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Let G be a k-connected graph with minimum degree d and at least 2d vertices. 
Then G has a cycle of length at least 2d through any specified set of k vertices. 
A similar result for paths is also given. 0 1991 Academic Press, Inc. 

The following two theorems appear in Dirac [ 1,2). 

THEOREM 1. Let G be a 2-connected graph with minimum degree d. Then 
G has a cycle of length at least min() V(G)I, 2d). 

THEOREM 2. Let G be a k-connected graph and X be a set of k vertices 
of G, k > 2. Then G contains a cycle C which contains every vertex of X. 

In this paper we prove the following theorems. 

THEOREM 3. Let G be a k-connected graph, k > 2, with minimum degree 
d, and with at least 2d vertices. Let X be a set of k vertices of G. Then G 
has a cycle C of length at least 2d such that every vertex of X is on C. 
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THEOREM 4. Let G be a k-connected graph, k > 3, with minimum degree 
d, and with at least 2d - 1 vertices. Let x and z be distinct vertices of G and 
Y be a set of k - 1 vertices of G. Then G has an (x, z)-path P of length at 
least 2d - 2 such that every vertex of Y is on P. 

We note that the case k = 2 of Theorem 3 was proven in [S]. The reader 
who wishes to begin with a simplified version of Theorem 3 is directed to 
that paper. We shall use notation and technique that was presented in [S]. 
For the sake of completeness, these will be repeated in this paper. Saito 
[S] establishes a result relating the length of such a cycle to the length of 
a longest cycle of G. Versions of Theorems 3 and 4 also appear in [ 31. 

Theorem 3 is best possible if X is an independent set of vertices which 
collectively have exactly d neighbours. Then no cycle of length exceeding 2d 
can contain all of X. It is also best possible in the sense that there are 
graphs of connectivity k which contain a set X of k + 1 vertices with no 
cycle through every vertex of X. The only hope for a stronger theorem 
would lie in replacing the hypothesis that G is k-connected by the 
hypothesis that G is 2-connected and the given vertices of X lie on a 
common cycle. Such a result for three vertices in 2-connected graphs is 
given in [6]. 

NOTATION 

As in [S], we find it convenient to prove the main theorems 
simultaneously. We use the term trail for a path or a cycle, which is a 
restriction of the usual definition of trail. Let Y = { yl, y2, . . . . y,- 1 } be a 
set of distinct vertices of G. Let x and z be vertices of G distinct from Y (we 
allow the possibility that x = z). An (x, Y, z : m)-trail is a cycle of length at 
least m containing x and Y if x = z or an (x, z)-path of length at least m 
containing Y if x #z. Also, we define S; to be 1 if x #z and 0 if x = z. 

For a trail T the section of T from u to v including u and v is T[u, v]. 
We shall use T(u, v) for T[u, v] - {u, v>. The case that Y consists of a 
single vertex y and T is a path of length at least m, occurs frequently and 
we shall call such a path an (x, y, z : m)-path. For a subgraph El, a path 
through H is a path P with all internal vertices of P in H. 

For a vertex x, N(x) denotes the set of neighbours of x. For a set of 
vertices S, we write N(S) for the set uXE s N(x), and for a subgraph H we 
write N(H) for N( V(H)). For a vertex x, a set of vertices S and subgraphs 
H and K, n,(x) denotes the number of neighbours of x in K, NK(x) 
denotes the set of neighbours of x in K, NK( S) is the set N(S) n V(K), and 
N,(H) is the set NK( V(H)). 

We shall use a variation of Lemma 2.1 from [S]. This variation appears 
as Lemma 3.2.2 of [4]. The proof is repeated here for the sake of complete- 
ness. 



22 EGAWA, GLAS, AND LOCKE 

bMMA 5. Let G be a 2-connected graph with at least 4 vertices, let u and 
v be distinct vertices of G, and let d be an integer. Suppose that every vertex 
of G, except possibly u and v and one other vertex, has degree at least d. 
If x is any vertex of G with the degree of x at least 3, then there is a 
(u, x, v : d)-path in G. 

Alternatively, tf G is nonseparable on v < 3 vertices, then G is K1, KZ, or 
K3 and there is a (u, x, v : v - 1 )-path in G for any u, v, x E V(G), with u # v 
ifv# 1. 

Proof If v < 4, the result is trivial, and we include these cases in the 
statement of the lemma for ease in reference to the lemma. Now, suppose 
that v = 4. Then G r K4 or G z K4 - uv, and the lemma holds in these cases. 

At several points of this proof, we shall need to choose a vertex subject 
to certain restrictions. Top consolidate some of the cases, we introduce the 
following notation. For a set of vertices X and a vertex y, let f(X, y) = { y} 
if y E X and f (X, y) = X if y 4 X. Thus, y’ E f (X, y) indicates that y’ = y, if 
y E X, but otherwise any vertex of X will suffice. 

If v >, 4 and d < 2 then, by Menger’s theorem, there is a (u, w, v)-path 
P,, for any vertex w  of G. Let wEf(V(G)-{u,v),x). Then P, is a 
(u, x, v : 2)-path. 

For v > 4, we shall assume that the lemma holds for any graph on fewer 
vertices, or when d is replaced by an integer d’, where d’ < d. We may also 
assume, without loss of generality, that x # u. We shall prove the lemma by 
considering two cases depending on the separability of G - u. 

Case (i). Suppose that G - u is 2-connected. Let u’ ~f(N(u) - (v}, x). 
By the induction hypothesis, there is a (u’, x, v : d - 1 )-path P in G - u. 
Then uu’P is a (u, x, v : d)-path in G. 

Case (ii). Suppose that G-u is separable. It is possible that some 
vertex w  has degree one in G - u. If w  # v, then the graph H constructed 
by contracting the edge uw to a new vertex u’ has a (u’, x, v : d)-path and, 
hence, G has a (u, x, v : d)-path. The case NG(v) = (u, v’ } is handled 
similarly, by contracting vu’. Thus we may assume that every endblock of 
G - u has at least three vertices. 

Let B be an endblock of G-u with cutvertex b, such that v is not an 
internal vertex of B and such that there is a (b, x, v)-path P1 or an (x, b, v)- 
path P2 in G - u. Let u’ E f (N(u) n ( V(B) - b), x) and x’ E f ( V(B), x). By 
the induction hypothesis, there is a (u’, x’, b : d- 1)-path Q in B. Then 
uu’QPi [b, v] is a (u, x, v : d)-path, where i = 1 or 2, depending on which of 
P, and P, exists. Thus in any graph satisfying the given conditions, we 
have shown the existence of a (u, x, v : d)-path, completing the proof of the 
lemma. 
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We shall prove Theorems 3 and 4 simultaneously in the form: 

THEOREM 6. Let G be a k-connected graph, k 2 3, with minimum degree 
d 2 k. Let Y denote a set of k - 1 distinct vertices of G. Let x and z be 
vertices of G - Y. Suppose that G has at least 2d - 8: vertices. Then G 
contains an (x, Y, z : 2d- 26:)-trail. 

Proof of Theorem 6. We proceed by induction on k. For the case k = 3, 
it was shown in [S] that G contains an (x, Y - { ~1, z : 2d- 26:)-trail for 
any vertex y E Y. Let T be a longest (x, z)-trail which contains at least k - 2 
of the vertices of Y. The length of T must be at least 2d - 26:. If T contains 
all of Y then we are done, so we may assume that some vertex v of Y is 
not on T. 

Let H be the component of G - V(T) which contains v. Label the vertices 
of x= {x,z}u Y-v along T as x1,x2, . . . . xk, with x=x1 and z=Xk. 
Let Ti = T[Xi, Xi+ 1]. We shall frequently make use of the following 
observation. 

Observation. Suppose that we can find vertices a and p on T[Xi, Xj+2], 
i # k - 1 if x #z, with neighbours a’ and /3’ in H such that there is an 
(a’, v, /?’ : m)-path P in H. Then T’ = T[x, a] u T[j?, z] u { aa’, /l/l’> u P is 
an (x, Y- { vj}, z)-trail for some y+ Y. By the maximality of T, T[a, /3] 
must have length at least m + 2. 

Case 1. Suppose that H is nonseparable. 
Let W= N,(H) = N(H) - V(H), and label the vertices of W along T as 

u1 9 u2, “‘, 24,. Let 

w2= {UiE w: INH((Ui, ui+l}>l a2} and w1= w- w2. 

Let 

W 2,0= (UiE W2 : Iv(T(ui, Ui+l))nXI =O>, 

W 2,~=(~iEW2:I~(T(uj,ui+~))~XI=l} and 

w2,2 = w2- w2,0- W2J. 

For an index I, w, = I WII. 
If T is a cycle, it is possible that x1 = xk E N(H). In this case, u1 = u, = x1. 

Otherwise, u, is considered to be in the set W1. Figure 1 displays a trail T, 
component H of G - V(T) and labels indicating the set to which each 
vertex of NT(H) belongs. 

By Menger’s Theorem, there are k paths from v to T, pairwise disjoint 
except at v. There is at least one segment Tj which contains at least two 
endvertices of these paths. Thus, we may assume that Uj, Uj+ 1 E T[xj, Xi+ 1], 
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FIGURE 1 

for some i, j, and that there is a (uj, u, uj+ l)-path internally disjoint 
from T. Let ul, v2 be neighbours in H of uj, uj+ 1, respectively, with u1 # u2, 
if possible. Let P be a longest (q, U, u,)-path in H. If u1 = v2, then v = u,. 

Let y’ be a vertex of H with the largest number of neighbours on T, and 
let z’ be a vertex of H with the smallest number of neighbours on T. Set 
p =max{O, d-n,(y’)). If a, and a2 are distinct vertices of H then, by 
Lemma 5, H contains an (a,, V, a2 : p)-path. Also H has h 2 d- n T(~‘) + 1 
vertices. By Menger’s Theorem, there are at least min(k, h) disjoint edges 
from H to T. Therefore, W2 has at least min(k, h) - Sz vertices. 

Let T’ = T[x,, Uj] UjVi Pz~~z++ 1 T[uj+ 1, x,]. We proceed to determine 
lower bounds on the length of T’. 

Suppose that w2, o + w2, 1 , > 2. Let u, and up be distinct vertices of 
K,OU WZ,~. Then, IT’b,, u,+~II H+p and ITI+ up+Jl X+p. It 

is possible that a = j, but then ujul Pv2uj+ 1 has length at least p + 2. If 
U,E Wl, in the case x = z, or U, E W, - {u,>, in the case x # z, then 
IT’[z+, u,+Jl 22. If U,E W2,2, then IT’[uv, u,+,]l 23. Therefore, 

IT’Ia:(w,-6:)+(2+p)(w,,,+w, l)+3W, 2 

2% +~(W~,O+W~,~)+P(W~,~+ W2,, -2)+$+3w,,,-26; 

>,2w+w,,,+p(W2,O+W2,J-2)+2(d-n.(y’))-262, 

>,2d-26;. 

Suppose that w~,~+w~,~=~. Then k>h and w2,2)/h-1-6:> 
d - yt=(z’) - 6:. We note that if Yap = w  then every vertex of H is 
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adjacent to every vertex of W. In this case, w,,,+ w2, 1 > 1. Thus, NT(z’)< w  
and 

I T’I b 2(w1- 6:) + (2 + p)(w2, o + w2, 1) + 3w2, 2 

~2W~+2(W2,0+W2,~)+P+3W~,~-2~~ 

= 2w + (d-n&f)) + (d- n,(.z’)) - 36: 

b2d-26:. 

Therefore, we may assume that w2, 0 + w2, 1 = 0. If x #z, there is no 
vertex of IV2 in T[q- 1, x,]. Hence, w2 6 (k- 1)/2, h <k/2, +(z’) > 
d-h+ 1 >(2d-k+2)/2, and IT’/ >2(w, -8:)+3~,,~. 

We now obtain lower bounds on the number of neighbours in W1 for 
each vertex of H. Clearly, each such vertex has at least d - h + 1 - w2 
neighbours in W,, and no two vertices have a common neighbour 
in W1 - (u,}. Thus, w1 2 h(d- h - w,). Note that d-h + 1 - w2, 2 2 
d-k/2+1-(k-1)/2=d-k+3/2>3/2. Suppose that h>l, then 

IT'1 >2(W,-6;)+ 3W,,, 

2 2h(d - h - w2, 2) + 3W,, 2 - 26: 

= 2(h - l)(d- h - w2, 2) + 2d- 2h + w2, 2 - 26: 

>2d-26;. 

If h = 1, then wi 2 d and I T’I 2 2d - 26:. This concludes the case in which 
H is nonseparable. 

Case 2. Now let us suppose that H is separable. We note that we may 
choose endblocks B1 and B2 of H having cutvertices b, and b,, respec- 
tively, such that there is a (b,, v, b,)-path or there is a (u, bl, b,)-path in H. 
In the second alternative, u E V(B,). 

There are k paths P, , P2, . . . . Pk from u to V(T), pairwise disjoint except 
at v, with endvertices pl, p2, . . . . pk on T. Some two of these paths meet, 
say, Ti as we have noted in Case 1. We set T’ as in that case. 

We first prove that if B1 - bI has a neighbour t1 on T,, then B, - b2 has 
no neighbour on T[xm- 1, x, + 2 ] - { tl} (with the obvious modifications if 
m = 1 or k - 1). We then show that one of these endblocks has neighbours 
on at most (k - 2)/2 of the segments Tj, 1 < i < k - 1. 

Suppose that B1 - bI has a neighbour tl on T,,, and that B2 - b2 has a 
neighbour t2 # t1 on T, or T,,, + 1. Let sj be a neighbour of tj in Bj- bj, 
j= 1,2. Let yj be the vertex of Bj - bj with the largest number of 
neighbours on T. Then there is an (sl, v, S2)-path of length 
pb2d-n,(y,)-n,(y,). By the maximality of T, jT[tI, t2]l >2+p. Also, 



26 EGAWA, GLAS, AND LOCKE 

every neighbour of JJ~ on T, except for t, and the last neighbour of vi on 
r, is followed by at least two edges of T or by a path through 2X Thus, 
if i, i-l#m, or if t2 is on T,, ) T’j b (2 +p) + 2(n,(yi) - 1 - 6:). There- 
fore IT’1 >,2d-26:. 

The cases m = i and m = i - 1 are symmetric. Thus we consider m = i. We 
may assume that when we found k paths from u to T, at most one of these 
paths meets each T,, for j # i, i + 1. Also, t1 E Ti and t, E Ti+ 1. Since there 
are two paths from z, to T meeting Tj, there is a vertex q # tl on Ti such 
that there are paths through H from u to T meeting Ti at tl and q, with 
these paths being disjoint except at U. If q precedes t, on Ti, then 
) T’J b 2d- 26:. Thus we may assume that t, precedes q on Ti, and that 
N(q) n m4 - bl) = 0. 

If there are also two paths through H from v to Ti+ 1, disjoint except at 
Y, and meeting Ti+ 1 at t2 and q*, with no neighbours of y2 between t2 and 
q*, then the segment of T between t2 and q* must be of length at least 
d-n&,)+2 and IT’[tl, q]l ad-n&,)+2. Again, any two neighbours 
of yi must be separated by at least 2 edges of T and, hence, of T’. There- 
fore, 

IT’1 2 (d-4-h) + 2) + v- dY2) + 2) 

+ 2(m=+T(Yl)~ fdY2)) - 2 43 

>2d-28:. 

We have already seen that there are at least two paths through H from 
u meeting Tis Suppose that there are three paths through H, disjoint except 
at u, from u meeting Ti at t, , q, and q’. Then, without loss of generality, 
the order of the ends of these paths on Ti is t 1, q, q’. Then there are paths 
through H from v to t2 and one of q or q’ such that t, is the only common 
vertex of these paths. Then 1 T[q, t2]l 2 2 + d- n,(y,) and there is a 
(tl , U, q)-path through H of length at least d - n,( vl) + 2. Again, 1 T’J > 
2d- 26;. 

Hence, for any set of k paths P,, . . . . Pk from u to T, disjoint except at u, 
exactly two meet Ti and exactly one meets Tj, for j# i. Suppose that 
N TcX2, xk-ll(B2 - b2) # 0. Let p( denote the penultimate vertex of Pi, for 
i = 1, 2, . . . . k. If z, = p,! for some i, some slight care is necessary with respect 
to multiplicities. By Perfect’s theorem [7], there are k paths from u to 
{Pl,, Pi, m-s, pi> u {b2}, disjoint except at u, with one of the paths ending at 
bZ. We may thus construct k paths from u to T so that one, say Pit ends 
at pj, with PjE V(T[x,,x,-,])nN(B,-b*) and uses at least d-n,(y,) 
edges of B2 - 6,. Let pj be the first vertex of T[p,- 1, pj] - (pj- 1 > that is 
a neighbour of B, - b2, and let pf be the last vertex of T[pj, pj+ 1] - 
(pj+l} that is a neighbour of B,-b2. Then IT[pj_,,p:]l~2+d- 
tir(v2) and IT[p,Z, pj+l]122+d-n,(yz). But then IT’/ >2d-28:. 
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Therefore, we may assume that N,(B, - b2) c V(T,) u V( Tk- J. If 
B2 - b, has neighbours on both T1 and Tk- I then, as in the previous 
paragraph, each of T1 u T2 and Tk _ 2 u Tk _ I contains a segment of length 
at least d- yt&) + 2. Again, IT’1 > 26 26:. 

Now, without loss of generality, we may assume that N,(B2 - b2) c 
V( T,). But INT(B, - b2)1 2 k - 1 2 2. Therefore, T1 u T2 contains two 
segments of length at least d- rz,(y,) + 2, and 1 T’I > 2d- 26:. 

Thus, we may assume that if B, - bI has a neighbour t on T,, for some 
m, then B2 - b2 has no neighbour on T,,,, Tm _ 1, or T,,, + 1 distinct from t. 

Let m3 denote the number of indices m for which T, contains a 
neighbour of both B1 - b1 and B, - bZ. For such a segment T,,,, 
(N(Bi uB,- {b,, b,))n V(Tm)l = 1. Let mj denote the number of indices 
m for which T, contains a neighbour of Bj- bj, j= 1,2, but not both 
Bl-bl and B,-bZ. If mj=O, for j=l or j=2, then S=(bi) u 
WTv4 - bl) n WB2 - b2N is a set of vertices which disconnects G. But 
ISI < 1 + k/2 < k. Therefore, m, > 1, and m2 > 1. Now, since k 3 2, 
(ml+1)+(m2+1)+2m36k. 

Thus one of B1 - b, or B2 - b2 has neighbours on at most (k - 2)/2 of 
the intervals T,,,. Without loss of generality, suppose that ml + m2 < 
m2 + m3, and thus that B1 - b, has neighbours on at most (k - 2)/2 
of the intervals T,. Let m,* = (N,(B, - b,) -N,(B1 - b,)l. Since G is 
k-connected, m,* 2 2. We note that v might be in B1 - bI. Set p = 1 if v = bl 
and d,,(o) = 2 and 1 V(B,)J > 3, otherwise set p = 0. The case p = 1 is the 
case in which Lemma 5 cannot be applied to B1 to give a long path 
containing II. If ,u = 1, then for any distinct vertices a and /3 in B,, there is 
an (a, U, /? : 2)-path in B1. 

Now suppose that z1 is a vertex of B, - bI with the least number of 
neighbours on T and let h be the number of vertices of B,. There are at 
least min(k, h) disjoint paths from B1 to T, all except possibly one having 
length one. Let ql, q2, . . . denote the ends of these paths. We note that one 
of the qj may not be in N,(B, -b,). 

Let J= (j: {qj, qj+l) c V(Tn?) for some m}. If IJI >2+~ then there are 
distinct integers m and j, such that neither T[q,, qm+ 1] nor T[qj, qj+ I] 
contains a vertex of X, but each has length at least d - n T( y, ) + 2. If p = 0 
and UE B1, there is a (qm, u, qm+l : d-n,(yl) +2)-path through H. We 
may assume that NH( T(q,, qm+ 1)) = NH( T(qj, qj+ 1)) = @. For both 
values of ,u, each of T’[q,, qm + 1 ] and T’[qj, qj+ 1] has length at least 
d-n,(y,) + 2. Also, any two neighbours of y1 on T are separated by at 
least two edges of T. Therefore, 1 T’I 3 2d - 26:. 

If h-p>(k+4)/2, then IJI >2+p. 
If (k+3)/2ah-pa(k+2)/2 and JJI<l+p, then m,+m3=(k-2)/2 

and 1 JI = 1 + p. If p = 1, there is a path P from some some T, through H 
and back to T,,,, with IP( > 4 and v E V(P). But then, 
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IV 2(+MY,)+2)+p IPI +W.(y,)- 1 -p--m,) 

+ 2m,* + 3m, - 36: 

>d+nT(yI)+2p-36:+m:+m,+m3 

Zd+(d-h+1)+2p-36:+m,*+m,+m, 

k+3 k-2 
>2d-26;+/.4-,-++ 

Hence, we may assume that h -p 6 (k + 1)/2, IJI < 1 + p, and 
n,(z,)>d-h+ 1. 

Let j, denote the number of indices j such that B, - b1 has at most one 
neighbour on 7”. Let 

j3=~l(qj:(4i,qjtl)CV(T,) or {qj-l,qj)CV(T,)forsomem)(. 

The only possible values of j, at this point are 0, 1, 3/2, and 2. If p = 0 then 
j3<1 and j,+j,<(k-2)/2. Hence, j2+2j3<k/2, and nT(zI)-j2--2j3& 
d-h+l-k/221/2. Similarly, if p=l and j3=0, or if p=l, j3=1, and 
h<(k+1)/2, or if p=l, j,>l, and h<(k-1)/2, then n,(z,)- 
j,--2j32 1. 

In all these cases, 

~tnTtz1)-j2-2j3)th-2)+nT(z1) 

>(h-2)+(d-h+ 1) 

ad-l. 
Then, 

I T’l2 2 INT(B1 - b,)( + 2m,* - 26: 

a2d-26;. 

It remains to consider the cases p = 1 that are not covered above. If 
j, = 1, we may assume that (k + 2)/2 6 h d (k + 3)/2. Let z’ denote the 
vertex of B, - (u} - N(u) with the fewest neighbours on T. Since B, is not 
complete, n =(z’) 2 d - h + 2. Then, 

INT(B1-bl)l~(nT(z')-j2-2j3)(h- 3)+jz+2j3 

< (n.(f) -j, - 2j3)(h - 4) + n&‘) 

b(h-4)+(d-h+2) 

>d-2 
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Again, 

IT’1 22 JNT(B1-bJ +2m,*--262 

> 2d - 26:. 

If j, > 1, we may assume that k/2 6 h 6 (k + 3)/2. Then m2 +m3 3 
m,+m,>h-3>(k-6)/2, m2>m,>1, nT(yl)>d-h+2>d-(k-1)/2. 
There is a path P from some T, through B1 and back to T,, with IPI 2 4 
and u E V(P), and a path Q from some Ti, through B, and back to Ti, with 
length at least d- n(vl) + 2. Then 

I T’I 2 IQ1 + (PI + 2(n,(y,) - 2 -m,) + 2m2 + 3m3 - 36: 

> (d- n,(y,) + 2) + 4 + 2(n&5) - 2 -m,) + 2m2 + 3m3 - 36: 

b d+ n,(y,) + 2 + (m, + m,) - 26: 

a2d-26$ 

Thus in all cases we have ( T’( 2 2d - 26:. This completes the proof of 
Theorem 6. 
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