Cycles and Paths through Specified Vertices in k-Connected Graphs

Y. Egawa
Science University of Tokyo
R. Glas
Technische Universität Berlin

AND
S. C. Locke

Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33431

Communicated by the Editors
Received November 2, 1988

Let G be a k-connected graph with minimum degree d and at least $2 d$ vertices. Then G has a cycle of length at least $2 d$ through any specified set of k vertices. A similar result for paths is also given. © 1991 Academic Press, Inc.

Introduction

The following two theorems appear in Dirac [1, 2].
Theorem 1. Let G be a 2 -connected graph with minimum degree d. Then G has a cycle of length at least $\min (|V(G)|, 2 d)$.

Theorem 2. Let G be a k-connected graph and X be a set of k vertices of $G, k \geqslant 2$. Then G contains a cycle C which contains every vertex of X.

In this paper we prove the following theorems.
Theorem 3. Let G be a k-connected graph, $k \geqslant 2$, with minimum degree d, and with at least $2 d$ vertices. Let X be a set of k vertices of G. Then G has a cycle C of length at least $2 d$ such that every vertex of X is on C.

Theorem 4. Let G be a k-connected graph, $k \geqslant 3$, with minimum degree d, and with at least $2 d-1$ vertices. Let x and z be distinct vertices of G and Y be a set of $k-1$ vertices of G. Then G has an (x, z)-path P of length at least $2 d-2$ such that every vertex of Y is on P.

We note that the case $k=2$ of Theorem 3 was proven in [5]. The reader who wishes to begin with a simplified version of Theorem 3 is directed to that paper. We shall use notation and technique that was presented in [5]. For the sake of completeness, these will be repeated in this paper. Saito [8] establishes a result relating the length of such a cycle to the length of a longest cycle of G. Versions of Theorems 3 and 4 also appear in [3].

Theorem 3 is best possible if X is an independent set of vertices which collectively have exactly d neighbours. Then no cycle of length exceeding $2 d$ can contain all of X. It is also best possible in the sense that there are graphs of connectivity k which contain a set X of $k+1$ vertices with no cycle through every vertex of X. The only hope for a stronger theorem would lie in replacing the hypothesis that G is k-connected by the hypothesis that G is 2 -connected and the given vertices of X lie on a common cycle. Such a result for three vertices in 2-connected graphs is given in [6].

Notation

As in [5], we find it convenient to prove the main theorems simultaneously. We use the term trail for a path or a cycle, which is a restriction of the usual definition of trail. Let $Y=\left\{y_{1}, y_{2}, \ldots, y_{k-1}\right\}$ be a set of distinct vertices of G. Let x and z be vertices of G distinct from Y (we allow the possibility that $x=z$). An $(x, Y, z: m)$-trail is a cycle of length at least m containing x and Y if $x=z$ or an (x, z)-path of length at least m containing Y if $x \neq z$. Also, we define δ_{x}^{z} to be 1 if $x \neq z$ and 0 if $x=z$.

For a trail T the section of T from u to v including u and v is $T[u, v]$. We shall use $T(u, v)$ for $T[u, v]-\{u, v\}$. The case that Y consists of a single vertex y and T is a path of length at least m, occurs frequently and we shall call such a path an $(x, y, z: m)$-path. For a subgraph H, a path through H is a path P with all internal vertices of P in H.

For a vertex $x, N(x)$ denotes the set of neighbours of x. For a set of vertices S, we write $N(S)$ for the set $\bigcup_{x \in S} N(x)$, and for a subgraph H we write $N(H)$ for $N(V(H))$. For a vertex x, a set of vertices S and subgraphs H and $K, n_{K}(x)$ denotes the number of neighbours of x in $K, N_{K}(x)$ denotes the set of neighbours of x in $K, N_{K}(S)$ is the set $N(S) \cap V(K)$, and $N_{K}(H)$ is the set $N_{K}(V(H))$.

We shall use a variation of Lemma 2.1 from [5]. This variation appears as Lemma 3.2.2 of [4]. The proof is repeated here for the sake of completeness.

Lemma 5. Let G he a 2-connected graph with at least 4 vertices, let u and v be distinct vertices of G, and let d be an integer. Suppose that every vertex of G, except possibly u and v and one other vertex, has degree at least d. If x is any vertex of G with the degree of x at least 3 , then there is a ($u, x, v: d$)-path in G.

Alternatively, if G is nonseparable on $v \leqslant 3$ vertices, then G is K_{1}, K_{2}, or K_{3} and there is $a(u, x, v: v-1)$-path in G for any $u, v, x \in V(G)$, with $u \neq v$ if $v \neq 1$.

Proof. If $v<4$, the result is trivial, and we include these cases in the statement of the lemma for ease in reference to the lemma. Now, suppose that $v=4$. Then $G \cong K_{4}$ or $G \cong K_{4}-u v$, and the lemma holds in these cases.

At several points of this proof, we shall need to choose a vertex subject to certain restrictions. Top consolidate some of the cases, we introduce the following notation. For a set of vertices X and a vertex y, let $f(X, y)=\{y\}$ if $y \in X$ and $f(X, y)=X$ if $y \notin X$. Thus, $y^{\prime} \in f(X, y)$ indicates that $y^{\prime}=y$, if $y \in X$, but otherwise any vertex of X will suffice.

If $v \geqslant 4$ and $d \leqslant 2$ then, by Menger's theorem, there is a (u, w, v)-path P_{w}, for any vertex w of G. Let $w \in f(V(G)-\{u, v\}, x)$. Then P_{w} is a ($u, x, v: 2$)-path.

For $v>4$, we shall assume that the lemma holds for any graph on fewer vertices, or when d is replaced by an integer d^{\prime}, where $d^{\prime}<d$. We may also assume, without loss of generality, that $x \neq u$. We shall prove the lemma by considering two cases depending on the separability of $G-u$.

Case (i). Suppose that $G-u$ is 2-connected. Let $u^{\prime} \in f(N(u)-\{v\}, x)$. By the induction hypothesis, there is a ($u^{\prime}, x, v: d-1$)-path P in $G-u$. Then $u u^{\prime} P$ is a $(u, x, v: d)$-path in G.

Case (ii). Suppose that $G-u$ is separable. It is possible that some vertex w has degree one in $G-u$. If $w \neq v$, then the graph H constructed by contracting the edge $u w$ to a new vertex u^{\prime} has a ($u^{\prime}, x, v: d$)-path and, hence, G has a $(u, x, v: d)$-path. The case $N_{G}(v)=\left\{u, v^{\prime}\right\}$ is handled similarly, by contracting $v v^{\prime}$. Thus we may assume that every endblock of $G-u$ has at least three vertices.

Let B be an endblock of $G-u$ with cutvertex b, such that v is not an internal vertex of B and such that there is a (b, x, v)-path P_{1} or an (x, b, v) path P_{2} in $G-u$. Let $u^{\prime} \in f(N(u) \cap(V(B)-b), x)$ and $x^{\prime} \in f(V(B), x)$. By the induction hypothesis, there is a $\left(u^{\prime}, x^{\prime}, b: d-1\right)$-path Q in B. Then $u u^{\prime} Q P_{i}[b, v]$ is a $(u, x, v: d)$-path, where $i=1$ or 2 , depending on which of P_{1} and P_{2} exists. Thus in any graph satisfying the given conditions, we have shown the existence of a $(u, x, v: d)$-path, completing the proof of the lemma.

We shall prove Theorems 3 and 4 simultaneously in the form:
ThEOREM 6. Let G be a k-connected graph, $k \geqslant 3$, with minimum degree $d \geqslant k$. Let Y denote a set of $k-1$ distinct vertices of G. Let x and z be vertices of $G-Y$. Suppose that G has at least $2 d-\delta_{x}^{z}$ vertices. Then G contains an $\left(x, Y, z: 2 d-2 \delta_{x}^{z}\right)$-trail.

Proof of Theorem 6. We procecd by induction on k. For the case $k=3$, it was shown in [5] that G contains an $\left(x, Y-\{y\}, z: 2 d-2 \delta_{x}^{z}\right)$-trail for any vertex $y \in Y$. Let T be a longest (x, z)-trail which contains at least $k-2$ of the vertices of Y. The length of T must be at least $2 d-2 \delta_{x}^{z}$. If T contains all of Y then we are done, so we may assume that some vertex v of Y is not on T.

Let H be the component of $G-V(T)$ which contains v. Label the vertices of $X=\{x, z\} \cup Y-v$ along T as $x_{1}, x_{2}, \ldots, x_{k}$, with $x=x_{1}$ and $z=x_{k}$. Let $T_{i}=T\left[x_{i}, x_{i+1}\right]$. We shall frequently make use of the following observation.

Observation. Suppose that we can find vertices α and β on $T\left[x_{i}, x_{i+2}\right]$, $i \neq k-1$ if $x \neq z$, with neighbours α^{\prime} and β^{\prime} in H such that there is an $\left(\alpha^{\prime}, v, \beta^{\prime}: m\right)$-path P in H. Then $T^{\prime}=T[x, \alpha] \cup T[\beta, z] \cup\left\{\alpha \alpha^{\prime}, \beta \beta^{\prime}\right\} \cup P$ is an $\left(x, Y-\left\{y_{j}\right\}, z\right)$-trail for some $y_{j} \in Y$. By the maximality of $T, T[\alpha, \beta]$ must have length at least $m+2$.

Case 1. Suppose that H is nonseparable.
Let $W=N_{T}(H)=N(H)-V(H)$, and label the vertices of W along T as $u_{1}, u_{2}, \ldots, u_{r}$. Let

$$
W_{2}=\left\{u_{i} \in W:\left|N_{H}\left(\left\{u_{i}, u_{i+1}\right\}\right)\right| \geqslant 2\right\} \quad \text { and } \quad W_{1}=W-W_{2}
$$

Let

$$
\begin{aligned}
W_{2,0} & =\left\{u_{i} \in W_{2}:\left|V\left(T\left(u_{i}, u_{i+1}\right)\right) \cap X\right|=0\right\} \\
W_{2,1} & =\left\{u_{i} \in W_{2}:\left|V\left(T\left(u_{i}, u_{i+1}\right)\right) \cap X\right|=1\right\} \quad \text { and } \\
W_{2,2} & =W_{2}-W_{2,0}-W_{2,1}
\end{aligned}
$$

For an index $I, w_{I}=\left|W_{I}\right|$.
If T is a cycle, it is possible that $x_{1}=x_{k} \in N(H)$. In this case, $u_{1}=u_{r}=x_{1}$. Otherwise, u_{r} is considered to be in the set W_{1}. Figure 1 displays a trail T, component H of $G-V(T)$ and labels indicating the set to which each vertex of $N_{T}(H)$ belongs.

By Menger's Theorem, there are k paths from v to T, pairwise disjoint except at v. There is at least one segment T_{i} which contains at least two endvertices of these paths. Thus, we may assume that $u_{j}, u_{j+1} \in T\left[x_{i}, x_{i+1}\right]$,

Figure 1
for some i, j, and that there is a $\left(u_{j}, v, u_{j+1}\right)$-path internally disjoint from T. Let v_{1}, v_{2} be neighbours in H of u_{j}, u_{j+1}, respectively, with $v_{1} \neq v_{2}$, if possible. Let P be a longest $\left(v_{1}, v, v_{2}\right)$-path in H. If $v_{1}=v_{2}$, then $v=v_{1}$.

Let y^{\prime} be a vertex of H with the largest number of neighbours on T, and let z^{\prime} be a vertex of H with the smallest number of neighbours on T. Set $p=\max \left\{0, d-n_{T}\left(y^{\prime}\right)\right\}$. If α_{1} and α_{2} are distinct vertices of H then, by Lemma 5, H contains an $\left(\alpha_{1}, v, \alpha_{2}: p\right)$-path. Also H has $h \geqslant d-n_{T}\left(z^{\prime}\right)+1$ vertices. By Menger's Theorem, there are at least $\min (k, h)$ disjoint edges from H to T. Therefore, W_{2} has at least $\min (k, h)-\delta_{x}^{z}$ vertices.

Let $T^{\prime}=T\left[x_{1}, u_{j}\right] u_{j} v_{1} P v_{2} u_{j+1} T\left[u_{j+1}, x_{k}\right]$. We proceed to determine lower bounds on the length of T^{\prime}.

Suppose that $w_{2,0}+w_{2,1} \geqslant 2$. Let u_{α} and u_{β} be distinct vertices of $W_{2,0} \cup W_{2,1}$. Then, $\left|T^{\prime}\left[u_{\alpha}, u_{\alpha+1}\right]\right| \geqslant 2+p$ and $\left|T^{\prime}\left[u_{\beta}, u_{\beta+1}\right]\right| \geqslant 2+p$. It is possible that $\alpha=j$, but then $u_{j} v_{1} P v_{2} u_{j+1}$ has length at least $p+2$. If $u_{\gamma} \in W_{1}$, in the case $x=z$, or $u_{\gamma} \in W_{1}-\left\{u_{r}\right\}$, in the case $x \neq z$, then $\left|T^{\prime}\left[u_{\gamma}, u_{\gamma+1}\right]\right| \geqslant 2$. If $u_{\eta} \in W_{2,2}$, then $\left|T^{\prime}\left[u_{\eta}, u_{\eta+1}\right]\right| \geqslant 3$. Therefore,

$$
\begin{aligned}
\left|T^{\prime}\right| & \geqslant 2\left(w_{1}-\delta_{x}^{z}\right)+(2+p)\left(w_{2,0}+w_{2,1}\right)+3 w_{2,2} \\
& \geqslant 2 w_{1}+2\left(w_{2,0}+w_{2,1}\right)+p\left(w_{2,0}+w_{2,1}-2\right)+2 p+3 w_{2,2}-2 \delta_{x}^{z} \\
& \geqslant 2 w+w_{2,2}+p\left(w_{2,0}+w_{2,1}-2\right)+2\left(d-n_{T}\left(y^{\prime}\right)\right)-2 \delta_{x}^{z} \\
& \geqslant 2 d-2 \delta_{x}^{z} .
\end{aligned}
$$

Suppose that $w_{2,0}+w_{2,1}=1$. Then $k \geqslant h$ and $w_{2,2} \geqslant h-1-\delta_{x}^{z} \geqslant$ $d-n_{T}\left(z^{\prime}\right)-\delta_{x}^{z}$. We note that if $n_{T}\left(z^{\prime}\right)=w$ then every vertex of H is
adjacent to every vertex of W. In this case, $w_{2,0}+w_{2,1}>1$. Thus, $N_{T}\left(z^{\prime}\right)<w$ and

$$
\begin{aligned}
\left|T^{\prime}\right| & \geqslant 2\left(w_{1}-\delta_{x}^{z}\right)+(2+p)\left(w_{2,0}+w_{2,1}\right)+3 w_{2,2} \\
& \geqslant 2 w_{1}+2\left(w_{2,0}+w_{2,1}\right)+p+3 w_{2,2}-2 \delta_{x}^{z} \\
& =2 w+\left(d-n_{T}\left(y^{\prime}\right)\right)+\left(d-n_{T}\left(z^{\prime}\right)\right)-3 \delta_{x}^{z} \\
& \geqslant 2 d-2 \delta_{x}^{z} .
\end{aligned}
$$

Therefore, we may assume that $w_{2,0}+w_{2,1}=0$. If $x \neq z$, there is no vertex of W_{2} in $T\left[x_{k-1}, x_{k}\right]$. Hence, $w_{2} \leqslant(k-1) / 2, h \leqslant k / 2, n_{T}\left(z^{\prime}\right) \geqslant$ $d-h+1 \geqslant(2 d-k+2) / 2$, and $\left|T^{\prime}\right| \geqslant 2\left(w_{1}-\delta_{x}^{z}\right)+3 w_{2,2}$.
We now obtain lower bounds on the number of neighbours in W_{1} for each vertex of H. Clearly, each such vertex has at least $d-h+1-w_{2}$ neighbours in W_{1}, and no two vertices have a common neighbour in $W_{1}-\left\{u_{r}\right\}$. Thus, $w_{1} \geqslant h\left(d-h-w_{2}\right)$. Note that $d-h+1-w_{2,2} \geqslant$ $d-k / 2+1-(k-1) / 2=d-k+3 / 2 \geqslant 3 / 2$. Suppose that $h>1$, then

$$
\begin{aligned}
\left|T^{\prime}\right| & \geqslant 2\left(w_{1}-\delta_{x}^{z}\right)+3 w_{2,2} \\
& \geqslant 2 h\left(d-h-w_{2,2}\right)+3 w_{2,2}-2 \delta_{x}^{z} \\
& =2(h-1)\left(d-h-w_{2,2}\right)+2 d-2 h+w_{2,2}-2 \delta_{x}^{z} \\
& \geqslant 2 d-2 \delta_{x}^{z}
\end{aligned}
$$

If $h=1$, then $w_{1} \geqslant d$ and $\left|T^{\prime}\right| \geqslant 2 d-2 \delta_{x}^{z}$. This concludes the case in which H is nonseparable.

Case 2. Now let us suppose that H is separable. We note that we may choose endblocks B_{1} and B_{2} of H having cutvertices b_{1} and b_{2}, respectively, such that there is a $\left(b_{1}, v, b_{2}\right)$-path or there is a $\left(v, b_{1}, b_{2}\right)$-path in H. In the second alternative, $v \in V\left(B_{1}\right)$.

There are k paths $P_{1}, P_{2}, \ldots, P_{k}$ from v to $V(T)$, pairwise disjoint except at v, with endvertices $p_{1}, p_{2}, \ldots, p_{k}$ on T. Some two of these paths meet, say, T_{i} as we have noted in Case 1. We set T^{\prime} as in that case.
We first prove that if $B_{1}-b_{1}$ has a neighbour t_{1} on T_{m}, then $B_{2}-b_{2}$ has no neighbour on $T\left[x_{m-1}, x_{m+2}\right]-\left\{t_{1}\right\}$ (with the obvious modifications if $m=1$ or $k-1$). We then show that one of these endblocks has neighbours on at most $(k-2) / 2$ of the segments $T_{i}, 1 \leqslant i \leqslant k-1$.
Suppose that $B_{1}-b_{1}$ has a neighbour t_{1} on T_{m} and that $B_{2}-b_{2}$ has a neighbour $t_{2} \neq t_{1}$ on T_{m} or T_{m+1}. Let s_{j} be a neighbour of t_{j} in $B_{j}-b_{j}$, $j=1,2$. Let y_{j} be the vertex of $B_{j}-b_{j}$ with the largest number of neighbours on T. Then there is an (s_{1}, v, s_{2})-path of length $p \geqslant 2 d-n_{T}\left(y_{1}\right)-n_{T}\left(y_{2}\right)$. By the maximality of $T,\left|T\left[t_{1}, t_{2}\right]\right| \geqslant 2+p$. Also,
every neighbour of y_{j} on T, except for t_{1} and the last neighbour of y_{j} on T, is followed by at least two edges of T or by a path through H. Thus, if $i, i-1 \neq m$, or if t_{2} is on $T_{m},\left|T^{\prime}\right| \geqslant(2+p)+2\left(n_{T}\left(y_{j}\right)-1-\delta_{x}^{z}\right)$. Therefore $\left|T^{\prime}\right| \geqslant 2 d-2 \delta_{x}^{2}$.

The cases $m=i$ and $m=i-1$ are symmetric. Thus we consider $m=i$. We may assume that when we found k paths from v to T, at most one of these paths meets each T_{j}, for $j \neq i, i+1$. Also, $t_{1} \in T_{i}$ and $t_{2} \in T_{i+1}$. Since there are two paths from v to T meeting T_{i}, there is a vertex $q \neq t_{1}$ on T_{i} such that there are paths through H from v to T meeting T_{i} at t_{1} and q, with these paths being disjoint except at v. If q precedes t_{1} on T_{i}, then $\left|T^{\prime}\right| \geqslant 2 d-2 \delta_{x}^{z}$. Thus we may assume that t_{1} precedes q on T_{i}, and that $N(q) \cap V\left(B_{1}-b_{1}\right)=\varnothing$.

If there are also two paths through H from v to T_{i+1}, disjoint except at v, and meeting T_{i+1} at t_{2} and q^{*}, with no neighbours of y_{2} between t_{2} and q^{*}, then the segment of T between t_{2} and q^{*} must be of length at least $d-n_{T}\left(y_{2}\right)+2$ and $\left|T^{\prime}\left[t_{1}, q\right]\right| \geqslant d-n_{T}\left(y_{1}\right)+2$. Again, any two neighbours of y_{i} must be separated by at least 2 edges of T and, hence, of T^{\prime}. Therefore,

$$
\begin{aligned}
\left|T^{\prime}\right| \geqslant & \left(d-n_{T}\left(y_{1}\right)+2\right)+\left(d-n_{T}\left(y_{2}\right)+2\right) \\
& +2\left(\max \left\{n_{T}\left(y_{1}\right), n_{T}\left(y_{2}\right)\right\}-2-\delta_{x}^{z}\right) \\
\geqslant & 2 d-2 \delta_{x}^{z} .
\end{aligned}
$$

We have already seen that there are at least two paths through H from v meeting T_{i}. Suppose that there are three paths through H, disjoint except at v, from v meeting T_{i} at t_{1}, q, and q^{\prime}. Then, without loss of generality, the order of the ends of these paths on T_{i} is t_{1}, q, q^{\prime}. Then there are paths through H from v to t_{2} and one of q or q^{\prime} such that v is the only common vertex of these paths. Then $\left|T\left[q, t_{2}\right]\right| \geqslant 2+d-n_{T}\left(y_{2}\right)$ and there is a $\left(t_{1}, v, q\right)$-path through H of length at least $d-n_{T}\left(y_{1}\right)+2$. Again, $\left|T^{\prime}\right| \geqslant$ $2 d-2 \delta_{x}^{z}$.

Hence, for any set of k paths P_{1}, \ldots, P_{k} from v to T, disjoint except at v, exactly two meet T_{i} and exactly one meets T_{j}, for $j \neq i$. Suppose that $N_{T\left[x_{2}, x_{k-1}\right]}\left(B_{2}-b_{2}\right) \neq \varnothing$. Let p_{i}^{\prime} denote the penultimate vertex of P_{i}, for $i=1,2, \ldots, k$. If $v=p_{i}^{\prime}$ for some i, some slight care is necessary with respect to multiplicities. By Perfect's theorem [7], there are k paths from v to $\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{k}^{\prime}\right\} \cup\left\{b_{2}\right\}$, disjoint except at v, with one of the paths ending at b_{2}. We may thus construct k paths from v to T so that one, say P_{j}, ends at p_{j}, with $p_{j} \in V\left(T\left[x_{2}, x_{k-1}\right]\right) \cap N\left(B_{2}-b_{2}\right)$ and uses at least $d-n_{T}\left(y_{2}\right)$ edges of $B_{2}-b_{2}$. Let p_{j}^{1} be the first vertex of $T\left[p_{j-1}, p_{j}\right]-\left\{p_{j-1}\right\}$ that is a neighbour of $B_{2}-b_{2}$, and let p_{j}^{2} be the last vertex of $T\left[p_{j}, p_{j+1}\right]-$ $\left\{p_{j+1}\right\}$ that is a neighbour of $B_{2}-b_{2}$. Then $\left|T\left[p_{j-1}, p_{j}^{1}\right]\right| \geqslant 2+d-$ $n_{T}\left(y_{2}\right)$ and $\left|T\left[p_{j}^{2}, p_{j+1}\right]\right| \geqslant 2+d-n_{T}\left(y_{2}\right)$. But then $\left|T^{\prime}\right| \geqslant 2 d-2 \delta_{x}^{z}$.

Therefore, we may assume that $N_{T}\left(B_{2}-b_{2}\right) \subset V\left(T_{1}\right) \cup V\left(T_{k-1}\right)$. If $B_{2}-b_{2}$ has neighbours on both T_{1} and T_{k-1} then, as in the previous paragraph, each of $T_{1} \cup T_{2}$ and $T_{k-2} \cup T_{k-1}$ contains a segment of length at least $d-n_{T}\left(y_{2}\right)+2$. Again, $\left|T^{\prime}\right| \geqslant 2 d-2 \delta_{x}^{z}$.

Now, without loss of generality, we may assume that $N_{T}\left(B_{2}-b_{2}\right) \subset$ $V\left(T_{1}\right)$. But $\left|N_{T}\left(B_{2}-b_{2}\right)\right| \geqslant k-1 \geqslant 2$. Therefore, $T_{1} \cup T_{2}$ contains two segments of length at least $d-n_{T}\left(y_{2}\right)+2$, and $\left|T^{\prime}\right| \geqslant 2 d-2 \delta_{x}^{z}$.

Thus, we may assume that if $B_{1}-b_{1}$ has a neighbour t on T_{m}, for some m, then $B_{2}-b_{2}$ has no neighbour on T_{m}, T_{m-1}, or T_{m+1} distinct from t.

Let m_{3} denote the number of indices m for which T_{m} contains a neighbour of both $B_{1}-b_{1}$ and $B_{2}-b_{2}$. For such a segment T_{m}, $\left|N\left(B_{1} \cup B_{2}-\left\{b_{1}, b_{2}\right\}\right) \cap V\left(T_{m}\right)\right|=1$. Let m_{j} denote the number of indices m for which T_{m} contains a neighbour of $B_{j}-b_{j}, j=1,2$, but not both $B_{1}-b_{1}$ and $B_{2}-b_{2}$. If $m_{j}=0$, for $j=1$ or $j=2$, then $S=\left\{b_{j}\right\} \cup$ $\left(N_{T}\left(B_{1}-b_{1}\right) \cap N_{T}\left(B_{2}-b_{2}\right)\right)$ is a set of vertices which disconnects G. But $|S| \leqslant 1+k / 2<k$. Therefore, $m_{1} \geqslant 1$, and $m_{2} \geqslant 1$. Now, since $k \geqslant 2$, $\left(m_{1}+1\right)+\left(m_{2}+1\right)+2 m_{3} \leqslant k$.

Thus one of $B_{1}-b_{1}$ or $B_{2}-b_{2}$ has neighbours on at most $(k-2) / 2$ of the intervals T_{m}. Without loss of generality, suppose that $m_{1}+m_{2} \leqslant$ $m_{2}+m_{3}$, and thus that $B_{1}-b_{1}$ has ncighbours on at most $(k-2) / 2$ of the intervals T_{m}. Let $m_{2}^{*}=\left|N_{T}\left(B_{2}-b_{2}\right)-N_{T}\left(B_{1}-b_{1}\right)\right|$. Since G is k-connected, $m_{2}^{*} \geqslant 2$. We note that v might be in $B_{1}-b_{1}$. Set $\mu=1$ if $v=b_{1}$ and $d_{B_{1}}(v)=2$ and $\left|V\left(B_{1}\right)\right|>3$, otherwise set $\mu=0$. The case $\mu=1$ is the case in which Lemma 5 cannot be applied to B_{1} to give a long path containing v. If $\mu=1$, then for any distinct vertices α and β in B_{1}, there is an ($\alpha, v, \beta: 2$)-path in B_{1}.

Now suppose that z_{1} is a vertex of $B_{1}-b_{1}$ with the least number of neighbours on T and let h be the number of vertices of B_{1}. There are at least $\min (k, h)$ disjoint paths from B_{1} to T, all except possibly one having length one. Let q_{1}, q_{2}, \ldots denote the ends of these paths. We note that one of the q_{j} may not be in $N_{T}\left(B_{1}-b_{1}\right)$.

Let $J=\left\{j:\left\{q_{j}, q_{j+1}\right\} \subset V\left(T_{m}\right)\right.$ for some $\left.m\right\}$. If $|J| \geqslant 2+\mu$ then there are distinct integers m and j, such that neither $T\left[q_{m}, q_{m+1}\right]$ nor $T\left[q_{j}, q_{j+1}\right]$ contains a vertex of X, but each has length at least $d-n_{T}\left(y_{1}\right)+2$. If $\mu=0$ and $v \in B_{1}$, there is a $\left(q_{m}, v, q_{m+1}: d-n_{T}\left(y_{1}\right)+2\right)$-path through H. We may assume that $N_{H}\left(T\left(q_{m}, q_{m+1}\right)\right)=N_{H}\left(T\left(q_{j}, q_{j+1}\right)\right)=\varnothing$. For both values of μ, each of $T^{\prime}\left[q_{m}, q_{m+1}\right]$ and $T^{\prime}\left[q_{j}, q_{j+1}\right]$ has length at least $d-n_{T}\left(y_{1}\right)+2$. Also, any two neighbours of y_{1} on T are separated by at least two edges of T. Therefore, $\left|T^{\prime}\right| \geqslant 2 d-2 \delta_{x}^{z}$.

If $h-\mu \geqslant(k+4) / 2$, then $|J| \geqslant 2+\mu$.
If $(k+3) / 2 \geqslant h-\mu \geqslant(k+2) / 2$ and $|J| \leqslant 1+\mu$, then $m_{1}+m_{3}=(k-2) / 2$ and $|J|=1+\mu$. If $\mu=1$, there is a path P from some some T_{m} through H and back to T_{m}, with $|P| \geqslant 4$ and $v \in V(P)$. But then,

$$
\begin{aligned}
\left|T^{\prime}\right| \geqslant & \left(d-n_{T}\left(y_{1}\right)+2\right)+\mu|P|+2\left(n_{T}\left(y_{1}\right)-1-\mu-m_{3}\right) \\
& +2 m_{2}^{*}+3 m_{3}-3 \delta_{x}^{z} \\
\geqslant & d+n_{T}\left(y_{1}\right)+2 \mu-3 \delta_{x}^{z}+m_{2}^{*}+m_{2}+m_{3} \\
\geqslant & d+(d-h+1)+2 \mu-3 \delta_{x}^{z}+m_{2}^{*}+m_{2}+m_{3} \\
\geqslant & 2 d-2 \delta_{x}^{z}+\mu+1-\frac{k+3}{2}+\frac{k-2}{2} \\
\geqslant & 2 d-2 \delta_{x}^{z}-\frac{1}{2} .
\end{aligned}
$$

Hence, we may assume that $h-\mu \leqslant(k+1) / 2, \quad|J| \leqslant 1+\mu, \quad$ and $n_{T}\left(z_{1}\right) \geqslant d-h+1$.

Let j_{2} denote the number of indices j such that $B_{1}-b_{1}$ has at most one neighbour on T_{j}. Let

$$
\left.\left.j_{3}=\frac{1}{2} \right\rvert\,\left\{q_{j}:\left\{q_{j}, q_{j+1}\right\} \subset V\left(T_{m}\right) \text { or }\left\{q_{j-1}, q_{j}\right\} \subset V\left(T_{m}\right) \text { for some } m\right\} \right\rvert\,
$$

The only possible values of j_{3} at this point are $0,1,3 / 2$, and 2 . If $\mu=0$ then $j_{3} \leqslant 1$ and $j_{2}+j_{3} \leqslant(k-2) / 2$. Hence, $j_{2}+2 j_{3} \leqslant k / 2$, and $n_{T}\left(z_{1}\right)-j_{2}-2 j_{3} \geqslant$ $d-h+1-k / 2 \geqslant 1 / 2$. Similarly, if $\mu=1$ and $j_{3}=0$, or if $\mu=1, j_{3}=1$, and $h \leqslant(k+1) / 2$, or if $\mu=1, j_{3}>1$, and $h \leqslant(k-1) / 2$, then $n_{T}\left(z_{1}\right)-$ $j_{2}-2 j_{3} \geqslant 1$.

In all these cases,

$$
\begin{aligned}
\left|N_{T}\left(B_{1}-b_{1}\right)\right| & \geqslant\left(n_{T}\left(z_{1}\right)-j_{2}-2 j_{3}\right)(h-1)+j_{2}+2 j_{3} \\
& \geqslant\left(n_{T}\left(z_{1}\right)-j_{2}-2 j_{3}\right)(h-2)+n_{T}\left(z_{1}\right) \\
& \geqslant(h-2)+(d-h+1) \\
& \geqslant d-1 .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\left|T^{\prime}\right| & \geqslant 2\left|N_{T}\left(B_{1}-b_{1}\right)\right|+2 m_{2}^{*}-2 \delta_{x}^{z} \\
& \geqslant 2 d-2 \delta_{x}^{z} .
\end{aligned}
$$

It remains to consider the cases $\mu=1$ that are not covered above. If $j_{3}=1$, we may assume that $(k+2) / 2 \leqslant h \leqslant(k+3) / 2$. Let z^{\prime} denote the vertex of $B_{1}-\{v\}-N(v)$ with the fewest neighbours on T. Since B_{1} is not complete, $n_{T}\left(z^{\prime}\right) \geqslant d-h+2$. Then,

$$
\begin{aligned}
\left|N_{T}\left(B_{1}-b_{1}\right)\right| & \geqslant\left(n_{T}\left(z^{\prime}\right)-j_{2}-2 j_{3}\right)(h-3)+j_{2}+2 j_{3} \\
& \leqslant\left(n_{T}\left(z^{\prime}\right)-j_{2}-2 j_{3}\right)(h-4)+n_{T}\left(z^{\prime}\right) \\
& \geqslant(h-4)+(d-h+2) \\
& \geqslant d-2
\end{aligned}
$$

Again,

$$
\begin{aligned}
\left|T^{\prime}\right| & \geqslant 2\left|N_{T}\left(B_{1}-b_{1}\right)\right|+2 m_{2}^{*}-2 \delta_{x}^{z} \\
& \geqslant 2 d-2 \delta_{x}^{z} .
\end{aligned}
$$

If $j_{3}>1$, we may assume that $k / 2 \leqslant h \leqslant(k+3) / 2$. Then $m_{2}+m_{3} \geqslant$ $m_{1}+m_{3} \geqslant h-3 \geqslant(k-6) / 2, m_{2} \geqslant m_{1} \geqslant 1, n_{T}\left(y_{1}\right) \geqslant d-h+2 \geqslant d-(k-1) / 2$. There is a path P from some T_{m} through B_{1} and back to T_{m}, with $|P| \geqslant 4$ and $v \in V(P)$, and a path Q from some T_{λ} through B_{1} and back to T_{λ} with length at least $d-n\left(y_{1}\right)+2$. Then

$$
\begin{aligned}
\left|T^{\prime}\right| & \geqslant|Q|+|P|+2\left(n_{T}\left(y_{1}\right)-2-m_{3}\right)+2 m_{2}+3 m_{3}-3 \delta_{x}^{z} \\
& \geqslant\left(d-n_{T}\left(y_{1}\right)+2\right)+4+2\left(n_{T}\left(y_{1}\right)-2-m_{3}\right)+2 m_{2}+3 m_{3}-3 \delta_{x}^{z} \\
& \geqslant d+n_{T}\left(y_{1}\right)+2+\left(m_{2}+m_{3}\right)-2 \delta_{x}^{z} \\
& \geqslant 2 d-\frac{k-1}{2}+2+\frac{k-6}{2}-2 \delta_{x}^{z} \\
& \geqslant 2 d-2 \delta_{x}^{z}-\frac{1}{2}
\end{aligned}
$$

Thus in all cases we have $\left|T^{\prime}\right| \geqslant 2 d-2 \delta_{x}^{z}$. This completes the proof of Theorem 6.

References

1. G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 3 (1952), 69-81.
2. G. A. Dirac, In abstrakten Graphen vorhandene vollstandige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960), 61-85.
3. R. Glas, "Längste Wege und Kreise durch vorgegebene Ecken in Graphen," Diplomarbeit, TU Berlin, 1987.
4. S. C. Locke, "Some Extremal Properties of Paths, Cycles and k-Colourable Subgraphs of Graphs," Ph.D. Thesis, University of Waterloo, 1982.
5. S. C. Locke, A generalization of Dirac's theorem, Combinatorica 5 (1985), 149-159.
6. S. C. Locke and C.-Q. Zhang, Cycles through three vertices in 2 -connected graphs, Graphs Combin., in press.
7. H. Perfect, Application of Menger's graph theorem, J. Math. Anal. Appl. 22 (1968), 96-111.
8. A. Sairo, Long cycles through specified vertices in k-connected graphs, J. Combin. Theory Ser. B 47 (1989), 220-230.
