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a b s t r a c t

In this paper, we consider the augmentation problem of an undirected graph with k parti-
tions of its vertices. The main issue is how to add a set of edges with the smallest possible
cardinality so that the resulting graph is 2-edge-connected, i.e., bridge-connected, while
maintaining the original partition constraint. To solve the problem, we propose a simple
linear-time algorithm. To the best of our knowledge, the most efficient sequential algo-
rithm runs inO(n(m+n log n) log n) time. However, we show that it can also run inO(log n)
parallel time on an EREWPRAMusing a linear number of processors, where n is the number
of vertices in the input graph. If a simple graph exists, our main algorithm ensures that it
is as simple as possible.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A graph is said to be k-edge-connected if it remains connected after the removal of any set of edges whose cardinality is
less than k. Finding the smallest set of edges to make an undirected graph k-edge-connected is a fundamental problem in
many important applications; readers may refer to [1–3] for a comprehensive survey.
Augmentation problems in bipartite graphs are studied in [4–6]. The related 2-edge-connectivity augmentation problem

arises naturally from research on the security of statistical data [7–11]. The information is stored in a cross-tabulated table
and it is common practice to suppress some of the cells in the table to protect sensitive information. A basic concerning
issue of this practice is its effectiveness, that is how to suppress a small number of cells to protect the information, so
that the resulting table does not leak important information and the sensitive information will not be revealed to an
adversary. This protection problem can be reduced to an augmentation problem in bipartite graphs [12,6,13,14]. In addition,
many algorithms have been developed to resolve the problem of making general graphs k-edge connected or k-vertex
connected for various values of k [15,16,4,17–19]. For example, a linear-time algorithm for the smallest bridge-connectivity
augmentation problem in a general graph that does not have a partition constraint is proposed in [15]; while a linear-time
algorithm for the bridge-connectivity augmentationwith a bipartite constraint is described in [20]. Jensen et al. [5] presented
an algorithm that solves the k-edge-connectivity augmentation problem in a graph containing partition constraints in
O(n(m+ n log n) log n) time, where n is the number of vertices, andm is the number of distinct edges in the input graph.
In this paper, we focus on augmenting graphs with a partition constraint. Specifically, the constraint requires that the

vertex set of an input graph must be partitioned into k disjoint vertex subsets, and each edge in the augmentation must be
added between two different vertex subsets. We propose a linear-time algorithm that addresses the problem of adding the
smallest number of edges to a graph with a given partition constraint to make it 2-edge-connected, or bridge-connected,
while maintaining the constraint. Fig. 1(a) shows an example of a graph with three partitions of the vertices. A smallest
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a b c
Fig. 1. (a) A graph with three partitions of the vertices. (b) A smallest 2-edge-connectivity augmentation of (a) with the set of added edges marked by
dashed lines. (c) A smallest 2-edge-connectivity augmentation of (a) without a partition constraint where the set of added edges are marked by dashed
lines.

2-edge-connectivity augmentation of the graph in Fig. 1(a) is shown in Fig. 1(b). Moreover, a smallest 2-edge-connectivity
augmentation of (a) without a partition constraint is shown in Fig. 1(c). Note that there are 3 added edges in Fig. 1(c),
however, there are 4 added edges in Fig. 1(b) which should satisfy a partition constraint. It is obvious that the set of added
edges in Fig. 1(c) is not valid for Fig. 1(a) since vertices A and D are in the same partition in Fig. 1(a).
We solve the problem of finding a smallest 2-edge-connectivity augmentation of graphs with a partition constraint by

transforming the input graph G into a well-known data structure called a bridge-block forest [21]. Our approach adds the
smallest possible number of edges to make a bridge-block forest 2-edge-connected. The edge set added to the bridge-block
forest by our algorithm can be transformed into the corresponding edge set added to the input graph G. The proposed
algorithm runs in sequential linear time or O(log n) parallel time on an EREW PRAM using a linear number of processors.
The remainder of this paper is organized as follows. Section 2 provides detailed graph-theoretical definitions and previ-

ously known properties. In Section 3, we introduce the concept of edge swapping and the properties of the swap function.
In Section 4, we propose an algorithm that finds a smallest 2-edge-connectivity augmentation for a bridge-block forest.
Section 5 contains some concluding remarks.

2. Preliminaries

2.1. Graph-theoretical definitions

Let a graph G = (V , E), where |V | = n and |E| = m. G is a tree if it is an undirected graph that is also connected and
acyclic; and a maximal connected subgraph is a component of G. A forest is a graph whose components are all trees, and a
degree-1 vertex of a forest is called a leaf. An edge whose endpoints are a vertex u and a vertex v is denoted as (u, v). Note
that for an edge set E ′, G− E ′ denotes Gwithout the edges in E ′, and G ∪ E ′ denotes Gwith the edges in E ′ added to it.
In this paper, all graphs are undirected, and have neither self-loops normultiple edges. The vertex set of an input graph is

assumed to be partitioned into k disjoint partitions, called vertex partitions. Let Pi denote the set of vertices in the i-th vertex
partition, i.e., Pi is a subset of V and Pi ∩ Pj = ∅, i 6= j; and let V = P1 ∪ P2 ∪ · · · ∪ Pk. In addition, let e = (u, v) be an edge
with two endpoints, u and v, in different vertex partitions of an input graph, i.e., u ∈ Pi, v ∈ Pj, i 6= j. We call such an edge a
legal edge. Our problem is how to add a set of edges such that the resulting graph is 2-edge-connected and all added edges
are legal.

2.2. Bridge-block forest

A vertex u is connected to a vertex v in a graph G if u and v are in the same connected component of G. Two vertices of
a graph are 2-edge-connected if they are in the same connected component and remain so after the removal of any edge. A
set of vertices is 2-edge-connected if each pair of its vertices is 2-edge-connected; similarly, a graph is 2-edge-connected if
its set of vertices is 2-edge-connected. A bridge is an edge in a graph G, the removal of which would increase the number of
connected components of G by one. Given a graph Gwith at least three vertices, a smallest 2-edge-connectivity augmentation
ofG, denoted by aug2e(G), is a set of edgeswith theminimum cardinalitywhose additionwouldmakeG a 2-edge-connected
graph if it exists.
A block in a graph is an induced subgraph of the maximal 2-edge-connected subset of vertices. If a block contains all the

nodes in a connected component of G, it is called an isolated block. The bridge-block graph of an undirected graph G, denoted
by BB(G), is defined as follows. Each block is represented by a vertex of BB(G). When all the blocks in G are represented by
vertices, BB(G) becomes a forest, such that each bridge in G corresponds to an edge in BB(G) and vice versa. For example,
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a b
Fig. 2. (a) A graph with three vertex partitions; the maximum 2-edge-connected subsets of vertices of the graph are grouped into the set of blocks marked
by the dashed lines. (b) The bridge-block forest of the graph in (a).

a b
Fig. 3. Illustration of the transformation by Fn .

the blocks a, b, . . . , i are represented by vertices. The resulting tree is illustrated in Fig. 2. In G, a mono block of Pi is a block
comprised of the vertices in Pi ; and a hybrid block in G is a block containing at least two vertices, one in Pi and another in
Pj, where i 6= j and Pi, Pj ∈ V . A mono isolated block of Pi in G is both a mono block and an isolated block of Pi; and a hybrid
isolated block in G is both a hybrid block and an isolated block.
The vertices and leaves in BB(G) are defined as follows. Given a graph Gwith k vertex partitions P1, . . . , Pk, k ≥ 1, amono

leaf (respectively,mono vertex) of Pi in BB(G) is a leaf (respectively, vertex) whose corresponding block in G is a mono block
of Pi. A hybrid leaf (respectively, hybrid vertex) in BB(G) is a leaf (respectively, vertex) whose corresponding block in G is a
hybrid block. Amono isolated vertex of Pi in BB(G) is a mono isolated block of Pi or an isolated vertex of Pi in G; and a hybrid
isolated vertex in BB(G) is a hybrid isolated block in G. In addition, let Fn be a mapping that can transform an edge set added
to BB(G) into the corresponding edge set added to G. If E ′ is the edge set added to BB(G), then Fn(E ′) is the corresponding
edge set added to G, i.e., aug2e(G) = Fn(E ′). Similarly, if e′ is an edge added to BB(G), then Fn(e′) is the corresponding edge
added between a vertex u and a non-adjacent vertex v, where u, v ∈ V , u ∈ Pi, v ∈ Pj, and i 6= j. To take Fig. 2(a) as an
example, a corresponding bridge-block forest is shown in Fig. 2(b). We assume that eadded is added between vertex b and
vertex f which is shown in Fig. 3(b). Then, Fn can transform the added edge into a corresponding edge e′added, i.e., Fn(eadded).
The latter is added between a white vertex of block b and a black vertex of block f which is shown in Fig. 3(a).
Given a PRAMmodelM , let TM(n,m) be the parallel time needed to find the connected components ofG using PM(n,m) ≤

(n+m) processors.

Fact 1 ([22,23]). 1. If M = CRCW, then TCRCW (n,m) = O(log n) and PCRCW (n,m) = O((n+m)·α(m, n)/ log n).
2. If M = EREW, then TEREW (n,m) = O(log n) and PEREW (n,m) = O(n+m).

A rooted bridge-block forest for a graph can be computed in sequential linear time and in O(log n + TM(n,m)) parallel
time using O((n+m)/ log n+ PM(n,m)) processors on anM PRAM [24–26].

Fact 2. An edge can be added between two blocks in G, unless both blocks are mono blocks of a given partition Pi in G.

3. Edge swapping

To reduce the complexity of finding a smallest augmentation of a graph, we define the following swap function. We use
the following notations to illustrate the connectivity relationships in a graph: u G

; v denotes a path in a graph G from a
vertex u to a vertex v; u↔ v denotes the edge between u and v, i.e., the edge (u, v); and END(Ex) denotes the set of vertices
that are endpoints of edges in the given edge set Ex.
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a b

c d
Fig. 4. (a) e is in G′0 . (b) G

′′

0 = G
′

0 − {e}. (c) G
′

0 and G
′

1 . (d) e = e
′

0 = (u0, u1).

Definition 1. swap(e0, e1).
Let swap(e0, e1) be a function that takes a set of legal edges Ein = {e0, e1} as an input and outputs a set of legal edges Eout =
{e′0, e

′

1}, where e0 = (u0, v0) and e1 = (u1, v1) are two legal edges, END(e0) ∩ END(e1) = ∅ and END(e
′

0) ∩ END(e
′

1) = ∅.
Then, Ein and Eout satisfy the following properties: (1) |Ein| = |Eout|; (2) END(Ein) = END(Eout); (3) Ein ∩ Eout = ∅; (4) the
graph G′ = (END(Ein), Ein ∪ Eout) is a simple cycle; and (5) {e′0, e

′

1} is {(u0, u1), (v0, v1)} or {(u0, v1), (u1, v0)}.

The following lemma describes the property of swap(e0, e1).

Lemma 1. Given two legal edges, e0 and e1, which satisfy END(e0) ∩ END(e1) = ∅, swap(e0, e1) always exists.
Proof. Let e0 = (u0, v0), and e1 = (u1, v1). We show that swap(e0, e1) = {e′0, e

′

1} is either {(u0, u1), (v0, v1)} or
{(u0, v1), (u1, v0)}, and that G′ = ({u0, u1, v0, v1}, {e0, e1, e′0, e

′

1}) is a simple cycle if swap(e0, e1) is {(u0, u1), (v0, v1)} or
{(u0, v1), (u1, v0)}. It is obvious that |Ein| = |Eout|, Ein ∩ Eout = ∅, and END(Ein) = END(Eout).
Since (u0, v0) is a legal edge, u0 and v0 do not belong to the same vertex partition; similarly, u1 and v1 do not belong

to the same vertex partition. Let P1 and P2 be two vertex partitions. Without loss of generality, we assume that u0 ∈ P1
and v0 ∈ P2, where P1 6= P2. If u1 ∈ P1 or v1 ∈ P2, then swap(e0, e1) is {(u0, v1), (u1, v0)}, since v0 /∈ P1 and u0, v1 do
not belong to the same vertex partition. Hence, (u0, v1) and (u1, v0) are legal edges. In this case, G′ is a simple cycle, i.e.,
u0 ↔ v1 ↔ u1 ↔ v0 ↔ u0. Otherwise, swap(e0, e1) is {(u0, u1), (v0, v1)}; however, because u0 and u1 do not belong to
the same vertex partition, and neither do v0 and v1; thus, (u0, u1) and (v0, v1) are legal edges. Here, G′ is a simple cycle, i.e.,
u0 ↔ u1 ↔ v1 ↔ v0 ↔ u0. Therefore, from the above argument, swap(e0, e1) exists. �

Theorem 1. Given two 2-edge-connected components G0 and G1 and two legal edges e0 and e1, let G′ = (G0 ∪ G1 − {e0, e1}) ∪
swap(e0, e1), where e0 ∈ G0, and e1 ∈ G1. Then, G′ must be a 2-edge-connected component.

Proof. To prove by contradiction, we let ei = (ui, vi) and assume that there exists a bridge e = (u, v) in G′. That is, there
will not be a path from u to v after removing e. Let swap(e0, e1) = {e′0, e

′

1}, G
′

0 = G0 − {e0} and G
′

1 = G1 − {e1}, then
G′ = (G0 ∪ G1 − {e0, e1}) ∪ {e′0, e

′

1} = G
′

0 ∪ G
′

1 ∪ {e
′

0, e
′

1}. According to Lemma 1, {e
′

0, e
′

1} is either {(u0, u1), (v0, v1)} or
{(u0, v1), (u1, v0)}. Without loss of generality, we assume that {e′0, e

′

1} is {(u0, u1), (v0, v1)}. We consider the following two
cases.
Case 1. e ∈ G′i , where 0 ≤ i ≤ 1. Without loss of generality, we assume that e ∈ G

′

0 and let G
′′

0 = G
′

0 − {e}. Note that

G0 and G1 are 2-edge-connected components, there exist a cycle u
G0
; u0 ↔ v0

G0
; v ↔ u and paths u

G′0
; u0, v

G′0
; v0, and

u1
G′1
; v1. Since G0 and G1 are 2-edge-connected components and G′′0 = G

′

0 − {e}, there still exist u
G′0
; u0 and v

G′0
; v0. The

difference of G′0 and G
′′

0 is shown in Fig. 4(a) and (b), respectively. Therefore, after removing e in G
′

0, paths still exist from u

to v in G′ through u
G′′0
; u0 ↔ u1

G′1
; v1 ↔ v0

G′′0
; v which is shown in Fig. 4(b). Hence, G′ is connected and e is not a bridge

in G′.

Case 2. e ∈ {e′0, e
′

1}. Since G0 and G1 are 2-edge-connected components, there exist paths u0
G′0
; v0 and u1

G′1
; v1 which are

shown in Fig. 4(c). Without loss of generality, we assume that e = e′0 = (u0, u1). After removing e, a path still exists from u0

to v1, i.e., u0
G′0
; v0 ↔ v1

G′1
; u1 which is shown in Fig. 4(d). In other words, G′ is connected and e is not a bridge in G′.

To summarize, in both cases, there is no bridge in G′ and G′ is connected. Hence, G′ is a 2-edge-connected component. �

Based on the properties of the swap function, we define a generalized function called circular-swap. Given a set of 2-
edge-connected components, we select an edge from each component. Then, we apply the circular-swap function to the
chosen set of edges E ′ and prove that the resulting graph, obtained by substituting E ′ with circularly swapped edges, is
2-edge-connected.
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a b
Fig. 5. Circular-swap(e0, . . . , eh−1) (a) when h = 3. (b) when h = α.

Definition 2. circular-swap(e0, . . . , eh−1).
Let circular-swap(e0, . . . , eh−1) be a function that takes a set of legal edges Ein = {e0, . . . , eh−1} as an input and outputs a set
of legal edges Eout = {e′0, . . . , e

′

h−1}, where ei = (ui, vi) is a legal edge, END(ei) ∩ END(ej) = ∅ and END(e
′

i) ∩ END(e
′

j) = ∅
for all i, j s.t., 0 ≤ i, j ≤ h− 1, i 6= j and ei, ej ∈ Ein. Then, Ein and Eout satisfy the following properties: (1) |Ein| = |Eout|; (2)
Ein ∩ Eout = ∅; (3) END(Ein) = END(Eout); (4) the graph G′ = (END(Ein), Ein ∪ Eout) is a simple cycle; and (5) e′i = (up, uq) or
(up, vq) or (vp, vq), where 0 ≤ i, p, q ≤ h− 1 and p 6= q.

Fact 3. If E∗ is an output for circular-swap(e0, e1), then E∗ is also a possible output for swap(e0, e1), and vice versa, where
END(e0) ∩ END(e1) = ∅.

For the readability, we let x←− [ y denote a solution for y is a solution for a circular-swap x in the remainder of this paper,
where y is an operation on circular-swap functions.

Lemma 2. Given a set of legal edges Ein = {e0, . . . , eh−1} as an input, circular-swap(e0, . . . , eh−1) ←− [ (circular-
swap(e0, . . . , eh−2) − {e′i}) ∪ swap(e

′

i, eh−1) if h > 2, where e′i ∈ circular-swap(e0, . . . , eh−2), END(ei) ∩ END(ej) = ∅
and END(e′i) ∩ END(e

′

j) = ∅, for all i, j, ei, ej ∈ Ein, 0 ≤ i, j ≤ h− 2 and i 6= j.

Proof. There are h edges in Ein. Let ei = (ui, vi) be a legal edge, Ej = {e0, . . . , ej−1} be the set of the input edges, E ′j = circular-
swap(e0, . . . , ej−1) = {e′0, . . . , e

′

j−1} be the set of the output edges, and Gj = (END(Ej), Ej ∪ E
′

j ), where 0 ≤ i ≤ h − 1 and
2 ≤ j ≤ h. In addition, let swap(e′i, eh−1) = {e

′′

1, e
′′

2} and END(e
′

i) = {u, v}, and G
′
= (Gh−1 ∪ {eh−1} − {e′i})∪ swap(e

′

i, eh−1).
Without loss of generality, we assume that e′′1 = (u, uh−1) and e

′′

2 = (v, vh−1). We prove the lemma by induction on h.
Inductive basis: If h = 3, circular-swap(e0, e1, e2)←− [ (circular-swap(e0, e1) − {e′i}) ∪ swap(e

′

i, e2), where e
′

i ∈ circular-
swap(e0, e1). Let E2 = {e0, e1} and E ′2 = {e

′

0, e
′

1}, the graph G2 = (END(E2), E2 ∪ E ′2). Without loss of generality, we
assume that e′i = e

′

1 = (u, v) and G′′ = G2 − {e′1}. We prove that G
′
= G′′ ∪ {e2, e′′1, e

′′

2} is a simple cycle as follows.
By Fact 3, circular-swap(e0, e1)←− [ swap(e0, e1), i.e., circular-swap(e0, e1, e2) ←− [ (swap(e0, e1) − {e′1}) ∪ swap(e

′

1, e2).

After removing e′′1 = (u, u2), there still exists a path that is u
G′′
; v ↔ v2 ↔ u2 in G′ − {e′′1} and shown in Fig. 5(a). That is, G

′

is a simple cycle. Hence, the result holds.
Inductive step: Assume that the result holds for h = α − 1, where α is a positive integer and α > 3, i.e.,
circular-swap(e0, . . . , eα−2) ←− [ (circular-swap(e0, . . . , eα−3) − {e′i}) ∪ swap(e′i, eα−2) exists, where e

′

i ∈ circular-
swap(e0, . . . , eα−3).
For h = α, we prove that circular-swap(e0, . . . , eα−1)←− [ (circular-swap(e0, . . . , eα−2)− {e′i}) ∪ swap(e

′

i, eα−1), where
e′i ∈ circular-swap(e0, . . . , eα−2). Let Gα−1 = (END(Eα−1), Eα−1 ∪ E ′α−1). Without loss of generality, we assume that
G′′ = Gα−1 − {e′i} and e

′

i = (u, v). We prove that G′ = G′′ ∪ {eα−1, e′′1, e
′′

2} is a simple cycle as follows. After removing

e′′1 , there still exists a path that is u
G′′
; v ↔ vα−1 ↔ uα−1 in G′ − {e′′1} and shown in Fig. 5(b). That is, G

′ is a simple cycle.
Moreover, it is obvious that |Eh| = |E ′h|, END(Eh) = END(E

′

h), and Eh ∩ E
′

h = ∅ for any h, s.t., h > 2. Hence, the result
holds. �

Lemma 3. Given a set of legal edges Ein = {e0, . . . , eh−1} as an input, circular-swap(e0, . . . , eh−1) exists if both circular-
swap(e0, . . . , e`) and circular-swap(e`+1, . . . , eh−1) exist for any `, s.t., 0 < ` < h− 2 and h > 3.

Proof. Let circular-swap(e0, . . . , eh−1)←− [ (circular-swap(e0, . . . , e`)∪ circular-swap(e`+1, . . . , eh−1)−{e′i, e
′

j})∪ swap(e
′

i,

e′j) and swap(e
′

i, e
′

j) = {e
′′

i , e
′′

j }, where e
′

i = (up, vq), e′j = (up′ , vq′), 0 ≤ i, p, q ≤ `, ` + 1 ≤ j, p′, q′ ≤ h − 1, p 6= q,
and p′ 6= q′. Without loss of generality, we assume that e′′i = (up, up′ ) and e′′j = (vq, vq′ ). Let E1in = {e0, . . . , e`} be the
set of the input edges and E1out = {e

′

0, . . . , e
′

`} be the set of output edges for circular-swap(e0, . . . , e`), then the graph
G1 = (END(E1in), E

1
in∪E

1
out) is a simple cycle by Definition 2. Similarly, let E

2
in = {e`+1, . . . , eh−1} and E

2
out = {e

′

`+1, . . . , e
′

h−1}

be the input and output edge sets for circular-swap(e`+1, . . . , eh−1), respectively. Then the graph G2 = (END(E2in), E
2
in∪E

2
out)

is a simple cycle.
Let Ein and Eout be the input and output edge sets for circular-swap(e0, . . . , eh−1), respectively. Then, it is obvious that

Ein = E1in ∪ E
2
in, Eout = (E

1
out ∪ E

2
out − {e

′

i, e
′

j})∪ swap(e
′

i, e
′

j), and the graph G = (END(Ein), Ein ∪ Eout). Let G
′

1 = G1 − {e
′

i} and
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a b
Fig. 6. (a) G′′1 = G

′

1 − e, where G
′

1 = G1 − e
′

i and e is in G1 . (b) e = e
′′

i = (up, up′ ).

G′2 = G2− {e
′

j}. Since G1 and G2 are simple cycles, after removing e
′

i from G1 and e
′

j from G2, the paths up
G′1
; vq and up′

G′2
; vq′

still exist.
It is clear to see that Ein and Eout satisfy the following properties: (1) |Ein| = |Eout|; (2) END(Ein) = END(Eout); (3)

Ein ∩ Eout = ∅; and (4) e′i = (up, uq) or (up, vq) or (vp, vq), where 0 ≤ i, p, q ≤ h − 1 and p 6= q. Therefore, assume that
circular-swap(e0, . . . , eh−1) does not exist, then G is not a simple cycle.
A graph with n vertices and n edges is a simple cycle if and only if it is connected and there is no bridge. First, we prove

that G is connected, since a path up
G′1
; vq ↔ vq′

G′2
; up′ ↔ up exists; then we prove that there is no bridge. Assume there

exists a bridge e = (u, v) in the graph G. There are two possible cases to consider.
Case 1: e ∈ Gi∗ , where 1 ≤ i∗ ≤ 2; that is, the bridge e is in G1 or G2. Without loss of generality, we assume that the

bridge e is in G1. Let G′′1 = G
′

1 − {e}. Since G1 and G2 are simple cycles, there exist a cycle u
G′1
; up ↔ vq

G′1
; v ↔ u and the

paths up
G′1
; vq and up′

G′2
; vq′ . Hence, after removing e, there is still a path in G that is u

G′′1
; up ↔ up′

G′2
; vq′ ↔ vq

G′′1
; v which

is shown in Fig. 6(a). Therefore, G is a simple cycle.
Case 2: e ∈ {e′′i , e

′′

j }; that is, e
′′

i or e
′′

j is the bridge. Without loss of generality, we assume that e
′′

i is the bridge. Since

G1 and G2 are simple cycles, the paths up
G′1
; vq and up′

G′2
; vq′ exist. Hence, after removing e′′i , there is still a path that is

up
G′1
; vq ↔ vq′

G′2
; up′ which is shown in Fig. 6(b). Therefore, G is a simple cycle.

Based on the above argument, G is connected and does not contain a bridge. G is a simple cycle, this is a contradiction.
Hence, the result holds. �

Algorithm 1 circular-swap(e0, . . . , eh−1)
1: Input: h legal edges.
2: Output: A set of edges derived by the circular-swap function.
3: procedure circular-swap(e0, . . . , eh−1)
4: E ′ = ∅, E1out = ∅, E

2
out = ∅;

5: if h = 2 then
6: E ′ = swap(e0, e1);
7: end if
8: if h = 3 then
9: Let {e′0, e

′

1} = swap(e0, e1);
10: E ′ = (swap(e0, e1)− {e′0}) ∪ swap(e

′

0, e2) = {e
′

1} ∪ swap(e
′

0, e2);
11: end if
12: if h > 3 then
13: E1out =circular-swap(e0, . . . , eb(h−1)/2c);
14: E2out =circular-swap(eb(h−1)/2c+1, . . . , eh−1);
15: Let e′′0 = e

′

i , where e
′

i is an arbitrary edge selected from E
1
out ;

16: Let e′′1 = e
′

j , where e
′

j is an arbitrary edge selected from E
2
out ;

17: E ′ = (E1out ∪ E
2
out − {e

′′

0, e
′′

1}) ∪ swap(e
′′

0, e
′′

1);
18: end if
19: return E ′;
20: end procedure

Lemma 4. circular-swap(e0, . . . , eh−1) = {e′0, . . . , e
′

h−1} can be found in sequential linear time or in O(log h) parallel time.

Proof. We apply Algorithm 1 to compute circular-swap(e0, . . . , eh−1). First, we prove the algorithm’s correctness. Let E ′ be
the set of edges returned by the algorithm, where each edge in E ′ is legal. We prove that E ′ satisfies the properties defined
in Definition 2 by analyzing the following cases.
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a b
Fig. 7. (a) e is in G′′α−1 . (b) e = e

′′

1 = (u
′, uα−1).

Case 1: When h = 2, E ′ = swap(e0, e1). Lemma 1 shows that swap(e0, e1) exists and that E ′ has the needed properties.
Case 2: When h = 3, E ′ = circular-swap(e0, e1, e2). Lemma 2 shows that circular-swap(e0, e1, e2) exists and that E ′ has

the needed properties.
Case 3: When h > 3, E ′ = circular-swap(e0, . . . , eh−1). circular-swap(e0, . . . , eh−1) exists by Lemma 3 and that E ′ has

the needed properties.
Next, we prove that Algorithm 1 runs in sequential linear time or in O(log h) parallel time. According to the algorithm,

a set of the legal edges are swapped in parallel, and the size of the set is reduced by half each time a recursive call
is made. It is obvious that both circular-swap(e0, e1) and circular-swap(e0, e1, e2) run in constant time. There are at
most O(log h) recursive calls, and the i-th recursive call performs 2i swap operations, where 0 ≤ i ≤ log h; that is,
O(20 + 21 + 22 + 23 + · · · + 2log h) = O(h). Hence, it takes a total of O(h) time for all operations. Note that each recursive
call is made in constant time on an EREW PRAM platform. Therefore, circular-swap(e0, . . . , eh−1) = {e′0, . . . , e

′

h−1} can be
found in sequential linear time or in O(log h) parallel time. �

Theorem 2. Given 2-edge-connected components G0, . . . ,Gh−1, and a legal edge ei = (ui, vi) ∈ Gi, let G = (G0 ∪ · · · ∪ Gh−1 −
{e0, . . . , eh−1})∪circular-swap(e0, . . . , eh−1), where h ≥ 2 and 0 ≤ i ≤ h−1. Then, Gmust be a 2-edge-connected component.

Proof. Assume that this theorem is not correct; that is, there exists a bridge e = (u, v) in G. After removing e, there will not
be a path from u to v. We prove the theorem by induction on h, where h ≥ 2.
Inductive basis: According to Theorem 1, G is a 2-edge-connected component when h = 2.
Inductive step: Let ei = (ui, vi) be a legal edge, and let G′i = Gi − {ei}, where 0 ≤ i ≤ h − 1. We assume that
G′ = (G0 ∪ · · · ∪ Gα−2 − {e0, . . . , eα−2})∪ circular-swap(e0, . . . , eα−2) is a 2-edge-connected component for h = α − 1,
where α is a positive integer larger than 2.
For h = α, we prove that G = (G0 ∪ · · · ∪ Gα−1 − {e0, . . . , eα−1})∪ circular-swap(e0, . . . , eα−1) is a 2-edge-connected

component. Let e′i ∈ circular-swap(e0, . . . , eα−2). Without loss of generality, we assume that e
′

i = e
′

α−2. In addition, we let
circular-swap(e0, . . . , eα−1)←− [ (circular-swap(e0, . . . , eα−2) − {e′α−2})∪ swap(e

′

α−2, eα−1) if α > 2 by Lemma 2. Hence,
G = (G′ ∪ Gα−1 − {e′α−2, eα−1}) ∪ swap(e

′

α−2, eα−1) for h = α, where α > 2. Let swap(e′α−2, eα−1) = {e
′′

1, e
′′

2} and
END(e′α−2) = (u

′, v′) and G′′ = G′ − {e′α−2}. Without loss of generality, we assume that e
′′

1 = (u
′, uα−1) and e′′2 = (v

′, vα−1).
We consider the following two cases.
Case 1. e∈ G′i . Assuming that G

′ is a 2-edge-connected component, then, according to Theorem 1, there is no bridge e in G′i
or Gi, where 0 ≤ i ≤ α− 2. Without loss of generality, we assume that e ∈ G′α−1. Since G

′ is a 2-edge-connected component

and G′i = Gi − {ei}, where 0 ≤ i ≤ α − 1, there exist paths u
G′
α−1
; uα−1, v

G′
α−1
; vα−1, and u′

G′′
; v′. Let G′′α−1 = G

′

α−1 − {e}.

Hence, after removing e, a path still exists from u to v through u
G′′
α−1
; uα−1 ↔ u′ G

′′

; v′ ↔ vα−1
G′′
α−1
; v which is shown in

Fig. 7(a). This means G is connected and e is not a bridge in G′i .
Case 2. e ∈ {e′′1, e

′′

2}. Without loss of generality, we assume that e = e
′′

1 and let {u, v} = {u
′, uα−1}. Note that G′ and Gα−1

are connected. In other words, there exist paths u′ G
′′

; v′ and uα−1
G′
α−1
; vα−1. After removing e, there is still a path from u to

v through u′ G
′′

; v′ ↔ vα−1
G′
α−1
; uα−1 which is shown in Fig. 7(b). This means G′ is connected, and e′′1 and e

′′

2 are not bridges.
Hence, the theorem holds. �

4. Main result

LetG be an input graph inwhich a loose block, B, is a 2-edge-connected component so that the degree of the corresponding
vertex in BB(G) is at most 1. In BB(G), a loose vertex, b, is the vertex that corresponds to the loose block B in G. Hereafter,
we use F and BB(G) interchangeably to denote the bridge-block forest of an input graph G. Recall that the vertices in G
are partitioned into P1, P2, . . . , Pk. Let Si and H denote the sets of mono leaves of partition Pi and the set of hybrid leaves
in BB(G) respectively; and let S∗i and H

∗ denote the sets of mono isolated vertices of Pi and the set of hybrid isolated
vertices in BB(G) respectively. In addition, let smax = max{|Si| + 2|S∗i ||1 ≤ i ≤ k}. Without loss of generality, we
assume that smax = |S1| + 2|S∗1 |. Then, we say that BB(G) is Pi-dominated if there exists an i such that |Si| + 2|S

∗

i | >
d(2|S∗1 | + · · · + 2|S

∗

k | + 2|H
∗
| + |S1| + · · · + |Sk| + |H|)/2e.
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a b
Fig. 8. The illustration of the numbering procedure:(a) the given graph; (b) the result of the numbering procedure.

4.1. Lower bound on |aug2e(BB(G))|

Let LOW(BB(G))= max{smax, d(2|S∗1 | + · · · + 2|S
∗

k | + 2|H
∗
| + |S1| + · · · + |Sk| + |H|)/2e}.

Theorem 3. |aug2e(BB(G))| ≥ LOW(BB(G)).

Proof. To make the resulting graph 2-edge-connected, each leaf must have at least one incident edge and each isolated
vertex must have at least two incident edges. That is, |aug2e(BB(G))| ≥ d(2|S∗1 | + · · · + 2|S

∗

k | + 2|H
∗
| + |S1| + · · · + |Sk|+

|H|)/2e. By Fact 2, two endpoints of an added edge cannot be in the same vertex partition. Thus, |aug2e(BB(G))| ≥ smax,
which means the theorem holds. �

Corollary 1. If BB(G) is Pi-dominated, then LOW(BB(G)) =| Si | +2 | S∗i |.

Proof. We can derive the corollary by the definitions of Pi-dominated and LOW(BB(G)). �

4.2. Augmentation algorithm

The steps of the algorithm are as follows. First, we add LOW(BB(G)) legal edges to the graph BB(G) according to the
indexes assigned to the leaves and isolated vertices of an input bridge-block forest, as shown in Algorithm 2. Then, based
on the assigned numbers, we add edges between the leaves and isolated vertices of the input graph without violating the
partition constraint.
The resulting graph, G′, consists of h 2-edge-connected components. If h = 1, then we terminate the process; otherwise,

we arbitrarily select one legal edge for each loose block in G′, and perform a circular-swap operation on the chosen edges.
By replacing the original set of the chosen edges with the set of edges obtained by the circular swap operation, the resulting
graph is guaranteed to be 2-edge-connected.
Here, we assume that BB(G) contains at least two leaves in different vertex partitions, or two isolated vertices in different

vertex partitions, or one leaf and one isolated vertex in different vertex partitions.

Algorithm 2 Numbering the leaves and isolated vertices in F
1: Input: F is a bridge-block forest with k partitions of its vertices.
2: Output: The enumerated leaves and isolated vertices of F .
3: procedure Numbering(F )
4: Let λ0 = 0;
5: for i from 1 to k do
6: Assign a number to each leaf in Si from λi−1 + 1 to λi−1 + |Si|;
7: Assign two consecutive numbers to each isolated vertex in S∗i from λi−1 + |Si| + 1 to λi−1 + |Si| + 2|S

∗

i |;
8: Let λi = λi−1 + |Si| + 2|S∗i |;
9: end for
10: Assign a number to each leaf in H from λk + 1 to λk + |H|;
11: Assign two consecutive numbers to each isolated vertex in H∗, from λk + |H| + 1 to λk + |H| + 2|H∗|;
12: end procedure

Fig. 8 illustrates the numbering procedure in Algorithm 2. In this example, there are 9 vertices, one of which is an isolated
vertex. The 9 vertices are divided into three vertex partitions. The vertices with black, white, and gray colors denote the
vertices of the first, second, and third partitions respectively. We assign the numbers 1 and 2 to the two black vertices; and
the black isolated vertex is assigned the numbers 3 and 4. We also assign the numbers 5, 6 and 7 to the three white vertices,
and the numbers 8, 9 and 10 to the three gray vertices in Fig. 8(b).

Lemma 5. Given a bridge-block forest BB(G) with k partitions of its vertices, Algorithm 2maintains the following properties.
1. For each vertex partition Pi, 1 ≤ i ≤ k, vertices in the same vertex partition are assigned consecutive numbers.
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2. All vertices are assigned distinct numbers.
3. In total, |Si| + 2|S∗i | numbers are assigned to degree≤ 1 vertices in partition Pi, where 1 ≤ i ≤ k.

Proof. The proof is straightforward based on Algorithm 2. �

Corollary 2. Let ` =
∑k
i=1 |Si| + 2|S

∗

i | + |H| + 2|H
∗
| denote all the numbers assigned to degree ≤ 1 vertices in BB(G). The

following properties can be inferred from Lemma 5.

1. When ` is even, if the vertices in any partition are assigned no more than `/2 numbers, then two vertices with numbers j and
j+ `/2must be in different vertex partitions for any j, s.t., 1 ≤ j ≤ `/2.

2. When ` is odd, if the vertices in any partition are assigned no more than b`/2c numbers, then two vertices with numbers j and
j+ b`/2cmust be in different vertex partitions for any j, s.t., 1 ≤ j ≤ b`/2c.

Proof. The proof is straightforward based on Lemma 5. �

Next, we propose our main algorithm, Algorithm 3, for finding a smallest 2-edge-connectivity augmentation of a graph
Gwith a partition constraint.

Algorithm 3 Finding a smallest 2-edge-connectivity augmentation of an input graph Gwith a partition constraint.
1: Input: A graph G.
2: Output: A smallest 2-edge-connectivity augmentation of Gwith a partition constraint.
3: procedure FS2Aug(G)
4: Let F = BB(G);
5: Let ` =

∑k
i=1 |Si| + 2|S

∗

i | + |H| + 2|H
∗
|;

6: E = ∅; E ′ = ∅; E1 = ∅; E2 = ∅;
7: Numbering(F );
8: Let vi denote a vertex with the number i;
9: switch(smax)
10: Case 1: smax ≤ b`/2c
11: Case 1.1: ` is even
12: E ′ = {(vi, vi+`/2)|1 ≤ i ≤ `/2};
13: Case 1.2: ` is odd
14: E ′ = {(vi, vi+b`/2c)|1 ≤ i ≤ b`/2c};
15: E1 = {vb`/2c, v`};
16: Case 2: smax > b`/2c
17: E ′ = {(vi, vi+smax)|1 ≤ i ≤ `− smax};
18: E1 = {(vj, v`)|`− smax + 1 ≤ j ≤ smax};
19: Let E ′ = E ′ ∪ E1;
20: Let F ′ = BB(F ∪ E ′);
21: Let X be the set of loose vertices in F ′;
22: if |X | > 1 then
23: For each loose vertex in F ′, arbitrarily select an added edge from the corresponding loose block in F ∪E ′; let E2 denote

the set of selected added edges, here E2 = {e0, . . . , e|X |−1};
24: E = (E ′ − E2)∪ circular-swap(e0, e1, . . . , e|X |−1);
25: else
26: E = E ′;
27: end if
28: return E;
29: end procedure

Lemma 6. Each added edge in E ′ found in step 19 of Algorithm 3 is legal.

Proof. By Lemma 5, vertices in the same vertex partition are assigned consecutive numbers, and the sequence of numbers
assigned to degree ≤ 1 vertices in Pi partition is |Si| + 2|S∗i |, where 1 ≤ i ≤ k. Note that smax = |S1| + 2|S

∗

1 |. We prove the
lemma by the following two cases.
Case 1: smax ≤ b`/2c. Since smax = max{|Si| + 2|S∗i ||1 ≤ i ≤ k}, by Corollary 2, no vertex partition is assigned more than

`/2 numbers if ` is even; and no vertex partition is assigned more than b`/2c numbers if ` is odd. Next, we analyze these
two subcases.
Case 1.1: ` is even. The algorithm only adds an edge between two vertices with numbers j and j + `/2 for any j, s.t.,

1 ≤ j ≤ `/2. Since no vertex partition is assigned more than `/2 consecutive numbers, by Corollary 2-1, two vertices with
numbers j and j+ `/2 must be in different vertex partitions for any j, s.t., 1 ≤ j ≤ `/2. Therefore, the added edges are legal.
Case 1.2: ` is odd. The algorithm adds an edge between two vertices with numbers j and j + b`/2c for any j, s.t.,

1 ≤ j ≤ b`/2c, and between two vertices with numbers b`/2c and `. Since no vertex partition is assigned more than b`/2c
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a b
Fig. 9. (a) The result of the Numbering Procedure in the corresponding step 7 of Algorithm 3. (b) The corresponding steps 9–18 of Algorithm 3.

consecutive numbers, by Corollary 2-2, two vertices with numbers j and j+ b`/2cmust be in different vertex partitions for
any j, s.t., 1 ≤ j ≤ b`/2c. Therefore, the added edges are legal.
Case 2: smax > b`/2c. In this case, our algorithm only adds edges between a vertex in the vertex partition that has smax

numbers and another vertex in a different vertex partition. Therefore, the lemma holds. �

Fig. 9 illustrates steps 7–18 of Algorithm 3. To refer to the example in Fig. 8, Fig. 9(a) shows the result of the Numbering
Procedure called in step 7 of Algorithm3. Then,we add edges based on the following vertex pairs: (1, 6), (2, 7), (3, 8), (4, 9)
and (5, 10) in Fig. 9(b). In this example, it is clear that the partition constraint holds for the five added edges.

Theorem 4. Given an input graph G, Algorithm 3 adds LOW(BB(G)) edges.

Proof. We prove that the number of edges added in Algorithm 3 is minimized by analyzing the following two cases. Note
that ` =

∑k
i=1 |Si| + 2|S

∗

i | + |H| + 2|H
∗
| and LOW(BB(G))= max{smax, d`/2e}.

Case 1: smax ≤ b`/2c; Clearly, the number of added edges is equal to d`/2e by steps 10–15 of Algorithm 3. Therefore, the
number of added edges in this case is equal to LOW(BB(G)).
Case 2: smax > b`/2c. Here, the number of added edges is equal to smax. Hence, the number of added edges in this case is

also equal to LOW(BB(G)).
Note that no edge is added in steps 19–26. Therefore, by Theorem 3, Algorithm 3 adds LOW(BB(G)) edges. �

Let F be a bridge-block forest of an input graph G, and let E ′ be a set of added edges computed in step 19 of Algorithm 3.
We prove that the resulting graph F∪E ′ computed by the algorithm is 2-edge-connected or that each block corresponding to
a loose vertex in BB(F ∪E ′) contains a newly added edge by Lemma 7. Then, we apply the circular-swap function introduced
in Section 3 to obtain a 2-edge-connected graph by Lemma 8.

Lemma 7. Let F be a bridge-block forest of an input graph G. Every block corresponding to a loose vertex in BB(F ∪ E ′) contains
an edge in E ′, where E ′ is a set of added edges computed in step 19 of Algorithm 3.

Proof. We assume that this theorem is incorrect; that is, there exists a loose vertex in BB(F ∪E ′)whose corresponding block
B is in F ∪ E ′ does not contain an added edge. Note that the block Bwith respect to a loose vertex in BB(F ∪ E ′) is either the
case that B is a block of F , i.e., B ∈ F , or the case that B is not a block of F , i.e., B /∈ F , but B contains some blocks in F . We
prove this lemma by analyzing the two following cases.
Case 1: B ∈ F . Since the block B does not contain an edge in E ′ and the vertex corresponding to B in BB(F ∪ E ′) is a

loose vertex, the degree of B in F is at most 1. Hence, B is also a loose vertex in F and the block in G corresponding to B is
a loose block. Here, we prove that B contains an edge in E ′. Note that in Algorithm 2, we assign numbers to all the loose
blocks in G. Let vi denote the loose vertex with the number i in F . Edges are added to all loose vertices, as shown in steps
9− 18 of Algorithm 3. By Lemma 6, an added edge is legal and connects vi and vj, where vj is assigned according to Cases 1
and 2 discussed in Algorithm 3. Therefore, a loose vertex B is connected to another vertex by an added edge. However, this
contradicts the assumption that B is in F ∪ E ′ and does not contain any edges in E ′.
Case 2: B /∈ F , but B contains blocks in F . Since B contains a set of the blocks in F , it is clear that those blocks can be

merged by using newly added edges in E ′. Therefore, B contains newly added edges in E ′.
According to above analyses, each loose block corresponding to a loose vertex in BB(F ∪ E ′) contains an edge in E ′, which

is the set of added edges computed in step 19 of Algorithm 3. �

Lemma 8. Let G be an input graph; and let F = BB(G) and F ′ = BB(F ∪ E ′), where E ′ is the set of added edges computed in step
19 of Algorithm 3. F ′∪E is 2-edge-connected without violating the partition constraint, where E is the set of added edges returned
by the algorithm.

Proof. By Lemmas 2 and 6, all added edges are legal. We consider two cases to determinewhether the resulting graph F ′∪E
is 2-edge-connected.
Case 1: Assume that there exists a bridge e = (u, v), where e ∈ E and u and v are leaves in F ′. By Theorem 2, all leaves in

F ′ are connected by a cycle C in steps 20–26 of Algorithm 3. Since there exists another path from u to v that passes through C ,
no added edge is a bridge.
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Case 2: Assume that any branch of F ′ is a bridge e = (u, v). Since all leaves in F ′ are connected by E, there exists another
path from u to v that passes through C . Hence, no branch of F ′ is a bridge.
Therefore, without violating the partition constraint, F ′ ∪ E is 2-edge-connected. �

Theorem 5. Algorithm 3 runs in sequential linear time or in O(log n) parallel time on an EREW PRAM using a linear number of
processors.

Proof. Given a graph G as an input, by Fact 1, the first step in Algorithm 3 takes sequential linear time or takes O(log n +
TM(n,m)) parallel time to compute BB(G) usingO((n+m)/ log n+PM(n,m)) processors on an EREWPRAM. After computing
BB(G), the numbering procedure takes sequential linear time or O(log n) parallel time. Then, the algorithm takes O(1) time
to determine which case should be executed. In steps 7–18, the algorithm takes sequential linear time or O(log n) parallel
time to add edges between vertices. Finally, it applies the concept of Algorithm 1 to reconnect the graph to form a 2-edge-
connected component. By Lemma 4, Algorithm 1 takes sequential linear time or O(log h) parallel time, where h ≤ O(n).
Therefore, the theorem holds. �

Lemma 9. Let G be a k-partite graph but not a 2-edge-connected graph, G ∪ Fn(aug2e(BB(G))) is a simple graph if any one of
following conditions is satisfied:
Case 1: BB(G) contains at least three vertices and there are three vertex partitions in BB(G), each of which contains at least

one vertex.
Case 2: BB(G) contains at least four vertices and there are two vertex partitions in BB(G), each of which contains at least two

vertices.
Case 3: BB(G) contains at least one hybrid vertex.

Proof. We prove this lemma case by case as follows.
Case 1. Without loss of generality, let u, v and w denote vertices of BB(G) in P1, P2 and P3, respectively. For an isolated

vertex x in BB(G), without loss of generality, we assume x ∈ P1, then an augmentation may contain edges (v, x) and (w, x).
For a leaf y in BB(G), an augmentation may contain an edge (y, z), where z ∈ {u, v, w}, z and y are in different vertex
partitions, and z is not the parent of y. Therefore, G ∪ Fn(aug2e(BB(G))) is a simple graph.
Case 2. Without loss of generality, let u1 and u2 denote two vertices in P1, and v1 and v2 denote two vertices in P2. For an

isolated vertex x in BB(G), without loss of generality, we assume x ∈ P1, then an augmentationmay contain edges (v1, x) and
(v2, x). For a leaf y in BB(G), an augmentation may contain an edge (y, z), where z ∈ {u1, u2, v1, v2}, z and y are in different
vertex partitions, and z is not the parent of y. Therefore, G ∪ Fn(aug2e(BB(G))) is a simple graph.
Case 3. If BB(G) contains a hybrid vertex, then any one of following subcases is true. Note that a hybrid vertex in BB(G) is

a block in G. Let this hybrid vertex be Q .
Case 3.1: Q contains at least three vertices and at least three vertex partitions, and there are three vertices in three

different vertex partitions.
For Case 3.1, let u, v, and w denote three vertices in the block of G which corresponds to Q . Without loss of generality,

we assume u ∈ P1, v ∈ P2, andw ∈ P3. For an isolated vertex x in BB(G), without loss of generality, we assume x ∈ P1, then
an augmentation may contain edges between Q and x in BB(G). So that, the corresponding edges found by Fn are (v, x′) and
(w, x′), where x′ is a vertex inGwhich corresponds to x,v ∈ P2 andw ∈ P3. For a leaf y in BB(G), an augmentationmay contain
an edge (y,Q ) in BB(G), so that the corresponding edge found by Fn is (y′, z), where y′ is a vertex in Gwhich corresponds to
y and z ∈ {u, v, w}, z and y′ are in different vertex partitions, and z is not the parent of y′. Therefore, G ∪ Fn(aug2e(BB(G)))
is a simple graph.
Case 3.2: Q contains at least four vertices and at least two vertex partitions, and there are two different vertex partitions,

each of which contains at least two vertices.
For Case 3.2, let u1, u2, v1, and v2 denote four vertices in the block of G which corresponds to Q , where u1, u2,∈ P1,

v1, v2 ∈ P2.
For an isolated vertex x in BB(G), without loss of generality, assume x ∈ P1, then an augmentation may contain edges

between Q and x in BB(G). So that, the corresponding edges found by Fn are (v1, x′) and (v2, x′), where x′ is a vertex in G
corresponding to x and v1, v2 ∈ P2. For a leaf y in G, an augmentation may contain an edge (y,Q ) in BB(G), so that, the
corresponding edge found by Fn is (y′, z), where y′ is a vertex in G corresponding to y and z ∈ {u1, u2, v1, v2}, z and y′ are in
different vertex partitions, and z is not the parent of y′. Therefore, G ∪ Fn(aug2e(BB(G))) is a simple graph.
Hence, the lemma holds. �

4.3. Other cases

Let G be a k-partite but not 2-edge-connected graph, we consider two cases of BB(G) not discussed in Lemma 9.
Case 1: BB(G) contains two vertex partitions, but none of its vertices is a hybrid vertex. Without loss of generality, we

assume that the two vertex partitions of BB(G) are P1 and P2, and |P1| ≥ |P2|. This case can be divided into three subcases
by considering the vertices in BB(G).
Case 1.1: BB(G) consists of exactly two vertices. Let u, v denote two vertices of BB(G), then an augmentation would add

edges between u and v. Therefore, the resulting graph must be a multigraph.
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Case 1.2: BB(G) consists of exactly three vertices. Letu1,u2,v denote the three vertices of BB(G).Without loss of generality,
assume that u1, u2 are in P1 and v is in P2. Then, an augmentationwould add edges between u1 and v, and add edges between
u2 and v. Therefore, the resulting graph must be a multigraph.
Case 1.3: BB(G) contains at least four vertices and |P2| = 1. In this subcase, let u denote the only vertex of BB(G) that

is in P2. Then, an augmentation would add edges between u and all other vertices of BB(G). Therefore, the resulting graph
must be a multigraph.
Case 2: Finally, we consider a trivial case where the input graph BB(G) contains only one partition of its vertices, i.e., all

vertices are mono vertices. In this case, unless the input graph is already 2-edge-connected, there is no 2-edge-connectivity
augmentation solution.
The analyses in Lemma 9 and Section 4.3 demonstrate the properties of a given graph BB(G).

5. Concluding remarks

The main algorithm proposed in this paper produces a simple graph if such an augmentation solution exists. If this is not
possible, it generates a multigraph. First, we prove that we can easily add edges to the input graph such that the resulting
graph G′ has the property whereby each degree ≤ 1 block of BB(G′) contains a legal edge. We select a legal edge of each
degree≤ 1 block and apply the circular-swap function to all the selected legal edges to form a 2-edge-connected graph. The
main algorithm can be parallelized to run in O(log n) parallel time using a linear number of EREW processors.
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