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Abstract

Wildfires cause major damage and losses around the world. Such damages range from human and econom-
ical losses to environmental ones. Therefore, having models to predict their behavior can be a key element
in the process of firefighting. In this paper, we present a comparative study between two methods we have
developed. Both methods use Statistical Analysis, Parallel Evolutionary Algorithms and High Performance
Computing, respectively named: Evolutionary-Statistical System (ESS) and Evolutionary-Statistical Sys-
tem with Island Model (ESS-IM). In this study, we have compared these two methods in terms of quality
of prediction and performance in the parallel environment.
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1 Introduction

Fire used appropriately has provided immeasurable benefits to humanity. However,

we usually observe instances in which fires have spread out of control burning large

areas of vegetation in different continents around the world [22]. This type of

phenomenon is known as Wildfire.
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Fig. 1. Voracious fire occurred in Valparaiso, Chile in April 2014.

Unfortunately, human-caused wildfires occur more frequently than those started

by natural causes [19]. Furthermore, climatic conditions such as the summer heat

benefit its spread, thus increasing danger and hampering fire fighting.

The negative effects of wildfires range from human loss to damage to flora, fauna,

air, property and aquatic ecosystems and can all be measured in terms of money

as they impact on economy. As an example we can mention the unfortunate recent

wildfire in Valparaiso (Chile, April 2014) where the fire burned more than 2,900

homes, causing, at the time this paper, 15 human deaths, about 500 injured peo-

ple and more than 12,000 homeless and evacuees (Figure 1). That is why, having

a model capable of predicting wildfire behavior is of great interest in the process

of firefighting, since this will let us distribute fire suppression resources more ef-

ficiently, thus reducing losses, damages and costs. Nevertheless, the development

of a model for predicting wildfire behavior is affected by a significant drawback

called uncertainty. Uncertainty is associated to the variables that intervene and af-

fect fire behavior, i.e. uncertainty appears from the moment difficulties quantifying

some variables in real time arise. For example, wind speed and moisture content

in vegetation are some of the parameters fire behavior depends on, and often these

values cannot be obtained in real time. Therefore, such parameters are represented

by estimates based on reference values, indirect measurements or sampling, which

reduce the accuracy of the input parameters affecting the quality of prediction of

the model.

In every prediction system, the results must be generated before those produced

by the phenomenon in reality. Therefore, it is crucial to get the model’s output in

the shortest time so that predictions can be used to make some kind of preventive

decision. Taking into account this requirement and its inherent complexity in any

predictive process, it is common to observe a tendency to implement such systems

in parallel/distributed environments.

It is important to emphasize that the prediction system response time is a very
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relevant feature, as well as the quality of the predictions. In this sense, the use

of High Performance Computing [10] (HPC) allows for a great reduction in the

processing time. However, this tool should operate with techniques or methods that

optimize the model’s performance in order to improve the quality of the prediction,

i.e., predictions that differ the least possible from reality.

This paper focuses on a comparative analysis (in terms of quality and perfor-

mance prediction) between two versions of the general uncertainty reduction method

called Evolutionary-Statistical System [3,9] (ESS), which can be applied to differ-

ent phenomena with propagation characteristics. ESS is based on the results of a

previous research called Statistical System for Forest Fire Management (S2F2M)

[7,8]. ESS uses to operate: HPC, Statistical Analysis [20] and Parallel Evolutionary

Algorithms (PEAs) [1,11]. In this paper, the method has been applied to wildfires

behavior prediction. Having this purpose in mind, we used a fire spread simula-

tor based on Rothermel model [24]. In [4] and [9] ESS obtained better results than

S2F2M. Besides, in [6] and [7], this method was compared to other methodologies in

which it obtained better performance and, consequently, in this paper a comparison

is made only between ESS and ESS-IM.

Currently, ESS has two operating versions and one more is under development.

In the first implementation of the method, the PEA has used a scheme of Unique

Population and Parallel Evaluation [11]. In the second operational version of the

method, the level of parallelism of PEA has been increased with a scheme of Mul-

tiple Populations and Migration [11,21] called ESS with Island Model [17,18] (ESS-

IM). Finally, there is an under development version of ESS that uses Differential

Evolution (DE) [23] as an optimization method, called Differential Evolutionary-

Statistical System [16] (DESS).

In the next section a brief description and classification of PEAs related to im-

plemented versions of the ESS are provided. Next, a detailed description of the

operation mode of ESS and ESS-IM is presented. The details of the experiments

performed to carry out the comparative study are also provided, the work envi-

ronment is described, and then the results are presented. Finally, conclusions and

future work are presented.

2 Parallel Evolutionary Algorithms

As mentioned above, both methods in this paper used PEA as an optimizing tech-

nique. Therefore, in this section a brief description of the operation of this meta-

heuristics is presented together with two of its implemented variants.

Evolutionary metaheuristics are optimizing algorithms that use a set of candi-

date solutions (usually called population) to create new search points within a space

of solutions. These methods are often inspired by nature elements, such is the case

of Evolutionary Algorithms (EAs), which are based on the natural evolution theory

of survival of the fittest [12]. EAs have been successfully applied to solve different

optimizing problems in several areas of science.

The general mechanism of EAs is a process of iterations called generations, in
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which candidate solutions, known as individuals constitute a population. In each

generation, the algorithm applies to the population members the principle of natural

selection and survival of the fittest by operators with the aim of approximating to

an optimal solution with its elements.

Each individual has a fitness value that represents the quality of the solution.

In addition, the EAs must guarantee that individuals with higher fitness values

are more likely to reproduce, so they can take part in generating new solutions.

This is achieved through the application of the aforementioned operators (crossover,

mutation and replacement).

When the problem to be solved with EAs requires considerable execution time

(usually because of the complexity of the problem treated), they are usually im-

plemented in a parallel or in a distributed manner. The parallel implementations

of EAs can reduce the processing times and also, depending on the treatment of

the solutions, increase the search capability of the algorithm. Next, two alterna-

tive parallelization of EAs are briefly described: 1) Unique Population and Parallel

Evaluation and 2) Multiple Populations and Migration, both were used in ESS and

ESS-IM, respectively. These implementations allow us to work with different levels

of parallelism and may have different advantages and disadvantages depending on

the problem to be dealt with.

2.1 PEA with Unique Population and Parallel Evaluation

In this parallelization model, also known as Master/Worker (as its parallel imple-

mentation matches the paradigm Master/Worker [15]), the PEA operates entirely

with individuals belonging to a single population in which the individuals’ fitness

evaluation is carried out in parallel. In each generation, a certain number of indi-

viduals is selected based on their fitness value; these are subsequently modified by

recombination or mutation, to make up a new population. It should be noticed that

the operators are applied according to the entire population.

2.2 PEA with Multiple Populations and Migration

Unlike the previous model, this scheme works with multiple populations and it is

often called EA with Island Model, in which each island represents a population of

individuals. As the operators (mutation and crossover) are applied among individu-

als of the same population, this model of parallelization implies that individuals used

by operators must belong to the same island or population. Thus, this implementa-

tion would be equivalent to running n instances of a PEA with unique population

since the islands would evolve independently. In order to avoid this effect, a new

operator called “migration” is used in the model of multiple populations. The mi-

gration process performs exchange of individuals among different islands in order

to add diversity and reduce the probability of premature convergence or stagnation

in local optima.
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3 ESS and ESS-IM: Operation Description

As we mentioned above, this work corresponds to a comparison of two versions of

the Evolutionary Statistical System: ESS and ESS-IM, applied to wildfires behav-

ior prediction. Therefore, the detailed descriptions of each of these versions are

discussed in this section.

3.1 ESS: Evolutionary Statistical-System with Unique Population

Fig. 2. Evolutionary-Statistical System: FS: Fire Simulator; PEA: Parallel Evolutionary Algorithm;
PEAF : Parallel Evolutionary Algorithm (fitness evaluation); OS: Optimization Stage; SS: Statistical
System; SK: Search Kign; Kign: key value used to make the prediction model; FF: Fitness Function; CS:
Calibration Stage; FP: Fire Prediction; PFL: Predicted Fire Line; RFLx: Real Fire Line on time x ; SS:
Statistical Stage; PV: Parameters Vectors.

ESS is a general method for uncertainty reduction that uses PEAs with a unique

population scheme applying parallel evaluation to optimize the search parameters

that feed the model. The input parameters in ESS are represented by individuals

of a given population. Each individual consists of a set of values that represent

each of the input parameters of the model (e.g., moisture content in vegetation,

vegetation type, wind direction and speed, the terrain slope, etc.). As can be seen

in Figure 2, Optimization Stage (OS-Worker) is carried out by the workers nodes.

This stage performs the fitness evaluation of individuals through two internal sub-

stages called Fire Simulation (FS) and Fitness Evaluation of PEA (PEAF ). FS

must be fed with a real fire line at time ti−1 (RFLi−1) together with the input

parameter vector (PV). When FS finishes the simulation of individuals, the result

of each simulation is entered into the stage PEAF to compare the simulated map

with the real map at time ti (RFLi). Here, the fitness value for each individual is

calculated considering the difference between the simulated map and the real map.

Clearly, the execution time of the method depends on the n number of instances

of OS-Worker that can be performed in parallel, which actually depends on the

number of processing units available. It should also be noticed that all individuals
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previously processed by OS-Worker must have been sent from the master node to

the respective workers. The master node also performs the remaining operations of

the PEA (i.e., population generation, individuals selection, crossover, and mutation)

and communication functions with each of the workers (tasks performed through

the OS-Master stage). Once the population reaches a certain level of fitness, it

is entered into the Calibration Stage (CS-Master). At this stage, the evolved

population feeds a sub-stage called Statistics Stage (SS, see [7,8]). The output of

SS is a probability map that is used in the sub-stage SKign (search key ignition

Kign value) to determine the fire behavior pattern. The value found, Kign, is used

to make a prediction for the next time instant (ti+1). The fitness evaluation of the

probability map is carried out in the stage that implements the Fitness Function

(FF). In addition, the output of SKign is combined to the probability map provided

by SS to generate the prediction (PFL) at the Fire Prediction stage (FP).

As can be seen, ESS is based on a Master/Worker model [15], in which the master

process distributes individuals to the workers in each iteration. The workers are

responsible for the parallel fitness evaluation of individuals and then for returning

the results to the master. After, the whole population is evaluated, the master node

evolves the population, includes the partial results and performs the prediction for

the next time step.

3.2 ESS-IM: Evolutionary Statistical-System with Island Model

ESS-IM was developed with the aim of improving the quality of prediction of ESS by

increasing the diversity of the individuals generated by the evolutionary component

of the method. This objective was achieved through the use of multiple populations,

using the scheme known as Island Model. Due to the characteristics of the model,

ESS-IM has been implemented in a two-level architecture: L1 and L2 (it can also

be seen as a hierarchical algorithm), such as Figure 3 shows.

In Level 1 (L1 ) the algorithm responds to an evolutionary coarse-grained multi-

population algorithm. This level consists of a monitor node responsible for control-

ling the whole prediction process by communicating with each of the islands. The

monitor node carries out the initialization of the islands by sending the necessary

information to each of them to perform the simulation in parallel. Meanwhile, the

low level L2 responds to a Master/Worker model as it is composed of a master node

(in charge of controlling the operation of the island) and n workers. As in ESS, the

workers are responsible for evaluating the fitness of the population. However, in

each execution of ESS-IM are executed in parallel j instances of L2.

In ESS-IM, master node sends the individuals to the workers, it performs the

evolution of the population and it is also responsible for the individuals’ migration.

The functions performed by the master node of each island are dependent on the

configured communication topology. From the performance point of view, this de-

pends on the settings of the predetermined migration parameters. Some of these

parameters are: the number of islands, of individuals per island, of individuals to

migrate, migration criteria, migration frequency, communication topology (see Ta-

ble 1). Once all the masters have sent their results, the monitor node carries out
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Fig. 3. Hierarchical architecture in ESS with Island Model. Two level communication scheme L1 and L2.

the prediction of the fire line for each simulation step.

Parameter ESS ESS-IM

Threshold Fitness X X

Number of Iterations X X

Number of Individuals X X

Number of Individuals per Island – X

Number of Islands – X

Number of Individuals to Migrate – X

Migration Criteria – X

Migration Frequency – X

Number of Workers X –

Number of Workers per Island – X

Communication Topology – X

Table 1
Configuration parameters for each method.

Both levels of ESS-IM (L1 and L2 ) work with some degree of overlapping in each

master. As it may be seen in Figure 4, the Calibration Stage (CS-Master) performs

communication functions with the monitor node (in L1 ) and the Optimization Stage

(OS-Master) does the same with the workers (in L2 ). The detailed operation of

the two ESS-IM levels can be summarized in two Optimization Stages (OS-Worker
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Fig. 4. Evolutionary-Statistical System with Island Model: FS: Fire Simulator; PEA: Parallel Evolutionary
Algorithm; PEAF : Parallel Evolutionary Algorithm (fitness evaluation); OS: Optimization Stage; SS:
Statistical Stage; SK: Search Kign; Kign: key value used to make the prediction model; FF: Fitness
Function; CS: Calibration Stage; FP: Fire Prediction; PFL: Predicted Fire Line; RFLx: Real Fire Line
on time x ; PV: Parameters Vectors; SSM : Statistical Stage (monitor); PPmap: Probability Map

and OS-Master), two Calibration Stages (CS-Master and CS-Monitor) and one

Fire Prediction stage (FP).

The OS-Worker stage performs the evaluation of the population through the

fitness function that is part of PEA (PEAF ). In each island, there is anOS-Master

stage, which is responsible for carrying out the evolution of the population and

performing the individuals’ migration (a process that includes: selecting, sending,

receiving and replacing individuals). CS-Master stage performs the same functions

as ESS, except that the SS output is sent to CS-Monitor along with the j Kign

values calculated by the j islands. This stage features three operating modes: CS-

Monitor-1, CS-Monitor-2 and CS-Monitor-3. Finally, the FP stage performs

the fire line prediction (PFL) for each simulation step based on the probability map

and the Kign value calculated by CS-Monitor. Each of the operating modes has

advantages and disadvantages in both quality and performance prediction:

CS-Monitor-1: In this mode, the best Kign value obtained for each of the

island is selected. This implies that those islands that have finished with the cur-

rent simulation step cannot proceed to the following step until all the islands have

completed the current step. This scheme prioritizes the quality of prediction of the

method by penalizing performance, since there may be times when full island nodes
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are idle. It is worth mentioning that each island will be composed of at least two

processing units. However, the islands usually use a greater number of nodes, and

therefore, the number of idle processors or cores in a cluster can be considerable.

CS-Monitor-2: In this mode, the Kign value is assessed based on a statistical

map generated from the resulting statistical maps of each island. This configuration

also implies a global synchronization as it is necessary to wait until all islands have

sent the results to the monitor node.

CS-Monitor-3: This configuration intends to provide the best possible per-

formance, since the prediction is performed using the Kign value of the island that

finishes first (i.e., the value found in the shortest time). In terms of quality of predic-

tion, this modality provides different results since they depend on the characteristics

of the island population that finish in less time.

It is important to note that both ESS and ESS-IM have different initialization

parameters that determine the operation of the method, both as in quality predic-

tion and as execution time. Each of these parameters are listed in Table 1, where

“X” or “–” means that a parameter is present or not in the method. As can be

observed the majority of these are related to the PEA. Although this work does not

analyze in detail the influence of each of these parameters on the method behavior,

in [2] work it was carried out the tuning of the parameters of ESS, and in future

researches the effects of these parameters in ESS-IM will be analyzed.

4 Experiments Design

The experimentation has been designed to assess the quality of performance and

prediction achieved when executing the two methods on a parallel environment.

4.1 Quality of Prediction Assessment

The quality of prediction of ESS and ESS-IM has been compared by using three real

case studies corresponding to controlled fires conducted in different lands located

in Portugal (more precisely in Serra Lousã, Gestosa), all of them belonging to the

SPREAD project [25]. Each test case has certain duration in minutes, a slope

expressed in degrees and an area in square meters. The total duration of each

wildfire has been divided into smaller time periods called simulation steps; Table 2

shows the detailed information for each test case.

Case Width (m) Length (m) Area (m2) Slope (d) Initial Time Increase End Time

1 60 90 5.400 6 2,0 2,0 10,0

2 89 109 9.701 21 2,0 2,0 14,0

3 95 123 11.685 21 4,0 2,0 12,0

Table 2
Experiments: size, slope and details of every simulation step.
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Fig. 5. a) Wildfire progression representation, b) simulation steps and c) prediction.

4.1.1 Simulation and Prediction Steps

It is important to highlight the difference between a simulation step and a predic-

tion step: for that, see Figure 5. Here, we can see that, for a wildfire of specific

duration, there exist ts representative samples of the fireline progression, therefore,

s-1 simulation steps and s-2 prediction steps. This is because these methods require

a calibration phase of input parameters, thus they cannot make predictions instan-

taneously (i.e., during the first simulation step ranging between t1 and t2). The first

simulation step is used to perform the initial calibration of the input parameters.

After carrying out this calibration, the system is able to make the first prediction

for the second simulation step, that is equivalent to the first prediction step (i.e.,

between t2 and t3). Therefore, for each test case, s–2 quality of prediction values

are obtained, one for each prediction step. Thus, comparison of quality is carried

out in each prediction step of the experiments.

4.1.2 Fitness Function for Quality of Prediction Assessment

The quality of prediction of each method is assessed by means of a fitness function

which quantifies the difference between the resulting map of the prediction and the

real map. Such function is based on cells as the maps involved in both methods

work with this type of representation. It is defined as follows:

Fitness =
(#Cells

⋂−#BurnedCells)

(#Cells
⋃−#BurnedCells)

(1)

in which #Cells
⋂

represents the number of cells in the intersection between

the simulated map and the real map, #Cells
⋃

is the number of cells present in the
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union of the resulting map of the simulation and the real maps, and #BurnedCells

represents the number of burned cells before starting the simulation (i.e., corre-

sponding to the initial state of the wildfire in each prediction step). The resulting

value of (1) will be between 0 and 1, in which a value equal to 1 corresponds to a

perfect prediction, since it means that the predicted area is equal to a real burned

area. Moreover, a fitness value equal to 0 would indicate the maximum error because

the prediction is completely different from reality.

4.2 Performance Assessment

Regarding performance assessment of both methods, these have been analyzed using

the measure known as Speed-Up [13], which is defined as the ratio between the time

required to solve a problem using a single processing unit and the time required

to solve the same problem in a parallel/distributed environment with x identical

processing elements.

Equation (2), shows how to calculate speed-up, in which t(1) represents the

serial execution time and t(N) the parallel execution time with N processing units.

S =
t(1)

t(N)
(2)

Both methods were executed on a Linux cluster with 32 processing units, under

the MPI [14] and Gigabit Ethernet environment.

4.3 Execution of the Experiments

As mentioned earlier, ESS and ESS-IM focus its operation in parallel evolution-

ary algorithms, this implies that both methods have non-deterministic behavior,

because the individuals of each population are generated using stochastically gen-

erated seeds. Therefore, in order to make a fair comparison between both methods,

a set of 30 different seeds were used. That is to say, the three cases of real fires

were executed 30 times each for each method. The experiments were performed in

this way with the aim of determining an average of results for each experiment and

each method.

5 Results

This section shows the results obtained after evaluating both methods, in terms of

quality of prediction as well as performance aspects.

5.1 Quality of Prediction Analysis

The results, in terms of quality of prediction, are shown in Figures 6, 7 and 8 for

experiments 1, 2 and 3 respectively. It is important to remember that the depicted

results in the above mentioned figures show the average of 30 runs. These were

carried out with random seeds for each experiment, but with the same initial seeds

for both methods, so that the comparison results are as fair as possible.

M. Méndez-Garabetti et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 45–60 55



 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 6  8  10

fi
tn

e
s
s
 v

a
lu

e

time

ESS
ESS−IM (CS−Monitor−1)

ESS−IM (CS−Monitor−2)
ESS−IM (CS−Monitor−3)

Fig. 6. Experiment 1. Prediction quality analysis.
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Fig. 7. Experiment 2. Prediction quality analysis.

In each of these figures, axis x represents the progress time of the fire according

to the prediction steps (see Figure 5) and the axis y, represents the fitness value

achieved for each prediction step as mentioned above in Section 4.1.1.

In general terms, we can see that ESS-IM, mainly in the CS-Monitor-1 mode,

surpasses the results provided by ESS, with some exceptions: in experiment 1 (Fig-

ure 6), ESS surpasses ESS-IM in the first prediction step, in CS-Monitor-2 and

CS-Monitor-3 modes. In the second step, it only surpasses CS-Monitor-3, like

in the last prediction step. In the second experiment (Figure 7), ESS obtains bet-
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Fig. 8. Experiment 3. Prediction quality analysis.

ter quality of prediction than ESS-IM in CS-Monitor-3 mode, only in the second

prediction step. And finally, in the third experiment (Figure 8), ESS gets better

results than ESS-IM (in CS-Monitor-3 mode) throughout the whole experiment.

In the 10th minute, ESS gets the same performance as CS-Monitor-1 and the

second best performance in the last prediction step.

5.2 Performance Analysis

The Figure 9 shows the result of speed-up analysis of each methodology described

above. The graph corresponds to the use of: 1, 2, 4, 8, 16 and 32 processing units in

the simulation of a particular case. To draw up each curves of speed-up, the same

numbers of simulations were performed considering the average value for each case.

In general terms, we can see that all the methods show very good result up to the

use of 16 processing units. From there on, two modes of ESS-IM (CS-Monitor-2

andCS-Monitor-3) continue with the same trend, showing very good performance,

close to the ideal speed-up, in contrast with ESS-IM in CS-Monitor-1 mode and

ESS. Although the performance benefit obtained by the latter mentioned method

decreases when working with 32 processes, it is an important factor to consider

according to the results obtained in quality of prediction by these methods. We can

say that ESS-IM inCS-Monitor-1mode and ESS offer a “very good” performance,

since the quality of prediction levels are higher than the others. Besides, by using

a larger number of processing units, it was possible to reduce the execution time.

Evidently we must make some effort to try to improve the use of resources of these

methods, thus, making a better use of them, in other words, obtaining performance

gains.
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5.3 Threats to Validity

By nature, there are threats to validity in any empirical study of this type. In this

section, some threats and the way in which they have been addressed are discussed.

It should be noticed that whenever a comparative study is made, it is of crucial

importance to ensure that it is as reliable as possible. Therefore it is necessary to

analyze such threats to ensure that the conclusions are not wrong [26]. One of the

important factors is associated with the inherent stochastic behavior of PEA used

in both methods. Therefore, for each method were carried out 30 runs for each

experiment, just as discussed earlier. Another potential source of bias is presented

in the parameter settings used in each method, and the possibility that it may favor

or harm the performance of one or both methods. In this case, we decided to take

a standard set of parameters for both ESS and ESS-IM so as not to benefit any

particular method.

6 Conclusions

Wildfires, like any other phenomenon that may generate some kind of natural disas-

ter, are considered highly dangerous. For this reason, it is of great interest to predict

their behavior in order to minimize losses and damages caused by them. Since the

simulation of this kind of phenomena is often affected by the uncertainty in the

input parameters that feed the model, it is advisable to incorporate uncertainty re-

duction features aiming at make predictions with the least possible degree of error.

Moreover, for such predictions to be used for making decisions that are part of the

process of firefighting, such results should be provided in the shortest possible time.

To achieve this aim, typically high performance systems that reduce the processing

time are usually used. In this study, we have evaluated and compared two methods
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for uncertainty reduction that have been developed and applied to wildfires behav-

ior prediction. One of them is called Evolutionary Statistical-System (ESS) and

the other ESS with Island Model (ESS-IM), which has three modes of operation,

depending on the internal treatment of the probability maps.

It is important to say that such analysis has been carried out in terms of quality

of prediction and performance benefits in a parallel/distributed environment. The

results show that the new implementation, ESS-IM in CS-Monitor-1 mode, pro-

vides great improvement in quality of prediction. However, this result is slightly

overshadowed by the decreased speed-up obtained in comparison with other op-

eration modes of ESS-IM, which prioritize the processing time to the quality of

prediction.

Further studies will focus on considering alternatives to optimize the use of com-

putational resources, with the aim of improving the performance gains in the mode

that provides the best quality of prediction levels, i.e. ESS-IM in CS-Monitor-1

mode. In addition, other metaheuristics will be evaluated, as is the case of DESS,

which is an ESS version under development that incorporates Differential Evolution

as optimization method.
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