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However, from a formalist point of view
we may look at our theory syntactically and
may consider that what we have done is to
introduce new deductive procedures rather
than new mathematical entities.

Abraham Robinson [4]

1. The syntax of ‘standard’

In [3] I presented a codification of a large part of nonstandard analysis, called
Internal Set Theory (IST). Here we will show that proofs in IST may be regarded
as abbreviations of proofs within conventional mathematics. That is, we analyze
Robinson’s ‘new deductive procedures’. In doing so, we solve (to the extent that
IST codifies nonstandard analysis) a problem posed by him in his retiring
presidential address before the Association for Symbolic Logic [5]. Problem 11
reads, in part, “to devise a purely syntactical transformation which correlates
standard and nonstandard proofs of the same theorems in a large area, e.g.,
complex function theory”.

Ir IST a new predicate “x is standard” is adjointed to conventional mathe-
matics, which we take to be Zermelo-Fraenkel set theory with the axiom of
choice (ZFC). This new predicate is devoid of semantical content. That is to say,
it is meaningless. The three axiom schemes of IST—namely, the transfer
principle (T), the idealization principle (I), and the standardization principle
(S) — give rules for manipulating the new predicate.

When working in the framework of IST, it is sicipful to think of using ‘standard’
in very much the same way that ‘fixed’ is used in informal mathematical
discourse. For example, let R* = {x e R :x >0} and consider

there is an x in R™ which is smallcr than any fixed € in R*. 1)

This is a common way of expressing a true statement about R*. But suppose we
go on to say that such an x is called infinitesimal; that is, we define a number x in
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R* to be infinitesimal in case

x is smaller than any fixed € in R* (2)
and rewrite (1) as

there is an infinitesimal x in R*. 3
The likely response to this would be: You have misunderstood the syatax of the
informal statement (1); although it has the form

3x Ve (¢ fixed > x <€), ()
what it means is

VeIxx<e. &)

a®__ __

To ihis the practiiioner of IST responds: We agree that (1) and (5) mean the
same thing, but that is precisely what (3) and (4) mean. By adjoining the
predicate “x iz standard” (or “x is fixed”) to conventional mathematics, we are
able to speak about infinitesimals in the ordinary system R™ without adjoining
any new mathematical entities. Formulas in IST with free variables, such as (2),
may not have any meanisg in conventional terms, but every statem >nt (formula
with no free variables) in IST does have meaning in conventional terms — this is
what the reduction algorithm of [3] (which is described more simply in Section 2
below) accomplishes, reducing (4) to (5), for example.

The point of view towards IST which we advocate is that external statements be
regarded as abbreviations for certain internal statements. The reduction algo-
rithm codifies the process of finding the equivalent internal statement, treating
‘standard’ syntactically like ‘fixed’ to reorder the quantifiers. Proofs in IST differ
from standard proofs in that they treat “x is fixed” as a predicate.

2. Reduction of formulas

Let o be a first-order theory, with propositional connectives = and ~,
universal quantifier V, predicate letters A7, and individual constants 4;. The other
propositional connectives and the existential quantifier are introduced as ab-
breviations, and the notions of formula and statement are defined in the usual
way. Later we will give the forms of the logical axioms and rules of inference.

The reduction algorithm increases the logical type of formulas, so we will need
a richer language, the language of a model of . Let & be ZFC together with
constants M, A7, @; and the axioms which assert that these are a model of &£. Let
M be the mallest set such that M € M and whenever X, Y € M, then Py (X) € M
and XY € M, where Pg,(X) is the set of all finite subsets of X and XY is the set of
ail functions from Y to X. By a formula of s/ we will always mean a formula in
which each variable is restricted to range over a certain element of M; it will not
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be necessary for our purposes to givs a detailed formlization of A as a first-order
system with different types of variables.
Let o* be o togetner with the unary prechcate letter ‘standard’ and the

admald BB arma Bameceae aaoo VYN

mums MdiCU ULIVW. Wt‘v us¢ lower case Laitin letiers to uenute n-tuples OI

variables, including the possibility n=0 We use capital Greek letters for

formulas of of* and lower case Greek letters for internal formulas of </*
(formulas of sf). In addition, we use the rather self-explanatory abbreviations of
[3). The additional axioras of &f* are the axioms asserting that M, A", and g; are

standard and the axiom schemes

T Vet (Vxo@x, 1) > Vxg(x 1)

where gp{r t) has no undisplayed free variabl

=82 2T SRSSSSSp e VS ~ ey

Va2 Y 2s wistfin. 2= __ w2 Ty

) IxVy ¢(x,y) & V'¥y'3xVyey' ¢lx, y),

(So) Vix Iy ¢(x, y) > I Vx ¢(x, y(x)).

We call (So) the restricted siardardization principle because ¢ is restricted to be
internal. We will show in Section 4 that the unrestricted standardized principle
) VaFyo,y) > 37V O(x, jx))

is a consegquence.

Let @ be a formnula of of*. We shall define what is meant oy the partial
reduction @' of ®. As a preliminary, we first rewrite @ so that every occurrence
of “x standard” is replaced by “3*y y =x” and so that no variable x is quantified

twice
The partial reduction @' will always be of the form V' v ¢{u, v). H S is
internal we define @' to be &, Suppose that & has the partial reduction
Y'u 3% & (u, v), and similarly for @, and @,. We define inductively
(~®) tobe V0 Iu-—~¢(u, o(w)),
= x \ a _ wrst vt~ -~ f_ N
(#1> D) tobe VuV° 01 3%, 3%, (P1(1, D1(11)) > P2(u2, v2)),

(Vx @)’ tobe VuI*™y’Vx3Ivev ¢y, v),
(V'x P)' tobe V'xV'uIvo(u, v).

By (I) and (S,) it is a theorem of #* that &< P’. Notice that @' has the same
free variables as @ and so is a statement if and only if @ is a statement. If dis a
statement whose partial reduction @' is V*'u 3%v ¢(u, v) we define its reduction
@° to be Vu Iv ¢p(u, v). By (T), it is a theorem of #* that &< $°. Notice that

A 2o an intasmal o tha af o
W Id Al ullﬁlual aml‘ulcul, lual- ID’ a Dlatcmcul Vi oF.

Jc neuucmm of provis

The system &* is a conservative extension of &/. This is because the additional
axioms (T), (I) and (S,) express propertics of adequate ultralimits, and this
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construction may be carried out within o (see for example the Appendix to [3]).
This is a semantical approach to the relationship between nonstandard analysis
and conventional mathematics.

Our aim in this paper is to give a purely syntactical algorithm which takes a
proof in f* and converts it step by step into a proof within of. One difficulty
which we face at the outset is that formulas with free variables in «f* have no
interpretation within 5, and one of the rules of inference — generalization — is
used for such formulas. Forturately there is a formulation (see [2, Exercise 2, p.
62]) of the notion of a first-order theory in which modus ponens is the only rule of
inference. In this formulation the proper axioms are any collection of statements
and the logical axioms are all closures of formulas of the following form:

@) 2=>(¥=>9),

(i) (P> (P2A)> (P> P)=> (9 4)),

(i) (~P>~D)>(~P>D)> V),

(iv) Vx &(x)> &(rf) where ¢ is an individual constant or variable,
(v) Vy (2> P)=>(P>Vy W) if & has no free occurrence of y,

(vi) Vy (2> P)>(Vy 25 Vy V).

The usual formulation of the notion of a first-order theory [2] has as its rules of
inference modus ponens and generalization, for proper axioms any collection of
formulas, and for logical axioms (i)—(v) (rather than the closures of (i)-(vi)). It is
easy to see that a statement is a theorem according to the usual fermulation if and
only if it is a theorem according to the above formulation.

The following theorem is used in reducing modus ponens from s¢* to s/:

Theorem 1. Let @, and P, be statements of A*. Then (P> P,)°> (D1 P3) is
a theorem of SA.

Proof. (D, D,)°is
VYu, V6, Ju, v, (P1(u1, U1(u1)) > P2(us, v2)),

which ic equivalent to

39, Yuy $1(uy, 0:(1)) > Yup 3v; §5(u3, v2), (6)
while #1> B3 is

Vu, 3v; ¢1(uy, v;) > Vu, v, ¢o(us, v,). @

Since the consequents of the implications (6) and (7) are the same, to show that
(6)=> (7) we need only show that the antecedent Vu, 3v, ¢,(u,, v,) of (7) implies
the antecedent 3, Vu, ¢,(u,, ,(u,)) of (6). But this is a theorem of f;
namiely, the axiom of choice. [J

We will show, in T!_xeorems 2, 3, and 4, that the reduction of every axiom of
f* is a theorem of s4. Then the description of our syntactical algorithm is very
simple. Let @,, ---, @, be a proof in #/*. Thus each &, is a statement of «/*
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which is cither an axiom of &* or follows by modus ponens from &; and &, with
J» k <i. Suppose by induction on i that for all j <i the statement @ is a theorem
of . (This is vacuously true for i = 1.) We need to show that &?is a theorem of
. If @, is an axiom of sf* this is true by Theorem 2, 3, or 4. So suppose that &,
follows by modus ponens from @; and @, with j, k <i; that is, suppose that &, is
®;=> @ By the induction hypothesis, (#;=> ®@,)° is a theorem of s, so by
'lheorem 1 and modus ponens in s/ the statement @;=> &} is a theorem of .

Since by the induction hypothesis @ is a theorem of s/, we have by modus
ponens in o that @} is a theorem of 4, which completes the induction. Thus
the entire proof reduces to a proof in .

We know from semantical considerations that the reduction of every axiom of
s* is a theorem of . The purpose of proving this directly in Theorems 2, 3,
and 4 is to obtain a better understanding of what makes nonstandard analysis
work.

The proof of Theorem 2 shows that the reductions of (T) and of the closures of
() and (S,) are trivial theorems of <7, being essentially tautologies of the form
¥ = v. This is not surprising, since these axioms are just the rules for forming
reductions.

The logical axioms are more interesting. The proof of Theorem 3 shows that
the reduction of a tautology ((i), (ii), or (iii)) involves only the consideration of
an explicit finite number of cases, and the reduction of the rule of specialization
(iv) is trivial.

The only non-trivial case is (vi), considered in Theorem 4. (The axiom (V) is
essentially a special case of (vi).) Mathematical reasoning is full of uses of modus
ponens with parameters: from @(y) and @&(y)=> ¥(y) infer ¥(y). Since we
must deal only with statements, we must reformulate this as: from Vy &(y) and
Vy (@(y)=> ¥(y)) infer Vy ¥(y). But (vi) (and modus ponens for statements, as
discussed above) is precisely what is needed to reduce this inference from £* to
4. Thus Theorem 4 is the heart of the matter: a simple inference in nonstandard
analysis may, when expressed in standard mathematics, entail a complicated
cross-section argument (see the proof of Theorem 4). This point is illustrated by
example in Section 7.

For convenience in proving Theorem 2, we split the equivalence (I) into two
implications (I;) and (L,).

Theorem 2. The reductions of the additional axioms of 4*, namely “M is
standard”, “/if is standard”, “q; is standard”, and

4y Vit (Vx p(x, 1) > Vyd(y, 1)),

1) Vw 3x Vy d(x, y, w) > V*'™b'JaVbeb' ¢(a, b, w)),
(L) Vw (V%' 3x Wy ey’ ¢(x,y, w) > JaV*b ¢(a, b, w)),
S Vw(Vx Iy oy, w) > 3% Va ¢(a, b(a), w)),

where each ¢ is internal with no undisplayed free variables, are theorems of .
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Proof. The reduction of “M is standard” is the theorem 3x x = M, and similaily
for Al and 4. The statement (T)° is the theorem Vi 3x (¢(x, 1) > Vy ¢(y, 1))
Next, (Ip)° is

Vb’ I%y"Vw 3%y’ ey"@xVy €y’ ¢(x, v, w) > JaVbed' ¢(a, b, w)). (8)

(Stricily speaking, (I,)° is the above statement with 3x Vy € ¥’ ¢(x, y, w) replaced
by ~Vx 3y ey’ ~¢(x, y. w), but the two forms are of course equivalent in .
We will not make similar comments in the future.) Let y"={b'} and y'=b'.
Then (8) becomes the theorem

VE=h' Yw (3x Vy € b’ ¢(x,y, w) > JaVbeb’ ¢(a, b, w)).
We find that (I,)° is identical with (I,)°, and so is a theorem. Finally, (So)° is
Va Vy 3%’ 3%5* Vw 3x ex’ 2b e b’ (¢(x, 7(x), w) > (@), b(a(b)), w)).
Let b' = {§}, b=y, x' = {@(F)}, x =a(y). Then this becomes the theorem
Va ¥y Yw ($(a(y)), y(@(%)), w) > ¢@@), y@@).w)). 0O
Theorem 3. The reductions of the closures of (i), (ii), (iii), and (iv) are theorems
of A. .
Proof. The closure of (i) may be written
Vw ("2 3%b ¢(a, b, w) > (Ve T y(c, d, w) > VeI (e, f, w)).
whose reduction is
Ve Vd Vb 3%’ 3¢’ I Yw 3> €a’'Icec’ If ef’
(9(a, b(a), w) > (¥(c, d(c), w) > o(e.f, w))).
Let a' = {e}, let ¢’ be any non-empty finite set, let f' = {b(e)}, a=e, cec’, and
f=0b(e). Then the statement becomes the closure of a tautology of the form
*=>(v>9).
The closure of (ii) may be written
Vw ((V*'a 3%b ¢(a, b, w)> (V¢ 3%d y(c, d, w) > Ve I A(e, f, w)))
2> (Vg I (g, h, w)> V=i 3% y(i, j, w))
> (Vk 3 p(k, [, w)=>Vm 3% A(m, n, w))), ©)
whose reduction is
Vmigjacf 3%e'd'b'i'h'k'n'VYw3ece'ded' beb'ici'heh' kek'nen’
(9@, b, w)=> (¥(C, d, w)> Ale, f, w) > ($(E b, w)> (i, ], w))
> (p(k, 1, w)> A(m, n, w)))), (10)

where we have omittecd the arguments of the functions. Let e’ = {m}, e=m,
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n'={f}, n=f, i'={¢}, i=¢, d’'={j}, d=j. Then ¥(¢ d, w) and y(,J, w)
are the same formuia ¥, and A(s, f, w) and A(m, n, w) are the same formula A.
However, theie is no way to make ¢(d, b, w), (g, h, w), and ¢(k, I, w) all be
the same formula, so we let k' be the two-element set k' = {4, &} and let
b'={l}, b=1I, i'={l}, k=1 Then the statement becomes the closure of a
tautology of tlie form

(0.2 (v=>24)2 (92 ¥)=>(9:24)

V(@12 (@ 2A)> (922 ¥)>(9:22). (11)

(To see that (11) is a tautology, observe that if ¢, and ¢, have opposite truth
values, then owne of the final consequents ¢, A or ¢,> A is true and so (11) is
true. But if ¢, and ¢, are equivalent, then each disjunct in (11) is equivalent to a
tautology of the form (ii).) Similarly, the closure of (iii) has the reduction
Vjehac 3%d'b'g'f'i'VwIded' beb'geg'fef iei’
(~v(@, b, w)=> ~¢(G, d, w)) > (~¥(E, f, w)> 0@, h, w))> v, ], w))).
Let J'={E}: d=h, b'= {;}’ b-=.;’ g'={¢}, g=¢, f'= {i}’ f=i’ and let
i’ = {a, €}. Then the statement becomes the closure of a tautology of the form
(1> ~9)=>((~v.> $)=>¥1))
V(=2 ~9)2 (2 9)2v2).
Finally, if ¢ is a variable the closuze of (iv) may be written as
Vw ¥Vt (Vy V'a 3*b ¢(a, b, y, w) > V'cV'd ¢(c, d, t, w)),
whose reductior. is
Vc Viop' 3%’ 3ing' Yw Vet Jaea’' Ad ed’
(Vy 3b e b'(a) Pp(a, b, y, w) > ¢(c, d, t, w)).

(If t is a constant, omit Vz.) Let a’ = {c}, a=c, d’ = {b'(c)}. Then the statement
becomes equivalent to the closure of :

Vy 3beb’'(c) ¢(c, b,y, w) > 3beb'(c) ¢(c, b, t, w)

which is of the form (iv) and so is a theorem of &J. O
Theorem 4. The reductions of the closures of ‘v) and (vi) are theorems of .

Proof. We give the procf for (vi). The case (v) follows s:imply by omitting the
variable z. _ |
We may write the closure of (vi) as

Vw Vx 3y 3z (2(y, w)=> P(y, w)) > (D(z, w) > W(x, w))). (12)
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The idea, of course, is to let y and z be x. We claim that the reduction of

Vw Vx ((P(x, w)=> P(x, w)) > (D(x, w)=> P(x, w)) (13)
is a theorem of &. To see this, notice that (13) is of the form
Ve (I())> I(¥)). (14)

Let the reduction of I'(t) be V*'u 3*v y(u, v, t). Then the reduction of (14) may
be written as

Vc Vb 3%’ 3¢’ V¢ Ja e a’ 3d e d’ (v(a, b(a), )= ¥(c, d, t)).
If we let @’ = {c}, a=c, d' = {b(c)}, d = B(c) this becomes the theorem
Ve Vb Vit (v(c, b(c), 1> v(c, b(c), 1))

Therefore, letting A(x, y, z, w) be the part of (12) after the quantifiers, we need
only show in & that the reduction of Vw Vx A(x, x, x, w) implies the reduction
of Vw Vx 3y 3z A(x, y, z, w). By taking ordered pairs (w, x) and (y, z) we may
simplify the notation: we need only show in s that the reduction of Vx Z(x, x)
implies the reduction of Vx 3y 3(x, y). Equivalently, we need only show in
that the reduction of 3x Vy A(x, y) implies the reduction of 3x A(x, x).

Let the partial reduction of A(x,y) be Vu3I*vd(w,v,x,y). Then the
reduction of 3x Vy A(x, y) is

39’ V*=u’' IxVueu’'Vy Ive v'(u) 6(u, v, x, y), (15)

where ¥’ denotes a finite-set-valued function. Writing t(u, v, x) for é(u, v, x, x),
we see that (15) implies

39’ V=’ Ix Yu e u’ Iv € 5'(u) t(u, v, x). (16)
The reduction of 3x A(x, x) is
30 V™' Ix Yu e u’ t(u, 5(u), x). (17)

We need to show that (16) implies (17). Suppose that (16) holds, and let #’ be
such that

V&' 3x Vu € u’ 3v € ' () 7(u, v, x). (18)

Recall that u is restricted to range over a certain set X in M. Let  be the
Cartesian product over u of the finite sets ¥'(u). Thus Q is the set of all
cross-sections of #'. Give Q the product topology, where each ©#’(u) has the
discrete topology. By Tychonov’s theorem, £2 is a compact space. By (18), for
each finite u’ there is a ¥, in £ such that 3x Yu e u’ ©(u, v,(u), x). The u’ are a
directed set under inclusion, so that u’'+— @, is a net of points in . Let © be a
limit point of this net. By definition of the product topology, for all finite »' there
is a finite w' containing ' such that ¥ agrees with ¥, on u’, and so
3x Yu e u’ t(u, (u), x). This proves (17). O

This completes the syntactical interpretation of &/* within .
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4. The unrestricted standardizztion principle

In #* we adopted (S,) rather than (S’) as an axiom scheme, but the
unrestricted standardization principle (S') is quite useful in nonstandard analysis.
We claim that (S') is a theorem of &£*. Let the reduction of ®(x,y) be
V*u 3*v ¢(u, v, x, y); then we need to prove

Vix 3% V*'u 3% ¢(u, v, x, y) > 37 V' V*'u 3% ¢(u, v, x, §(x)). (19)
We claim that it suffices to prove
Vx 3% V'u ¢(u, x, y) > 3% V*'x V*u ¢(u, x, y(x)). (19a)
This is because, using (S,), we can rewrite (19) as
Vix 3%y 30 V'u p(u, 5(u), x, y) > 3% V*'x 30 V'u p(u, 9(u), x, (x)). (19b)
Applying (19a) with y replaced by the pair (y, ¥), we have

Vx 3%y 3*0 V'u ¢(u, (u), x, y)>
3% 30 V*'x V*'u ¢ (u, 9(x)(u), x, y(x)), (19c)

but the consequent of (19c) implies the consequent of (19b) (let ¥ = ¥ (x)).
Using (S,) twice, we can rewrite (19a) as

V¥xo V¥itp 3°Yo @ (@o(Yo): X0, Yo) > V*X Vi Iy p(a(¥), £(5), y(%(5))), (19d)
and using (So) again we can rewrite the antecedent of (19d) as
F%¥0 V¥'xo V¥'iis $(e(Fo(xo, #o}); Xo, JolXo, o))-
Thus (19a) is equivaleat to
V', V*'E V¥'a 3%y 3%x, 3%,
(¢ (F(o(xo, @), Xo, Fo(xo, Eo)) = P (&(F), X(F), ¥(X(¥))))- (19¢)
But (19¢) is a consequence of
V5 V' Vi 3% 3%x, I,
(@o(Fo(x0, o)) = &(F) A X0 =X(F) A JolXo, o) = F(X(7)))- (196)
By (T) we may delete the superscripts ‘st’ from the quantifiers in (19f). (We could
not do this earlier because ¢ might contain undisplayed free variables.) Now we
can use the axiom of choice freely to interchange quantifiers, and we find that
(19f) is equivalent to
Vi 37 Vx Yu Axo idp (Go(Fo(xus o)) = u A Xo=x A FiolXo, i) =F(x)), (19g)
Vo Vx 3y Vu 3xo 3, (ie(Fo(¥o, #o)) = u A Xo=x A Jo(Xo, #o) =), (19h)
V5o Vx Vii 3y 3xo Jiy (@o(Fo(xo, o)) = @(y) A Xo=x A Jo(Xo, Ho) =y). (191
But (19i) is trivial: let y = ji|(x, &), let xo=x, and let #, = . This concludes the
proof of the unrestricted standardization principle.
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I am grateful to Professor L. Haddad for pointing out an erroneous argument
in the original version cf this section.

5. The saturstion principle

In {3, Section 2] we demonstrated two useful general principles of nonstandard
analysis which follow from the reduction algorithm. Here is a third, which we call
the saturation principle. It is a theorem of s£* in whick ®(x, y) is any formula of

AR
% .

Vox 3y &(x, y)=> 3y Vx 2(x, 7(x)). (20)
Proef. Let the partial reduction of &(x, y) be V'u v ¢(y, v, x, y). Then we
need to show that ;

Vo Iy Vu Fv P(u, v, x, y) (21)
implies

3y Vox V'u 3% ¢(u, v, x, 7(x))- (22)
Applying (So), (I), and (So) we see that (21) is equivalent to.

I Vi V==’ Iy Vu e u’ ¢(u, 9(x, u), x, ), (23)
and applying (S,) and (I) we see that (22) is equivalent to

Ity VoEx vy J5Vx e x’ Vu e u’ oy, i(x, u), x, 7(x)). (24)

Let ¥ be a standard function such that (23) holds for it, and let %’ be any standard
finite set. Then (23) becomes

V*x 3y Yu e w’ ¢(u, i(x, u), x, y) _ (25)
and we need to show that
V=i’ 35 Vx e x’ Vu eu’ ¢p(u, 5(x, u), x, 7(x)). (26)

But since every element of a standard finite set is standard [3, Theorem 1.1), the
implication (25) > (26) is clear. O

6. Application to IST

Suppose that the first-order theory o we start with is ZFC itself. Then o will
not be ZFC, but the theory of a model of ZFC. In doing ordinary mathematics it
is important to stay with set theory itself, rather than introduce a model of set
theory which may have unpleasant features. The simplest way around this
difficulty is perhaps the following, which uses an idea of Lévy as suggested to me
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by Powell. Let ZFC[V] be ZFC with a constant V and the following additional
axioms:

V=R(a) for some ordinal a, 27)
9", (28)

where ¢ is any formula of ZFC and ¢" is its relativization to V (see the Appendix
to [3] for a definition of these notions). Then ZFC[V] ic a conservative extension
of ZFC; this is the reflection principle (see e.g., Theorem 8.7 of [3]). The
reduction algorithm interprets any statement of IST as a statement of ZFC[V],
and the argument given in this paper shows that any proof in IST may be
regarded as an abbreviation of a proof in ZFC[V].

The theory ZFC[V] is essentially ZFC™ with the additional axiom (27). The
advantage of (27) is that the increase in logical type arising from the reduction
algorithm is, in the case of limited formulas, only apparent: if 7:V—V and
x €V, z eV and the range of y on x is contained in z, then the restriction #, of
to x is an ordinary function from x to z (i.e., is an element of V).

For example, the saturation principle (20) gives the following theorem of IST,
in which ®(x, y) is any formula of IST:

Theorem S (Saturation principle). Let X and Y be standard sets, and suppose that
Jor all standard x in X there is a y in Y such that we have ®(x, y). Then there is a
Junction y: X— Y such that for all standard x in X we have ®(x, j(x)).

7. An example

In the literature it is customary to make sharp distinctions between standard
theorems and nonstandard theorems, and between standard proofs and nonstan-
dard proofs. Our results show that this is not a very basic distinction. Every
nonstandard theorem of IST can be rewritten, using the reduction algorithm, as
an equivalent standard theorem in ZFC[V], and every nonstandard proof in IST
can be rewritten, using the algorithm developed here, as a standard proof in
ZFC[V)

The advantage of stating certain theorems in nonstandard form is one of
simplicity: the nonstandard version may have fewer quantifiers and be of simpler
logical type. It is worth remarking that this is only possible when one adopts the
full idealization principle (I) with free variables taking arbitrary internal values
(corresponding semantically to an adequate ultralimit) rather than the restricted
idealization principle of Robinson’s notion of an enlargement in which ail
parameters must be standard (corresponding semantically to an adequate
ultrapower).

An additional advantage of nonstandard proofs is that inferences which are
trivial in nonstandard analysis may be difficult when reduced to standard form. As
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an example, consider the nonstandard proof of the Tychonov theorem (see e.g.,
[3, Theorem 6.2]).

Let T be a set, t— X, be a function from T to compact topoiogical spaces, iet
@, be the set of ail open subseis of X,, and let Q be the Cartesian product
Q=L X, with the product topology. We need to show that Q is compact. By
traasfer, we may assume that T, ¢t X,, ¢—> %, and Q are standard, so we treat
them as constants.

Let &(w) be the formula

VeeTI'eX,VUec¥% (o) eU>nel)
and let W(w) be the formula
F*5 € QVt VU € % (0(t) e U ij(r) e U).

Then th: nonstandard proof goes as follows. Let @ € Q. Then () holds
because a point o(f) in a standard compact space is near standard. Therefore
Y(w) holds by the standarcization principle, but by defivition of the product
topology W(w) says that @ is near-standard in £, so that £ is compact.

The reduction of Vo ¥(w) is simply the hypothesis that each factor is compact,
the reduction of Yo (P(w)> P(w)) is somewhat complicated but trivial (being
an instance of siandardization), and the reduction of Yo P(w) is the conclusion
of the theorem! This illustrates that the reduction of (vi), to take care of modus
ponens with a parameter, is the key to reducing a nonstandard proof to a
standard one. (The example is of course somewhat circular because the Tychonov
theorem for products of finite spaces was used in the proof of Thecrem 4.)

What is really new in nonstandard analysis is not theorems cr proofs, but
concepts—external predicates, such as “x is infinitesimal” or “w is near-
standard”. These correspond to nothing in conventional mathematics. Some of
them express old mathematical intutitions which were long regarded as illegiti-
mate; others express intriguing new concepts for which intuition can be developed.

For a striking example of a new and important result discovered by nonstan-
dard analysis, and making highly nontrivial use of nonstandard concepts, the
reader is referred to the paper [1] by Lawler on self-avoiding random walks.
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