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However, from a formalist point of view 
we may look at our theory syntactically and 
may consider that what we have done is to 
in~new&~eprvKxduresrather 
than new mathematical entities. 

Abraham Robinsun [a3 

1. The q&ax of Wandad 

In [3] I presented a codi&tion of a large part of nonstandard analysis, called 
Internal Set Theory (IST). Here we will show that proofs in IST may be regarded 
as abbreviations of proofs within conventional mathematics. That is, we analyze 
Robinson’s ‘ney deductive procedures’. In doing so, we solve (to the extent that 
IST cod%= nonstandard analysis) a problem posed by him in his retiring 
presidential address before the Association for Symbolic Logic [S]. Problem 11 
reads, in part, “to devise a purely syntactical transformation which correlates 
standard and nonstandard proofs of the same theorems in a large area, e.g., 
complex function theory”. 

In IST a new predicate “x is standard” is adjointed to conventional mathe- 
matics, which we take to be Zermelo-Fraenkel set theory with the axiom of 
choice (ZFC). This new predicate is devoid of semantical content. That is to say, 
it is meaningless. The three axiom schemes of IST-namely, the transfer 
principle (T), the idealization principle (I), and the standardization principle 
(S) -give rules for manipulating the new predicate. 

When working in the framework of IST, it is iApfu1 to &ink of using ‘standard 
in very much the same way that ‘fixed’ is used in informal mathematical 
discourse. For example, let R’ = {x E R :x > 0) and consider 

there is an x in lR+ which is smak than any fixed e in R+. (1) 

This is a common way of expressing a true statement about R+. But suppose we 
go on to say that such an x is called infinitesimal; that is, we define a number x in 
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ITbe likely response to this would be: You have misunderstood the syntax of the 
M st&ement (1); although it has the form 

whatitmeansis 

To this the practitioner of IST respondsz We agree that (1) and (5) mean the 
9 but that is precisely what (3) and (4) mean. By adjoining the 

‘x iz standarC (or “x is fix&‘) to conventional mathematics, we are 
abk to speak about in&&&As in the ordinary system R+ without adjoining 
any new mathematical entities. Formulas in IST with free variables, such as (2), 
may not have any meankg in conventional terms, but every statem xtt (formula 
with no free varisbk) in IST does have meaning in conventional tams-this is 

what the xedwtim algorithm of [3] (which is descri&ed more simpiy in Section 2 
beIowj accomplishes9 reducing (4) to (S), for example. 

The point of view towards EST which we advocate is thy external statements be 
rega&d as abbreviations for certain inted statements. The reduction algo- 
rithm codiik the process of finding the equivalent internal statement, treating 
‘standard syntactically like ‘fixed’ to reorder the quantifiers. Proof% in IST differ 
from standard proof& in that they treat “x is fixed” as a predicate. 

Let SQ be a W-order theory, with propositional connectives =$ and -, 
universal quantier V, predicate letters A?, and individual constants e. The other 
propositional connectives and the existential quantier are introduced as ab- 
breviations, and the notions of formula and statement are defined in the usual 
way. Later we will give the fom of the logical axioms and rules of inference. 

The reduction algorithm increases the IogicaI type of formulas, so we will need 
a richer language, the language of a model of A Let Js’ be ZFC together with 
constants M, AT,4 and the axioms which assert that these are a model of A Let 
fi be the zmakst set such that M E A@ and whenever X, Y E a9 then P&X) E I!! 
and Xy E I@, where I’&(X) is the set of ah kite subsets of X and Xy is the set of 

functions fkom Y to X By a formula of 3i we will always mean a formula in 
which each variable is restricted to range over a certain element of I@; it will not 
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be mmssary for our purposes to gin a detailed formlization of d as a first-order 
system with Merent types of variables. 

Let sQ* be d together with the unary predicate letter “standard and the 
axioms stated below. We use lower case Latin letters to denote n-tuples of 
variables, including the possibility it =O We use capital Greek letters for 
formulas of J1p* and lower case Greek letters for internal formulas of sQ+ 
(formulas of d). In addition, we use the rather self-explanatory abbreviations of 
[3]. The additional axioms of &* are the axioms asserting that M, A;, and & are 
standard and the axiom schemes 

We call (SJ the rest&ted stamhdization principle because Q is restricted to be 
internal. We will show in Section 4 that the unrestricted standardixed principle 

is a consequence. 
Let Cp be a fomrula of JP. We shall define what is meant uy the partial 

red&i&z @’ of @. As a preliminary, we firs0 rewrite @ so that every occurrence 
of “x standard” is replaced by “33~ =x” and so that no variable x is quantitied 
twice. 

The partial reduction @’ will always be of the form V% 3% #(u, 1’). If Q, is 
internal we detie Cp’ to be @. Suppose that @ has the partial reduction 
V% 3% #(u, v), and similarly for +D1 and &. We define inductively 

(-@)’ to be V% 3% -#(u, 9(u)), 

(@I =, G-2)’ to be )flsfuX& 3% -2 (O&l, @,(u,)) + +&J*, vz)), 

(Vx @)’ to be V% 3*%‘Vx 3v E v’ #(u, v), 

(V% @)’ to be V% V% 3% @(U, v,\. 

By (I) and (SO) it is a theorem of JP that @c+ a’. Notice that @’ has the same 
free variables as @ and so is a statement if and only if @ is a statement. If @ is a 
statement whose partial reduction @’ is V% 3% #(u, v) we define its reductkm 
@* to be VU 3v #(u, v). By (T), it is a theorem of &* that @e a”. Notice that 
a0 is an internal statement; that is, a statement of Js”. 

3. Redaction of pmofb 

The system &* is a conservative extension of d. This is because the additional 
axioms (T), (I) and (SO) express properties of adequate ultralimits, and this 
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m may be carried out within d (see for example the Appendix to [3]). 
This is a semantical approach to the relationship between nonstandard analysis 
and conventional mathematics. 

Oluaiminthis~ristoejvea~~~~~algorithmwhich~~a 
~fLJd*andoonvertsitstepby~intoaproofwithins5.C)ne~~ 
which we face at the outset is that form&s with free variables in .cB* have no 
inteqretatk~ within ~8, and one of the rules of inference-generalization-is 
used for such formulas. Fortunately there is a formulation (see [2, Exercise 2, p. 
621) of the notion of a &s&order theory in which modus ponens is the only rule of 
inkence. In this fkmulation the proper axioms are any collection of statements 
and the logical axioms are all ckures of formulas of the following form: 

(i) @*(p* a), 
(ii) (@*(p*4)*((@+ Y)$(@$4), 

(iii) (-‘p*-@)*((~~$@)3 q, 
(ii) V’ @(x)* @(t) where t is an individual constant or variable, 
(v) Vy(fPWP)$(@$VyW) if@hasnof&e occurrence of y, 

(vi) VY w* WXVY @MY w- 
T’k usual foxaxkhon of the notion of a srst-order theory [2] has as its rules of 

infkzence modus ponens and generalization, for proper axioms any collection of 
tiuhts, and for logical axioms (i)-(v) (rather than the closures of (i)-(vi)). It is 
easy to see that a statement is a theorem according to the usual ferm-elation if and 
only if it is a theorem according to the above formulation. 

The following theorem is used in reducing modus ponens from SP to ~8: 

which in equivalent to 

vu1 3% Ol(U,, VI) -s, vu2 3v2 4J2042, v3. 0 

Since the consequents of the implications (6) and (7) are the same, to show that 
(Q+(7) we need only show that the antecedent Vu1 3v, #& v,) of (7) implies 
the antecedent 381Vul &(ul, fil(ul)) of (6). But this is a theorem of d; 
namely, the axiom of choice. 0 

We will show, in Theorems 2, 3, and 4, that the reduction of every axiom of 
JIP is a theorem of J& Then the description of our syntactical algorithm is very 
simple. Let aI, l - l , Gn be a proof in &*. Thus each @i is a statement of sQ* 
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which is either an axiom of srl* or follows by modus ponens from @i and & with 
j, k c i. Suppose by induction on i that for all j < i the statement @; is a theorem 
of d. (This is vacuously true for i = 1.) We need to show that @y is a theorem of 
J& If @ is an axiom of JC this is true by Theorem 2,3, or 4. So suppose that #$ 
follows by modus ponens from @i and & with j, k <i; that is, suppose that @k is 
aj+ ai. By the induction hypothesis, (aj* @JO is a theorem of ~8, so by 
Theorem 1 and modus ponens in ~8 the statement @;+ @r is a theorem of & 
Since by the induction hypothesis @i is a theorem of J& we have by modus 
ponens in ~8 that !I$ is a theorem of J& which completes the induction. Thus 
the entire proof reduces to a proof in ends. 

We know from semantical considerations that the reduction of every axiom of 
8P is a theorem of 8Z The purpose of proving this directly in Theorems 2,3, 
and 4 is to obtain a better understanding of what makes nonstandard analysis 
work. 

The proof of Theorem 2 shows that the reductions of (‘I) and of the closures of 
(I) and (S,,) are trivial theorems of d, being essentially tautologies of the form 
* =$@. This is not surprising, since these axioms are just the rules for forming 
reductions. 

The logical axioms are more interesting. The proof of Theorem 3 shows that 
the reduction of a tautology ((i), (“) n , or (iii)) involves only the consideration of 
an explicit finite number of cases, and the reduction of the rule of specialization 
(iv) is trivial. . 

The only non-trivial case is (vi), considered in Theorem 4. (The axiom (v) is 
essentially a special case of (vi).) Mathematical reasoning is full of uses of modus 
ponens with parameters: from e(y) and a(y)+ Y(y) infer Y(y). Since we 
must deal only with statements, we must reformulate this as: from Vy Q(j) and 
Vy (e(y) _?rr Y(y)) infer Vy Y(y). But (vi) (and modus ponens for statements, as 
discussed above) is precisely what is needed to reduce this inference from Se* to 
J& Thus Theorem 4 is the heart of the matter: a simple inference in nonstandard 
analysis may, when expressed in standard mathematics, entail a complicated 
cross-section argument (see the proof of Theorem 4). This point is illustrated by 
example in Section 7. 

For convenience in proving Theorem 2, we split the equivalence (I) into two 
implications (II) and (I*). 

Theorem 2. l%e reductions of the additional axioms of s9*, namely “M is 
standard”, “A; is standard”, “ai is standard”, aid 

0 tp’t (Vx #(x, t) 3 Vy #(y, t)), 

(I ) Y VW (3x imy tp(x, y, w) $ tP%‘ 3a vb E b’ #(a, h w)), 

(I ) 2 VW (#?‘y’ 3x Vy E y’ +(x, y, w) 3 3a Vb #(a, b, w)), 

@ ) 0 VW (IPx ?y t$(x, y, w) 3 3% Va @(a, b(a), w)), 

where each q3 is internal with no undisplayed free variables, are theorems of J& 
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PlooQ. The reductbn of “A# is stauda&” is the theorem Sxx = M, and similarly 
for A& and 4. The statement cr)” is the theorem Vt 3x ($(x, f) * Vy #(y, t)). 
N-9 (by is 

vw3~‘Eym(3xvy~y’~(%, .VI w) + 3a Vb E 6’ #(a, b, w)). (8) 

)@ is the above statement with 3x Vy EY’ #(x, y, w) replaced 
w), but the two forms are of course equivalent in d 

comments in the future.) Let y” = {b’} aud y’ = b’. 
(8) beames the 

E b’ #(x, y, w) =$ 3a Vb E b’ #(a, b, IV)). 

Wespldthat(I$isid pvith (I$, aud so is a theorem. Finally, (so)0 is 

Vzw~ P!x’ 3-6’ EX’ 36 E 6’ (g(x, j(x), w) + g@(d), I@(6)), w)). 

L&t 6’ = {jq, 6 =j~, XI = {a-@)}, x = bcy’). Then this becomes the theorem 

v4z vy VbV (4wV)), y’(q_% w) * O(NjQ, y’(a’(y)), w)). 0 

3. l%e &uctkts sf “&e clkues of(i), (ii), (iii), and (iv) an? tktmxw 
of da-. 

Rw#. Theclosureof(i)maybewritten 

whose reduction is 

Ve ~a ~6 Pa’ 3%’ 37’ VW 3:~ E a’ 3c E c’ 3f E f’ 

G#Gh d(o), w) 3 (*(c, d(c), ~1 3 *(e,fi ~11). 

Let u’ = {e), let c’ be any non-empty finite set, let f’ = {B(e)), a = e, c E c’, and 
f =6(e). Then the becomes the closure of a tautology of the form 
4w?H40- 

The closure of (ii) may be w&ten 

VW ((tpa 3*b @(a, b, w) * WC 3% @(G 4 w) *Fe 3”fnk fi w))) 

+ ((V?g 3% &g, h, w) + v9 3*i 9(& i, w)) 

+ (Fk 39 #(k, 1, w) =s* 3% A@, n, w))), (9 

whose reduction is 

Vm&@,, 3fi”eJd’6’i’h”k’n’ VW 3e E e’ d E d’ 6 E 6’ i E i’ 6 E fi’ k E k' n E n’ 

((#(a, 6, w) * (Y@, 6, w) 3 A@, Ii ~1) * ((+(g, 6, w) 3 ly(i, i 4) 

* (+(k l w) 3 Xm, n, w)))), (10) 

where we have omitte e arguments of the finctkus. Let e’ = {m}, e = m, 
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n’=(f), #&=f, i’=(E), i--i;, h’= {;I, d =i Then ly(E, d, w) and q(i,; w) 
are the same form& @, and A&f, wj and A(m, n, w) are the same formula A. 
However, thae is no way to make #(3,6, IV), #(,g, 6, w), and #(k, i# W) all be 
the sme formula, so we Iet k’ be the two-element set k’= {&g} and let 
6’ = {I,, 6 =I; L’ = {l}, fi = l Then the statement becomes the closure of a 
tautology of the form 

vctel~<~3~))~((~2;3~)~(~2~~))* (11) 

vo see that (11) is a tautology, observe that if #1 and e2 have opposite truth 
values, then ohe of the hal consequents #,+A or 4i2*A is true and so (11) is 
true. But if +I and 92 are equivalent, then each disjunct in (11) is equivalent to a 
tautology of the form (ii).) Similarly, the closure of (iii) has the reduction 

Let 6’= t/i}, h =6, 6’ = {;}, 6 =;, g’ = {E}, g = C, f’ = {i’>, f =i; and let 
i’ = {&, Z}. Then the statement becomes the closure of a tautology of the form 

((-sl'"g)~((-~2~~)-31)) 

V(("~~~13~~)~((~ty2~~)~tl*))* _ 

Finally, if t is a variable the closure of (iv) may be written as 

VW Vt (Vy Va 3*b +(a, b, y, w) + V% Fd +(c, d, t, w)), 

whose reductiorz is 

Vc V%’ 369a’ 3&d’ VW Vt 3a E a’ 3d E d’ 

(Vy 3b E 6’(a) $(a, b, y, w) 3 #(c, d, t’ w))- 

(If t is a constant, omit Wt.) Let a’ = {c}, a = c, d’ = {6’(c)}. Then the statement 
becomes equivalent to the closure of 

Wy 3b E 6’(c) $(c, b, y, w) 3 3b E b’(c) #(c, b, t, w) 

which is of the form (iv) and so is a theorem of A& 0 

2Yie reduction of the closures of (v) and (vi) are theorems of J& 

Pmuf. We give the proof for (vi). The case (v) follows simply by omitting the 
variable z. 

We may write-the closure of (vi) as 

VW vx 3y 32 ((@(y, w) + Y(y, w)) * (@(z, w) + Y(& 4)). (12) 
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course, is to let y and z be x. We claim that the reduction of 

VW vx ((@(x, w) * w, w)) * (@(& w) 3 qx, 4) 

is a theorem of d. To see this, notice that (13) is of the form 

Vt (r(t) + r(t))* 

(13) 

(14) 

of r(t) be V% 3% y(u, v, t). Then the reduction of (14) may 

vc ~6 3&a’ 3@‘d’ Vt 3a E a’ 3d E d’ (y(a, 6(a), t) * y(c, d, t)). 
of we let 4’ = {c}, a = c, de = {6(c)}, d = 6(c) this becomes the theorem 

Vc V6 Vt (I@’ 6(c), t) 3 Y(G 6(c)’ t)). 

T&e&ore, letting A(,, y, 2, w) be the part of (12) after the quantifiers, we need 
- that the reduction of VW Vx A@, x, n, w) implies the reduction 

3zA(x,y,r, w). Bytakingorderedpairs (WJ) and (y,r) wemay 
notation: we need only show in a that the reduction of Vx X(x, x) 

the reduction of Vx 3y X(x, y). Equivalently, we need only show in a 
reductbn of 3x Vy A&, y) implies the reduction of 3x A&, x). 

Let the partial reduction of A&, y) be V% 3%5(u, v,x,y). Then the 
xedu&mof3xVyA(x,y)is 

36’ IF%’ 3x vu E u’ vy 3v E B’(u) 6(u, IJ, x, y), (19 

where 6’ denotes a ii&e-set-valued function. Writing z(u, v, x) for Q(u, u, x’ x), 
we see that (15) implies 

30’ IF%’ 3x vu E u’ 3u E O’(u) t(u, u, x). (16) 

The reduction of 3x A&, x) is 

3@ V94’ 3x vu E u’ t(u, e(u), x). (17) 
We need to show that (16) implies (17). Suppose that (16) holds, and let a’ be 

suchthat 

Pu’ 3x vu E u’ 3u E B’(u) k(U, u, x). (18) 

RecallthattrisrestrictedtorangeoveracertainsetXin~.LetSZbethe 
Carte&n product over u of the fmite sets S’(u). Thus In is the set of all 
cros~~Gon.s of 6’. Give Q the product topology, where each a’(u) has the 
discrete topology. By Tychonov’s theorem, Q is a compact space. By (18), for 
each finite u’ there is a a,# in Q such that 3x Vu E u’ t(u, 6,.(u), x). The u’ are a 
directedsetuaderinclusion,sothatu’H~,.isanetofpointsin~.LetiTia 
limit of this net. By definition of the product topology, for all finite u’ there 
is a f&e w’ containing u’ such that fi agrees with 6,# on u’, and so 
3x Vu E u’ +(u, G(u), x). This proves (17). CJ 

(ioIll]pfetes the syntactical interpretation of d* within JZ. 
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4. The anmtcbd strrndrvdizrptlon principle 

In J$* we adopted &) rather than (S’) as an axiom scheme, but the 
umestricted standardization principle (S’) is quite useful in nonstandard analysis. 
We claim that (S’) is a theorem of 8P. Let the reduction of @(x,y) be 
V% 3% $(u, V, x, y); then we need to prove 

v% 33 It%4 3% #( u, v, x, y) * 3*y v% v% 3% $(u, V, x, y’(x)). (19) 

We claim that it su.fEces to prove 

Vx 39 Vz4 @(u, x, y) $3V If% II% @(u, x, B(x)). 

This is because, using (so), we can rewrite (19) as 

(19a) 

Fx 39 3% V% #(u, I@), x, y) 3 377 W7x 3% V% #(u, O(u), x, y’(x)). (19b) 

Applying (19a) with y replaced by the pair (y, ii), we have 

‘tp’x 39 3% v% #(u, ii(u), 116, y) $2 
36fy’ 3”6 #Px Vu #(u, b(x)(u), x, y’(x)), (19c) 

but the consequent of (19c) implies the consequent of (19b) (let ti = 6(x)). 
Using &) twice,_we can rewrite (19a) as 

tl”fx, V%, 390 4@o(yo)s xo, YO) +vf viz 3sfy’ #W.Y~~ x’(f), y”(W))), (19d) 

and using (S,,) again we can rewrite the antecedent of (19d) as 

390 -0 v&I 4@o~o(xo, &))l x0, %,(x,, go))* 

Thus (19a) is equivalent to 

But (Me) is a consequence of 

FjQ!% v% 39 3”fx, 3*i& 

@o(jio(xo, go)) = C@) A x0 = x’(y) A y&o, 6,) = j@(j-Q)). (19f) 

By (T) we may delete the superscripts ‘St’ from the quantifiers in (19f). (We could 
not do this earlier because # might contain undisplayed free variables.) Now we 
can use the axiom of choice freely to interchange quantifiers, and we find that 
(19f) is equivalent to 

v$) 3y’ vx vu 3x0 3iso (a&!&, 60)) = u A x() = x A j&(x(), ii()) = Y(x)), (19g) 

vyo VX 3y VU a0 3tio (tio(jfo(Xo, tie)) = U A X0 = X A jfo(Xo, &) = y), (1W 

VjfovX vti 3y 3x0 34~ (l&j(j&(Xo, iig)) = ii(y) A X0 = X A jjo(Xo, co) = y). (1%) 

But (19i) is trivial: let y = yo(x, ti), let x0 = x, and let Co = iZ. This concludes the 
proof of the unrestricted standardization principle. 



all to professor L. for pointing out au erroneous argument 
verskm Gf this section. 

5. 

In [3, Section 21 we denmstrated two useful general principles of nor&an&d 
fhm the reduction alpith. Here is a third, which we call 

pdnci@. It is a theorem of J#* in which @(x, y) is auy formula of 

* 3Y @@, y)*W vfx @t% y’w (20) 

the paid redudhn of @(,x, y) be VU 3% @(u, V, x, y): Then we 

vx 3y 'fpfu 3% qqtr, v, & y) (21) 

implies 
3y’ v% vu 3% qp(u, v, x, y’(x)). (22) 

&NYM 0s 0, ad (So) weseetha?(21)iseq$valentto. 

3% v% W-W 3y Vu E u’ #(u, qx, u), x, jLj), (23) 

~daFpiyiag(%)~O we see that (22) is equivalent to 

3% V-x #P-u’ 39 vx EX’ vu E u’ @(u, 0(x, u), x, y’(x)). (3) 

Let -ii be a staudard function such that (23) holds for it, and let u’ be any staudard 
fhite set. Then (23) becomes 

v% 3y vu E u’ #(u, ii(x, u), x, y) (29 

aud we need to show that 

V-x 39 vx E x’ vu E u# #(f& 6(x, u), x, u’(x)). (26) 

But siuce every element of a standard bite set is standard [3, Theorem 1.11, the 
implication (25)*(26) is clear. 0 

Suppose that the first-order theory d we start with is ZFC itself. Then d will 
uot be ZFC, but the theory of a model of ZFC. In doing ordinary mathematics it 
is importaut to stay with set theory itself, rather than introduce a model of set 
theory which may have unpleasant features. The simplest way around this 

is perhaps the following, which uses an idea of L&y as suggested to me 
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by Powell. Let ZFC[V] be ZFC witi a constant V and the following additional 
axioms: 

V = R(a) for some ordinal ar, (27) . 

#*qf, (28) 

where # is any formula of ZFC and ev is its relativixation to V (see the Appendix 
to [3] for a definition of these notions). Then ZFCJV] is a conservative extension 
of ZIG; this is the reflection principle (see e.g., Theorem 8.7 of [3]). The 
reduction algorithm interprets any statement of IST as a statement of ZFC[V], 
and the argument given in this paper shows that any proof in IST may be 
regarded as an abbreviation of a proof in ZFC[V]. 

The theory ZFqV] is essentially ZFC with the additional axiom (27). The 
advantage of (27) is that the increase in logical type arising from the reduction 
algorithm is, in the case of limited formulas, only apparent: if jkV+V and 
xEV,zEVaLLC1~erangeofy’onxiscontained;oz, thentherestrictionj?!ofy” 
to x is an ordinary function from x to 2 (i.e., is an element of V). 

For example, the saturation principle (20) gives the following theorem of ET, 
in which @(x, y) is any formula of IST: 

Theorem 5 (Saturation principle). Let X and Y be standard sets, and suppose that 
foraUstan&dxinXthe&sayinYsuchthatwehave@(x,y). lknthereisa 
Ernction~:X-*YsuclrtltatforallsrandardxinXwe~e @(x,y’(x)). 

7. An examph5 

In the literature it is customary to make sharp distinctions between standard 
theorems and nonstandard theorems, and between standard proofs and nonstan- 
dard proof& Our results show that this is not a very basic distinction. Every 
nonstandard theorem of IST can be rewritten, using the reduction algorithm, as 
an equivalent standard theorem in ZFC[V], and every nonstandard proof in IST 
can be rewritten, using the algorithm developed here, as a standard proof in 

zFc[VI 
The advantage of stating certain theorems in nonstandard form is one of 

simplicity: the nonstandard version may have fewer quantifiers and be of simpler 
logical type. It is worth remarking that this is only possible when one adopts the 
full idealization principle (I) with free variables taking arbitrary internal values 
(corresponding semantically to an Gdequate ultralimit) rather than the restricted 
idealization le of Robinson’s notion of an enlargement in which all 
parameters must be standaxl (corresponding semantically to an adequate 
ultrapower). 

An additional advantage of nonstandard proofs is that inferences which are 
trivial in nonstandard analysis may be diflicult when reduced to standard form. As 
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con&k the nonstandard proof of the Tychonov theorem (see e.g., 

a function from T to compact topological spaces, let 
the set of a3 open sub&s of XII and let sd be the Cartesian product 
&I with the product topology. We need to show that sh is compact. By 
wemayasmmethatT,t-X,, t-Q,andQarestandard,sowetreat 

Then th? nom proof goes as follows. Let cuESh. hOIdS 

becauseapointcu(t)inastandardcompactspaceisnear refore 
?P(@ holds by the standar&ation principle, but by de&Son of the product 

near-star&& in sh, so that Q is compact. 
is simply the hypothesis that each factor is compact, 

the reduction of Fla, (@@I)+ SP(cu)) is somewhat a~mplicated but trivial (being 
an &tance of standardization), and the reduction of Vm T(m) is the conch&on 
of the theorem! This iUustrates that the reduction of (vi), to take care of modus 

w&h a parameter, is the key to reducing a nonstandard proof to a 
one. (‘Ihe examp!e is of a~urse somewhat circular because the Iychonov 

theorem for products of finite spaces was used in the proof of Theorem 4.) 
What is really new in nonstandard analysis is not theorems or proofs, but 

coneqts-external predicates, such as ‘x is infhritesimal” or “0 is near- 
star&S’. These correspond to nothing in conventional mathematics. !&me of 
&em express old mathematical intutition~ which were long regarded as illegiti- 
mate; others express intriguing new concepts for which intuition can be developed. 

For a &king example of a new and important result discovered by nonstan- 
dard analysis, and making highly nontrivial use of nonstandard concepts, the 
reader is referred to the paper [1] by Lawler on self-avoiding random walks. 
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