JOURNAL OF COMBINATORIAL THEORY, Series B 52, 20-29 (1991)

Cycles and Paths through Specified Vertices in *k*-Connected Graphs

Y. Egawa

Science University of Tokyo

R. GLAS

Technische Universität Berlin

AND

S. C. LOCKE

Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33431 Communicated by the Editors

Received November 2, 1988

Let G be a k-connected graph with minimum degree d and at least 2d vertices. Then G has a cycle of length at least 2d through any specified set of k vertices. A similar result for paths is also given. (1) 1991 Academic Press, Inc.

INTRODUCTION

The following two theorems appear in Dirac [1, 2].

THEOREM 1. Let G be a 2-connected graph with minimum degree d. Then G has a cycle of length at least $\min(|V(G)|, 2d)$.

THEOREM 2. Let G be a k-connected graph and X be a set of k vertices of G, $k \ge 2$. Then G contains a cycle C which contains every vertex of X.

In this paper we prove the following theorems.

THEOREM 3. Let G be a k-connected graph, $k \ge 2$, with minimum degree d, and with at least 2d vertices. Let X be a set of k vertices of G. Then G has a cycle C of length at least 2d such that every vertex of X is on C.

THEOREM 4. Let G be a k-connected graph, $k \ge 3$, with minimum degree d, and with at least 2d-1 vertices. Let x and z be distinct vertices of G and Y be a set of k-1 vertices of G. Then G has an (x, z)-path P of length at least 2d-2 such that every vertex of Y is on P.

We note that the case k = 2 of Theorem 3 was proven in [5]. The reader who wishes to begin with a simplified version of Theorem 3 is directed to that paper. We shall use notation and technique that was presented in [5]. For the sake of completeness, these will be repeated in this paper. Saito [8] establishes a result relating the length of such a cycle to the length of a longest cycle of G. Versions of Theorems 3 and 4 also appear in [3].

Theorem 3 is best possible if X is an independent set of vertices which collectively have exactly d neighbours. Then no cycle of length exceeding 2d can contain all of X. It is also best possible in the sense that there are graphs of connectivity k which contain a set X of k+1 vertices with no cycle through every vertex of X. The only hope for a stronger theorem would lie in replacing the hypothesis that G is k-connected by the hypothesis that G is 2-connected and the given vertices of X lie on a common cycle. Such a result for three vertices in 2-connected graphs is given in [6].

NOTATION

As in [5], we find it convenient to prove the main theorems simultaneously. We use the term *trail* for a path or a cycle, which is a restriction of the usual definition of trail. Let $Y = \{y_1, y_2, ..., y_{k-1}\}$ be a set of distinct vertices of G. Let x and z be vertices of G distinct from Y (we allow the possibility that x = z). An (x, Y, z : m)-trail is a cycle of length at least m containing x and Y if x = z or an (x, z)-path of length at least m containing Y if $x \neq z$. Also, we define δ_x^z to be 1 if $x \neq z$ and 0 if x = z.

For a trail T the section of T from u to v including u and v is T[u, v]. We shall use T(u, v) for $T[u, v] - \{u, v\}$. The case that Y consists of a single vertex y and T is a path of length at least m, occurs frequently and we shall call such a path an (x, y, z:m)-path. For a subgraph H, a path through H is a path P with all internal vertices of P in H.

For a vertex x, N(x) denotes the set of neighbours of x. For a set of vertices S, we write N(S) for the set $\bigcup_{x \in S} N(x)$, and for a subgraph H we write N(H) for N(V(H)). For a vertex x, a set of vertices S and subgraphs H and K, $n_K(x)$ denotes the number of neighbours of x in K, $N_K(x)$ denotes the set of neighbours of x in K, $N_K(S)$ is the set $N(S) \cap V(K)$, and $N_K(H)$ is the set $N_K(V(H))$.

We shall use a variation of Lemma 2.1 from [5]. This variation appears as Lemma 3.2.2 of [4]. The proof is repeated here for the sake of completeness.

LEMMA 5. Let G be a 2-connected graph with at least 4 vertices, let u and v be distinct vertices of G, and let d be an integer. Suppose that every vertex of G, except possibly u and v and one other vertex, has degree at least d. If x is any vertex of G with the degree of x at least 3, then there is a (u, x, v: d)-path in G.

Alternatively, if G is nonseparable on $v \leq 3$ vertices, then G is K_1 , K_2 , or K_3 and there is a (u, x, v : v - 1)-path in G for any $u, v, x \in V(G)$, with $u \neq v$ if $v \neq 1$.

Proof. If v < 4, the result is trivial, and we include these cases in the statement of the lemma for ease in reference to the lemma. Now, suppose that v = 4. Then $G \cong K_4$ or $G \cong K_4 - uv$, and the lemma holds in these cases.

At several points of this proof, we shall need to choose a vertex subject to certain restrictions. Top consolidate some of the cases, we introduce the following notation. For a set of vertices X and a vertex y, let $f(X, y) = \{y\}$ if $y \in X$ and f(X, y) = X if $y \notin X$. Thus, $y' \in f(X, y)$ indicates that y' = y, if $y \in X$, but otherwise any vertex of X will suffice.

If $v \ge 4$ and $d \le 2$ then, by Menger's theorem, there is a (u, w, v)-path P_w , for any vertex w of G. Let $w \in f(V(G) - \{u, v\}, x)$. Then P_w is a (u, x, v : 2)-path.

For v > 4, we shall assume that the lemma holds for any graph on fewer vertices, or when d is replaced by an integer d', where d' < d. We may also assume, without loss of generality, that $x \neq u$. We shall prove the lemma by considering two cases depending on the separability of G - u.

Case (i). Suppose that G-u is 2-connected. Let $u' \in f(N(u) - \{v\}, x)$. By the induction hypothesis, there is a (u', x, v: d-1)-path P in G-u. Then uu'P is a (u, x, v: d)-path in G.

Case (ii). Suppose that G-u is separable. It is possible that some vertex w has degree one in G-u. If $w \neq v$, then the graph H constructed by contracting the edge uw to a new vertex u' has a (u', x, v : d)-path and, hence, G has a (u, x, v : d)-path. The case $N_G(v) = \{u, v'\}$ is handled similarly, by contracting vv'. Thus we may assume that every endblock of G-u has at least three vertices.

Let B be an endblock of G-u with cutvertex b, such that v is not an internal vertex of B and such that there is a (b, x, v)-path P_1 or an (x, b, v)-path P_2 in G-u. Let $u' \in f(N(u) \cap (V(B)-b), x)$ and $x' \in f(V(B), x)$. By the induction hypothesis, there is a (u', x', b: d-1)-path Q in B. Then $uu'QP_i[b, v]$ is a (u, x, v: d)-path, where i = 1 or 2, depending on which of P_1 and P_2 exists. Thus in any graph satisfying the given conditions, we have shown the existence of a (u, x, v: d)-path, completing the proof of the lemma.

We shall prove Theorems 3 and 4 simultaneously in the form:

THEOREM 6. Let G be a k-connected graph, $k \ge 3$, with minimum degree $d \ge k$. Let Y denote a set of k-1 distinct vertices of G. Let x and z be vertices of G-Y. Suppose that G has at least $2d - \delta_x^z$ vertices. Then G contains an $(x, Y, z: 2d - 2\delta_x^z)$ -trail.

Proof of Theorem 6. We proceed by induction on k. For the case k = 3, it was shown in [5] that G contains an $(x, Y - \{y\}, z : 2d - 2\delta_x^z)$ -trail for any vertex $y \in Y$. Let T be a longest (x, z)-trail which contains at least k - 2 of the vertices of Y. The length of T must be at least $2d - 2\delta_x^z$. If T contains all of Y then we are done, so we may assume that some vertex v of Y is not on T.

Let *H* be the component of G - V(T) which contains *v*. Label the vertices of $X = \{x, z\} \cup Y - v$ along *T* as $x_1, x_2, ..., x_k$, with $x = x_1$ and $z = x_k$. Let $T_i = T[x_i, x_{i+1}]$. We shall frequently make use of the following observation.

Observation. Suppose that we can find vertices α and β on $T[x_i, x_{i+2}]$, $i \neq k-1$ if $x \neq z$, with neighbours α' and β' in H such that there is an $(\alpha', v, \beta': m)$ -path P in H. Then $T' = T[x, \alpha] \cup T[\beta, z] \cup \{\alpha \alpha', \beta \beta'\} \cup P$ is an $(x, Y - \{y_j\}, z)$ -trail for some $y_j \in Y$. By the maximality of T, $T[\alpha, \beta]$ must have length at least m + 2.

Case 1. Suppose that H is nonseparable.

Let $W = N_T(H) = N(H) - V(H)$, and label the vertices of W along T as $u_1, u_2, ..., u_r$. Let

$$W_2 = \{u_i \in W : |N_H(\{u_i, u_{i+1}\})| \ge 2\}$$
 and $W_1 = W - W_2$.

Let

$$W_{2,0} = \{ u_i \in W_2 : |V(T(u_i, u_{i+1})) \cap X| = 0 \},\$$

$$W_{2,1} = \{ u_i \in W_2 : |V(T(u_i, u_{i+1})) \cap X| = 1 \} \text{ and }\$$

$$W_{2,2} = W_2 - W_{2,0} - W_{2,1}.$$

For an index I, $w_I = |W_I|$.

If T is a cycle, it is possible that $x_1 = x_k \in N(H)$. In this case, $u_1 = u_r = x_1$. Otherwise, u_r is considered to be in the set W_1 . Figure 1 displays a trail T, component H of G - V(T) and labels indicating the set to which each vertex of $N_T(H)$ belongs.

By Menger's Theorem, there are k paths from v to T, pairwise disjoint except at v. There is at least one segment T_i which contains at least two endvertices of these paths. Thus, we may assume that $u_i, u_{j+1} \in T[x_i, x_{i+1}]$,

FIGURE 1

for some *i*, *j*, and that there is a (u_j, v, u_{j+1}) -path internally disjoint from *T*. Let v_1, v_2 be neighbours in *H* of u_j, u_{j+1} , respectively, with $v_1 \neq v_2$, if possible. Let *P* be a longest (v_1, v, v_2) -path in *H*. If $v_1 = v_2$, then $v = v_1$.

Let y' be a vertex of H with the largest number of neighbours on T, and let z' be a vertex of H with the smallest number of neighbours on T. Set $p = \max\{0, d - n_T(y')\}$. If α_1 and α_2 are distinct vertices of H then, by Lemma 5, H contains an $(\alpha_1, v, \alpha_2 : p)$ -path. Also H has $h \ge d - n_T(z') + 1$ vertices. By Menger's Theorem, there are at least $\min(k, h)$ disjoint edges from H to T. Therefore, W_2 has at least $\min(k, h) - \delta_x^2$ vertices.

Let $T' = T[x_1, u_j] u_j v_1 P v_2 u_{j+1} T[u_{j+1}, x_k]$. We proceed to determine lower bounds on the length of T'.

Suppose that $w_{2,0} + w_{2,1} \ge 2$. Let u_{α} and u_{β} be distinct vertices of $W_{2,0} \cup W_{2,1}$. Then, $|T'[u_{\alpha}, u_{\alpha+1}]| \ge 2+p$ and $|T'[u_{\beta}, u_{\beta+1}]| \ge 2+p$. It is possible that $\alpha = j$, but then $u_j v_1 P v_2 u_{j+1}$ has length at least p+2. If $u_{\gamma} \in W_1$, in the case x = z, or $u_{\gamma} \in W_1 - \{u_r\}$, in the case $x \ne z$, then $|T'[u_{\gamma}, u_{\gamma+1}]| \ge 2$. If $u_{\eta} \in W_{2,2}$, then $|T'[u_{\eta}, u_{\eta+1}]| \ge 3$. Therefore,

$$|T'| \ge 2(w_1 - \delta_x^z) + (2+p)(w_{2,0} + w_{2,1}) + 3w_{2,2}$$

$$\ge 2w_1 + 2(w_{2,0} + w_{2,1}) + p(w_{2,0} + w_{2,1} - 2) + 2p + 3w_{2,2} - 2\delta_x^z$$

$$\ge 2w + w_{2,2} + p(w_{2,0} + w_{2,1} - 2) + 2(d - n_T(y')) - 2\delta_x^z$$

$$\ge 2d - 2\delta_x^z.$$

Suppose that $w_{2,0} + w_{2,1} = 1$. Then $k \ge h$ and $w_{2,2} \ge h - 1 - \delta_x^z \ge d - n_T(z') - \delta_x^z$. We note that if $n_T(z') = w$ then every vertex of H is

adjacent to every vertex of W. In this case, $w_{2,0} + w_{2,1} > 1$. Thus, $N_T(z') < w$ and

$$|T'| \ge 2(w_1 - \delta_x^z) + (2 + p)(w_{2,0} + w_{2,1}) + 3w_{2,2}$$

$$\ge 2w_1 + 2(w_{2,0} + w_{2,1}) + p + 3w_{2,2} - 2\delta_x^z$$

$$= 2w + (d - n_T(y')) + (d - n_T(z')) - 3\delta_x^z$$

$$\ge 2d - 2\delta_x^z.$$

Therefore, we may assume that $w_{2,0} + w_{2,1} = 0$. If $x \neq z$, there is no vertex of W_2 in $T[x_{k-1}, x_k]$. Hence, $w_2 \leq (k-1)/2$, $h \leq k/2$, $n_T(z') \geq d-h+1 \geq (2d-k+2)/2$, and $|T'| \geq 2(w_1 - \delta_x^z) + 3w_{2,2}$.

We now obtain lower bounds on the number of neighbours in W_1 for each vertex of H. Clearly, each such vertex has at least $d-h+1-w_2$ neighbours in W_1 , and no two vertices have a common neighbour in $W_1 - \{u_r\}$. Thus, $w_1 \ge h(d-h-w_2)$. Note that $d-h+1-w_{2,2} \ge d-k/2+1-(k-1)/2 = d-k+3/2 \ge 3/2$. Suppose that h > 1, then

$$|T'| \ge 2(w_1 - \delta_x^z) + 3w_{2,2}$$

$$\ge 2h(d - h - w_{2,2}) + 3w_{2,2} - 2\delta_x^z$$

$$= 2(h - 1)(d - h - w_{2,2}) + 2d - 2h + w_{2,2} - 2\delta_x^z$$

$$\ge 2d - 2\delta_x^z.$$

If h = 1, then $w_1 \ge d$ and $|T'| \ge 2d - 2\delta_x^z$. This concludes the case in which *H* is nonseparable.

Case 2. Now let us suppose that *H* is separable. We note that we may choose endblocks B_1 and B_2 of *H* having cutvertices b_1 and b_2 , respectively, such that there is a (b_1, v, b_2) -path or there is a (v, b_1, b_2) -path in *H*. In the second alternative, $v \in V(B_1)$.

There are k paths P_1 , P_2 , ..., P_k from v to V(T), pairwise disjoint except at v, with endvertices p_1 , p_2 , ..., p_k on T. Some two of these paths meet, say, T_i as we have noted in Case 1. We set T' as in that case.

We first prove that if $B_1 - b_1$ has a neighbour t_1 on T_m , then $B_2 - b_2$ has no neighbour on $T[x_{m-1}, x_{m+2}] - \{t_1\}$ (with the obvious modifications if m = 1 or k - 1). We then show that one of these endblocks has neighbours on at most (k-2)/2 of the segments T_i , $1 \le i \le k - 1$.

Suppose that $B_1 - b_1$ has a neighbour t_1 on T_m and that $B_2 - b_2$ has a neighbour $t_2 \neq t_1$ on T_m or T_{m+1} . Let s_j be a neighbour of t_j in $B_j - b_j$, j=1, 2. Let y_j be the vertex of $B_j - b_j$ with the largest number of neighbours on T. Then there is an (s_1, v, s_2) -path of length $p \ge 2d - n_T(y_1) - n_T(y_2)$. By the maximality of T, $|T[t_1, t_2]| \ge 2 + p$. Also,

every neighbour of y_j on T, except for t_1 and the last neighbour of y_j on T, is followed by at least two edges of T or by a path through H. Thus, if $i, i-1 \neq m$, or if t_2 is on $T_m, |T'| \ge (2+p) + 2(n_T(y_j) - 1 - \delta_x^z)$. Therefore $|T'| \ge 2d - 2\delta_x^z$.

The cases m = i and m = i - 1 are symmetric. Thus we consider m = i. We may assume that when we found k paths from v to T, at most one of these paths meets each T_j , for $j \neq i$, i + 1. Also, $t_1 \in T_i$ and $t_2 \in T_{i+1}$. Since there are two paths from v to T meeting T_i , there is a vertex $q \neq t_1$ on T_i such that there are paths through H from v to T meeting T_i at t_1 and q, with these paths being disjoint except at v. If q precedes t_1 on T_i , then $|T'| \ge 2d - 2\delta_x^z$. Thus we may assume that t_1 precedes q on T_i , and that $N(q) \cap V(B_1 - b_1) = \emptyset$.

If there are also two paths through H from v to T_{i+1} , disjoint except at v, and meeting T_{i+1} at t_2 and q^* , with no neighbours of y_2 between t_2 and q^* , then the segment of T between t_2 and q^* must be of length at least $d-n_T(y_2)+2$ and $|T'[t_1, q]| \ge d-n_T(y_1)+2$. Again, any two neighbours of y_i must be separated by at least 2 edges of T and, hence, of T'. Therefore,

$$|T'| \ge (d - n_T(y_1) + 2) + (d - n_T(y_2) + 2) + 2(\max\{n_T(y_1), n_T(y_2)\} - 2 - \delta_x^z) \ge 2d - 2\delta_x^z.$$

We have already seen that there are at least two paths through H from v meeting T_i . Suppose that there are three paths through H, disjoint except at v, from v meeting T_i at t_1 , q, and q'. Then, without loss of generality, the order of the ends of these paths on T_i is t_1 , q, q'. Then there are paths through H from v to t_2 and one of q or q' such that v is the only common vertex of these paths. Then $|T[q, t_2]| \ge 2 + d - n_T(y_2)$ and there is a (t_1, v, q) -path through H of length at least $d - n_T(y_1) + 2$. Again, $|T'| \ge 2d - 2\delta_x^2$.

Hence, for any set of k paths $P_1, ..., P_k$ from v to T, disjoint except at v, exactly two meet T_i and exactly one meets T_j , for $j \neq i$. Suppose that $N_{T[x_2, x_{k-1}]}(B_2 - b_2) \neq \emptyset$. Let p'_i denote the penultimate vertex of P_i , for i = 1, 2, ..., k. If $v = p'_i$ for some i, some slight care is necessary with respect to multiplicities. By Perfect's theorem [7], there are k paths from v to $\{p'_1, p'_2, ..., p'_k\} \cup \{b_2\}$, disjoint except at v, with one of the paths ending at b_2 . We may thus construct k paths from v to T so that one, say P_j , ends at p_j , with $p_j \in V(T[x_2, x_{k-1}]) \cap N(B_2 - b_2)$ and uses at least $d - n_T(y_2)$ edges of $B_2 - b_2$. Let p_j^1 be the first vertex of $T[p_{j-1}, p_j] - \{p_{j-1}\}$ that is a neighbour of $B_2 - b_2$, and let p_j^2 be the last vertex of $T[p_j, p_{j+1}] - \{p_{j+1}\}$ that is a neighbour of $B_2 - b_2$. Then $|T[p_{j-1}, p_j^1]| \ge 2 + d - n_T(y_2)$ and $|T[p_j^2, p_{j+1}]| \ge 2 + d - n_T(y_2)$. But then $|T'| \ge 2d - 2\delta_x^2$. Therefore, we may assume that $N_T(B_2-b_2) \subset V(T_1) \cup V(T_{k-1})$. If B_2-b_2 has neighbours on both T_1 and T_{k-1} then, as in the previous paragraph, each of $T_1 \cup T_2$ and $T_{k-2} \cup T_{k-1}$ contains a segment of length at least $d - n_T(y_2) + 2$. Again, $|T'| \ge 2d - 2\delta_x^2$.

Now, without loss of generality, we may assume that $N_T(B_2-b_2) \subset V(T_1)$. But $|N_T(B_2-b_2)| \ge k-1 \ge 2$. Therefore, $T_1 \cup T_2$ contains two segments of length at least $d-n_T(y_2)+2$, and $|T'| \ge 2d-2\delta_x^2$.

Thus, we may assume that if $B_1 - b_1$ has a neighbour t on T_m , for some m, then $B_2 - b_2$ has no neighbour on T_m , T_{m-1} , or T_{m+1} distinct from t.

Let m_3 denote the number of indices *m* for which T_m contains a neighbour of both $B_1 - b_1$ and $B_2 - b_2$. For such a segment T_m , $|N(B_1 \cup B_2 - \{b_1, b_2\}) \cap V(T_m)| = 1$. Let m_j denote the number of indices *m* for which T_m contains a neighbour of $B_j - b_j$, j = 1, 2, but not both $B_1 - b_1$ and $B_2 - b_2$. If $m_j = 0$, for j = 1 or j = 2, then $S = \{b_j\} \cup (N_T(B_1 - b_1) \cap N_T(B_2 - b_2))$ is a set of vertices which disconnects *G*. But $|S| \le 1 + k/2 < k$. Therefore, $m_1 \ge 1$, and $m_2 \ge 1$. Now, since $k \ge 2$, $(m_1 + 1) + (m_2 + 1) + 2m_3 \le k$.

Thus one of $B_1 - b_1$ or $B_2 - b_2$ has neighbours on at most (k-2)/2 of the intervals T_m . Without loss of generality, suppose that $m_1 + m_2 \le m_2 + m_3$, and thus that $B_1 - b_1$ has neighbours on at most (k-2)/2of the intervals T_m . Let $m_2^* = |N_T(B_2 - b_2) - N_T(B_1 - b_1)|$. Since G is k-connected, $m_2^* \ge 2$. We note that v might be in $B_1 - b_1$. Set $\mu = 1$ if $v = b_1$ and $d_{B_1}(v) = 2$ and $|V(B_1)| > 3$, otherwise set $\mu = 0$. The case $\mu = 1$ is the case in which Lemma 5 cannot be applied to B_1 to give a long path containing v. If $\mu = 1$, then for any distinct vertices α and β in B_1 , there is an $(\alpha, v, \beta : 2)$ -path in B_1 .

Now suppose that z_1 is a vertex of $B_1 - b_1$ with the least number of neighbours on T and let h be the number of vertices of B_1 . There are at least min(k, h) disjoint paths from B_1 to T, all except possibly one having length one. Let $q_1, q_2, ...$ denote the ends of these paths. We note that one of the q_i may not be in $N_T(B_1 - b_1)$.

Let $J = \{j : \{q_j, q_{j+1}\} \subset V(T_m) \text{ for some } m\}$. If $|J| \ge 2 + \mu$ then there are distinct integers m and j, such that neither $T[q_m, q_{m+1}]$ nor $T[q_j, q_{j+1}]$ contains a vertex of X, but each has length at least $d - n_T(y_1) + 2$. If $\mu = 0$ and $v \in B_1$, there is a $(q_m, v, q_{m+1} : d - n_T(y_1) + 2)$ -path through H. We may assume that $N_H(T(q_m, q_{m+1})) = N_H(T(q_j, q_{j+1})) = \emptyset$. For both values of μ , each of $T'[q_m, q_{m+1}]$ and $T'[q_j, q_{j+1}]$ has length at least $d - n_T(y_1) + 2$. Also, any two neighbours of y_1 on T are separated by at least two edges of T. Therefore, $|T'| \ge 2d - 2\delta_x^z$.

If $h - \mu \ge (k + 4)/2$, then $|J| \ge 2 + \mu$.

If $(k+3)/2 \ge h - \mu \ge (k+2)/2$ and $|J| \le 1 + \mu$, then $m_1 + m_3 = (k-2)/2$ and $|J| = 1 + \mu$. If $\mu = 1$, there is a path P from some some T_m through H and back to T_m , with $|P| \ge 4$ and $v \in V(P)$. But then,

$$\begin{aligned} |T'| &\ge (d - n_T(y_1) + 2) + \mu |P| + 2(n_T(y_1) - 1 - \mu - m_3) \\ &+ 2m_2^* + 3m_3 - 3\delta_x^z \\ &\ge d + n_T(y_1) + 2\mu - 3\delta_x^z + m_2^* + m_2 + m_3 \\ &\ge d + (d - h + 1) + 2\mu - 3\delta_x^z + m_2^* + m_2 + m_3 \\ &\ge 2d - 2\delta_x^z + \mu + 1 - \frac{k + 3}{2} + \frac{k - 2}{2} \\ &\ge 2d - 2\delta_x^z - \frac{1}{2}. \end{aligned}$$

Hence, we may assume that $h - \mu \leq (k+1)/2$, $|J| \leq 1 + \mu$, and $n_T(z_1) \geq d - h + 1$.

Let j_2 denote the number of indices j such that $B_1 - b_1$ has at most one neighbour on T_j . Let

$$j_3 = \frac{1}{2} | \{ q_j : \{ q_j, q_{j+1} \} \subset V(T_m) \text{ or } \{ q_{j-1}, q_j \} \subset V(T_m) \text{ for some } m \} |.$$

The only possible values of j_3 at this point are 0, 1, 3/2, and 2. If $\mu = 0$ then $j_3 \leq 1$ and $j_2 + j_3 \leq (k-2)/2$. Hence, $j_2 + 2j_3 \leq k/2$, and $n_T(z_1) - j_2 - 2j_3 \geq d - h + 1 - k/2 \geq 1/2$. Similarly, if $\mu = 1$ and $j_3 = 0$, or if $\mu = 1$, $j_3 = 1$, and $h \leq (k+1)/2$, or if $\mu = 1$, $j_3 > 1$, and $h \leq (k-1)/2$, then $n_T(z_1) - j_2 - 2j_3 \geq 1$.

In all these cases,

$$|N_T(B_1 - b_1)| \ge (n_T(z_1) - j_2 - 2j_3)(h - 1) + j_2 + 2j_3$$

$$\ge (n_T(z_1) - j_2 - 2j_3)(h - 2) + n_T(z_1)$$

$$\ge (h - 2) + (d - h + 1)$$

$$\ge d - 1.$$

Then,

$$\begin{aligned} |T'| &\ge 2 |N_T(B_1 - b_1)| + 2m_2^* - 2\delta_x^z \\ &\ge 2d - 2\delta_x^z. \end{aligned}$$

It remains to consider the cases $\mu = 1$ that are not covered above. If $j_3 = 1$, we may assume that $(k+2)/2 \le h \le (k+3)/2$. Let z' denote the vertex of $B_1 - \{v\} - N(v)$ with the fewest neighbours on T. Since B_1 is not complete, $n_T(z') \ge d - h + 2$. Then,

$$|N_T(B_1 - b_1)| \ge (n_T(z') - j_2 - 2j_3)(h - 3) + j_2 + 2j_3$$

$$\le (n_T(z') - j_2 - 2j_3)(h - 4) + n_T(z')$$

$$\ge (h - 4) + (d - h + 2)$$

$$\ge d - 2$$

Again,

$$\begin{aligned} |T'| \ge 2 |N_T(B_1 - b_1)| + 2m_2^* - 2\delta_x^z \\ \ge 2d - 2\delta_x^z. \end{aligned}$$

If $j_3 > 1$, we may assume that $k/2 \le h \le (k+3)/2$. Then $m_2 + m_3 \ge m_1 + m_3 \ge h - 3 \ge (k-6)/2$, $m_2 \ge m_1 \ge 1$, $n_T(y_1) \ge d - h + 2 \ge d - (k-1)/2$. There is a path P from some T_m through B_1 and back to T_m , with $|P| \ge 4$ and $v \in V(P)$, and a path Q from some T_{λ} through B_1 and back to T_{λ} with length at least $d - n(y_1) + 2$. Then

$$\begin{split} |T'| &\ge |Q| + |P| + 2(n_T(y_1) - 2 - m_3) + 2m_2 + 3m_3 - 3\delta_x^z \\ &\ge (d - n_T(y_1) + 2) + 4 + 2(n_T(y_1) - 2 - m_3) + 2m_2 + 3m_3 - 3\delta_x^z \\ &\ge d + n_T(y_1) + 2 + (m_2 + m_3) - 2\delta_x^z \\ &\ge 2d - \frac{k - 1}{2} + 2 + \frac{k - 6}{2} - 2\delta_x^z \\ &\ge 2d - 2\delta_x^z - \frac{1}{2}. \end{split}$$

Thus in all cases we have $|T'| \ge 2d - 2\delta_x^z$. This completes the proof of Theorem 6.

References

- 1. G. A. DIRAC, Some theorems on abstract graphs, Proc. London Math. Soc. 3 (1952), 69-81.
- G. A. DIRAC, In abstrakten Graphen vorhandene vollstandige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960), 61–85.
- 3. R. GLAS, "Längste Wege und Kreise durch vorgegebene Ecken in Graphen," Diplomarbeit, TU Berlin, 1987.
- 4. S. C. LOCKE, "Some Extremal Properties of Paths, Cycles and k-Colourable Subgraphs of Graphs," Ph.D. Thesis, University of Waterloo, 1982.
- 5. S. C. LOCKE, A generalization of Dirac's theorem, Combinatorica 5 (1985), 149-159.
- 6. S. C. LOCKE AND C.-Q. ZHANG, Cycles through three vertices in 2-connected graphs, *Graphs Combin.*, in press.
- 7. H. PERFECT, Application of Menger's graph theorem, J. Math. Anal. Appl. 22 (1968), 96-111.
- A. SAITO, Long cycles through specified vertices in k-connected graphs, J. Combin. Theory Ser. B 47 (1989), 220-230.