
in H1(R) and vk is bounded in L2([0, T ]; L2(R)), we can conclude from (3.23) that

vk is bounded in L2([0, T ]; H1/2(B R1)
)
. (3.24)

Considering standard compactness arguments and having in mind that v ≡ 0 one has

lim
k→+∞

T∫
0

∫
B R1

∣∣vk(x, t)
∣∣2

dx dt = 0. (3.25)

In addition, note that from (3.15) we infer

lim
k→∞

T∫
0

∫
B R1

∣∣vk(x, t)
∣∣2

dx dt = lim
k→∞

‖vk‖2
L2([0,T ];L2(B R1 ))

= 1, (3.26)

which establishes a contradiction. The proof is now completed. �
Proof of Theorem 3.1. Indeed, from (3.2) and (3.3) we deduce that

T∫
0

E0(t)dt �
α−1

0

2
E0(0) + c7

T∫
0

∫
R

a(x)
∣∣u(x, t)

∣∣2
dx dt, for all T > T0. (3.27)

Next, by using identity of the energy in L2-level, namely:

E0(t) − E0(0) = −2

t∫
0

∫
R

a(x)
∣∣u(x, t)

∣∣2
dx dt, for all t � 0, (3.28)

we infer that E(t) is non-increasing, and, furthermore that

2

t∫
a(x)

∣∣u(x, s)
∣∣2

dx ds = E0(0) − E0(t), for all t � 0. (3.29)
0
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Thus, combining (3.27) and (3.29), we have

T E0(T ) �
α−1

0

2

[
E0(T ) + 2

T∫
0

a(x)
∣∣u(x, t)

∣∣2
dx dt

]
+ c7

T∫
0

∫
R

a(x)
∣∣u(x, t)

∣∣2
dx dt, (3.30)

which implies that for T > T0,

(
T − α−1

0

2

)
E0(T ) �

(
α−1

0 + c4
) T∫

0

a(x)
∣∣u(x, t)

∣∣2
dx dt. (3.31)

For T > max{α−1
0
2 , T0} the last inequality yields

E0(T ) � C(T )

T∫
0

a(x)
∣∣u(x, t)

∣∣2
dx dt. (3.32)

Finally, combining (3.29) and (3.32) we obtain

E0(T ) � C(T )

[
E0(0) − E0(T )

2

]
, (3.33)

that is,

E0(T ) + C(T )

2
E0(T ) � C(T )

2
E0(0), (3.34)

which leads us

E0(T ) � αE0(0), where α =
C(T )

2

1 + C(T )
2

. (3.35)

Since in (3.35) we have α < 1, we get by employing the semigroup property (see arguments due
to Zuazua in [20]), the exponential decay. �
3.2. Polynomial decay concerning Eq. (1.2)

Multiplying (1.2) by ū, we conclude that

E0(t2) − E0(t1) = −2

t2∫
t1

∫
R

b(x)
∣∣u(x, s)

∣∣4
dx ds, (3.36)

where E0(t) is the energy in L2-level given by

E0(t) :=
∫ ∣∣u(x, t)

∣∣2
dx. (3.37)
R
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We have a similar result to the one established in Lemma 3.1 whose proof is analogue with the
appropriate modifications. We note that in this case, the constant c5 cannot depend on T > 0 as in
Lemma 3.1. This fact is essential in order to apply the approach in [12].

Lemma 3.2. Let u be a mild solution associated to the DCNLS equation (1.2) with initial data u0 belonging to
a bounded set of H1(R). Then, there exists T0 > 0 such that if T > T0 the following inequality holds:

T∫
0

∫
|x|�R2

|u|2 dx dt � c8

T∫
0

∫
R

b(x)|u|4 dx dt, (3.38)

where c8 is a positive constant which depends on T0 .

Proof. We are going to omit the proof since the arguments are similar to Lemma 3.1. Moreover, a
similar result as in Lemma 2.1 makes necessary. �

Before going on, we need to prove a basic result which will be used later.

Lemma 3.3. Let a,b be real numbers. Then,

a2 − θb2 � θ(a − b)2,

provided that θ > 2.

Proof. Let us define F : R
2 → R given by F (x, y) = θ(x − y)2 − (x2 − θ y2) = (θ − 1)x2 + 2θ y2 − 2θxy.

F is clearly twice differentiable on R
2 and it possesses a unique critical point, namely (0,0). Since

θ > 2, we get Fxx(x, y) = 2(θ − 1) > 0, F yy(x, y) = 4θ > 0 and Fxx(x, y)F yy(x, y) − Fxy(x, y)2 =
4θ(θ − 2) > 0. Therefore, we are able to conclude that (0,0) is an absolute minimum for F . This
argument establishes the lemma. �

Next, we present a technical lemma which will be useful to deduce the cubic-polynomial stability
result.

Lemma 3.4. Consider β0 > 0 as in hypothesis (B). Then, there is a constant c9 > 0 such that, for all σ > 1,
θ > 2 and T > S > 0, we get

c9β0

T∫
S

Eσ+2
0 (t)dt � −θ2

2

[
Eσ

0 (t)

∫
R

|u|2 dx

]T

S
+ θ2c9

T∫
S

Eσ
0 (t)

∥∥√
b(·)u(t)

∥∥4
L2(R\Br)

dt

+ θc9β0

T∫
S

Eσ
0 (t)

∫
B R2

|u|2 dx dt, (3.39)

where Br denotes the closed ball with center at origin and radius r > 0.

Proof. Multiplying (1.2) by Eσ
0 (t)ū and taking the complex conjugate, we obtain after integration

over the rectangle [S, T ] × R that
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0 =
T∫

S

∫
R

(
Eσ

0 (t)
d

dt
|u|2 + 2b(x)|u|4 Eσ

0 (t)

)
dx dt

= 2

T∫
S

∫
R

Eσ
0 (t)b(x)|u|4 dx dt −

T∫
S

∫
R

σ |u|2 Eσ−1
0 (t)E ′

0(t)dx dt +
[

Eσ
0 (t)

∫
R

|u|2 dx

]T

S
. (3.40)

Since E ′
0(t) � 0 for all t ∈ (0, T ) and L4(Br) ↪→ L2(Br), we conclude that

c9

T∫
S

Eσ
0 (t)

( ∫
Br

√
b(x)|u|2 dx

)2

dt �
T∫

S

∫
Br

Eσ
0 (t)b(x)|u|4 dx dt � −1

2

[
Eσ

0 (t)

∫
R

|u|2 dx

]T

S
, (3.41)

where c9 = c9(Br) > 0. Then,

c9

T∫
S

Eσ
0 (t)

[ ∫
R

√
b(x)|u|2 dx −

∫
R\Br

√
b(x)|u|2 dx

]2

dt � −1

2

[
Eσ

0 (t)

∫
R

|u|2 dx

]T

S
. (3.42)

From Lemma 3.3 and inequality (3.42) we have

c9

T∫
S

Eσ
0 (t)

[ ∫
R

√
b(x)|u|2 dx

]2

dt

� −θ

2

[
Eσ

0 (t)

∫
R

|u|2 dx

]T

S
+ θc9

T∫
S

Eσ
0 (t)

[ ∫
R\Br

√
b(x)|u|2 dx

]2

dt. (3.43)

Thus, since a2 � (a + b)2, for all a,b � 0, we conclude

c9

T∫
S

Eσ
0 (t)

[ ∫
R\B R2

√
b(x)|u|2 dx

]2

dt

� −θ

2

[
Eσ

0 (t)

∫
R

|u|2 dx

]T

S
+ θc9

T∫
S

Eσ
0 (t)

[ ∫
R\Br

√
b(x)|u|2 dx

]2

dt. (3.44)

Now, we are able to use hypothesis (B) in order to obtain

c9β0

T∫
S

Eσ
0 (t)

[ ∫
R\B R2

|u|2 dx

]2

dt

� −θ

2

[
Eσ

0 (t)

∫
|u|2 dx

]T

S
+ θc9

T∫
Eσ

0 (t)
∥∥√

b(·)u(t)
∥∥4

L2(R\Br)
dt. (3.45)
R S
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Using Lemma 3.3 once more, we conclude from (3.45) that

c9β0

T∫
S

Eσ+2
0 (t)dt � −θ2

2

[
Eσ

0 (t)

∫
R

|u|2 dx

]T

S
+ θ2c9

T∫
S

Eσ
0 (t)

∥∥√
b(·)u(t)

∥∥4
L2(R\Br)

dt

+ θc9β0

T∫
S

Eσ
0 (t)

∫
B R2

|u|2 dx dt. � (3.46)

Considering the result established in Lemma 3.4, employing Lemma 3.2, Young inequality and
identity (3.36) we get

c9β0

T∫
S

Eσ+2
0 (t)dt � −θ2

2

[
Eσ

0 (t)

∫
R

|u|2 dx

]T

S
+ θ2c9

T∫
S

Eσ
0 (t)

∥∥√
b(·)u(t)

∥∥4
L2(R\Br)

dt + c10β0 E0(S)

�
(

c10β0 + θ2

2

)
E0(S) + θ2c9‖b‖2

L∞

T∫
S

Eσ+2
0 (t)dt, (3.47)

where c10 = c10(c8, c9, θ, L̄) > 0, c8 is the positive constant given in Lemma 3.2 and L̄ > 0 must satisfy
‖u0‖H1 � L̄.

Considering σ = 2 in inequality (3.47) we deduce

c9
(
β0 − θ2‖b‖2

L∞
) T∫

S

E4
0(t)dt �

(
c10β0 + θ2

2

)
E0(S). (3.48)

Choosing β0 > 0 such that β0 − θ2‖b‖2
L∞ = c11 > 0 we obtain the inequality

T∫
S

E4
0(t)dt � c12 E0(S), for all S � 1, (3.49)

where c12 = c12(c9, c10, c11, β0,‖b‖L∞ , θ) > 0. Therefore, from Lemma 9.1 in Komornik’s book [12]
and inequality (3.49) we get a constant C > 0 depending on ‖u0‖H1 (where ‖u0‖H1 � L̄) and T0 > 0
which implies the cubic-polynomial stability.
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