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Abstract 

This paper surveys some combinatorial problems that have arisen in Music Theory, or which 
have been suggested by musical topics. It includes a new look at the enumeration of tone-rows 
and the problem of finding the number of different ways of playing the piano work 'Klaviersttick, 
no. 11' (1956) by Karlheinz Stockhausen. 

I. Introduction 

Since classical times, music and mathematics have been traditionally thought of  as 
closely associated. The extent of  this association - -  even its reality - -  can be hotly 
debated; but it is certainly true that from time to time problems arise in the theory of  

music which are o f  a mathematical nature. Often, a problem of  this kind depends on 

one specific value for a parameter, such as the value 12 for the number of  notes into 

which the octave is divided, and for that one value a solution to the problem may need 
little more than arithmetic; but the mathematician will naturally extend the problem to 
general values o f  the parameter, and this can result in something that is far from being 

trivial. 

In this paper I consider some combinatorial problems that have arisen in this way. 

Two of  them are, basically, old, but will be given an added twist that presents some- 
thing novel; the third is, as far as I know, completely new. 

2. Scales and chords 

For the first two problems the basic material with which we shall work is the set of  
12 notes which make up the octave, as shown in Fig. 1. 
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Fig. 2. 

This sequence o f  12 notes repeats above and below the octave shown, so that, with 
the numbering indicated, we are essentially working with the integers mod 12. A scale 

can then be defined as a subset o f  (0, 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) arranged in ascending 

order. A transposition of  a scale is a subset obtained by a mapping of  the form x --~ 

x + c~ (mod 12) where c~ is a constant. We shall regard a scale and a transposition o f  

it to be equivalent. We shall also take no account o f  which note begins the scale (this 

is implicit in the definition o f  a scale as a subset). We ask 'How many inequivalent 
scales are there of  size k, that is, consisting o f  k notes?' 

We can represent this problem by means o f  a circular birthday cake, divided into 
12 sectors. In each sector there may or may not be a single candle. Here the sectors 

represent the 12 available notes, and the candles indicate those notes which are chosen 

to be in the scale as in Fig. 2. 
Transposition is clearly the same as a rotation of  the cake, and we can therefore 

rephrase the problem as 'How many ways are there o f  placing k candles to give cakes 
that are inequivalent under rotation?' 

This is a straightforward P61ya-type problem, and the solution is the coefficient o f  
x k in 

Z (G2 ;  1 -4-x) 

in the notation o f  [3]. Here C12 is the cyclic group of  order 12 and Z( ) denotes the 
cycle index. The numbers thus obtained are given in the last row of  Table 1. 

One can ask 'How many of  these scales are equivalent to at least one o f  their trans- 
positions?' These are the scales that Messiaen [2] has called 'Modes de transposition 
limit6e'. In terms o f  the cakes, they are those that have some kind of  rotational 
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Table l 

Number of  notes 0 1 2 3 4 5 6 7 8 9 10 l l  12 
Symmetry 

1 1 5 18 40 66 75 66 40 18 5 1 
2 1 2 3 2 1 

3 1 1 1 

4 1 1 
6 1 

12 1 1 

All scales 1 1 6 19 43 66 80 66 43 19 6 1 1 

Fig. 3. 

symmetry. The more general question would be to ask how many scales have each of 

the various possible kinds of symmetry. 

The solution to this problem can be found by using M6bius inversion over the lattice 

of subsets of the cyclic group C12, which is shown in Fig. 3. 

The M6bius function for this very simple lattice is just the classical M6bius function 

p(m). The number of cakes that are invariant under a rotation of 12/k sectors, (and 

hence under Ck), is 2 k. This number may include cakes which are invariant under a 

smaller rotation. If An is the number invariant under Cn but not under any larger group, 
then by the M6bius inversion formula we have 

kin 

The numbers thus obtained are shown in Table 1. Needless to say, for the case of 12 
notes these numbers could be (and have been) obtained by exhaustive enumeration; but 
for scales of more notes it would be impractical to compute them by trial and error. 

We remark that if the notes of a scale are sounded simultaneously the result is 
a chord. Hence the problem of enumerating chords is similar to that of enumerating 

scales - -  sufficiently so that we do not need to consider it further. 
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3. Tone rows 

Dodecaphonic or 12-tone music, very popular earlier this century with what were 
then regarded as avant-garde composers, is based on the concept o f  a ' tone row' .  

The basic definition of  a tone row is that it is a permutation of  the 12 notes of  the 
chromatic scale, that is, a permutation o f  (0, 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ). A typical tone 
row (from Sch6nberg's  Piano Concerto) is shown in Fig. 4. 

The purpose of  the tone row is that a composer  will use these notes over and over 
again in strict order. However,  for any given tone row there are others that are regarded 
as equivalent to it. These equivalences are 

(1) Transposition x ~ x + ~ ( m o d  12) (as above) 
(2) Inversion, given by x --~ - x  (mod 12) and 
(3) the retrograde form, obtained by reading the tone row backwards. 
The problem of  enumerating tone rows turns out to be another simple problem 

of  the P61ya type. The results obtained can be found in the interesting paper by 
Reiner [8], and need not detain us. Suffice it to say that the number of  tone rows is 
9, 985, 920. 

Let us now look at a variation of  this problem. Fig. 5 shows one bar from the middle 
of  a composition by an obscure Canadian composer [6]. 

I f  we are asked 'What  is the tone row for this piece? '  we cannot answer. For 
although we know the cyclic order of  the notes, we would have to see the beginning 
of  the piece to know on which note the tone row started. 

It seems natural therefore (although I know of  no previous consideration of  it) to 
consider tone rows that are cyclic permutations of  each other as being equivalent. With 
this extension of  the definition of  'equivalent ' ,  the enumeration problem becomes one 
for which P61ya's theorem no longer applies. 
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Table 2 

2 3 4 5 6 7 8 9 10 11 12 

1 1 2 4 12 39 202 1219 9468 83435 836017 

It is possible to represent a whole equivalence class of tone rows by a single diagram. 
A typical one is shown in Fig. 6. 

The points round the circle represent the 12 notes of the octave, and a tone row 
is represented by the dotted path going from one note of the tone row to the next, 
returning to the starting note. Rotation of this diagram corresponds to transposition. 
The new equivalence corresponds to starting at a different point on the dotted cycle. 
The retrograde form of a tone row corresponds to traversing the dotted path in the 
opposite direction. The inverse of a tone row will correspond to the same diagram 
reflected about some suitable diameter. 

The number of inequivalent tone rows (in the new sense) is therefore the number 
of such diagrams that are inequivalent under the action of the dihedral group DI2. 

This is precisely the number of superpositions of two graphs, each being a cycle ot' 
length 12. Using the superposition theorem, which I introduced in my Ph.D. thesis [4], 
the required number for the general case of n notes can be written as 

N(D~ * D~) 

using the notation of [5]. In fact this result was specifically given in my thesis as 
an example of the use of the theorem, though at the time I had no idea that it had 
anything to do with tone rows! Table 2 gives the numbers for n ~< 12. 

The same result was rediscovered by Golomb and Welsh [1], again as a solution to 
a purely geometrical problem. 
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4. Stockhausen's Klavierstiick, n. XI 

The music of Klavierstfick, n. XI by Karlheinz Stockhausen [9] consists of a single 
large sheet of paper with 19 fragments of music on it. The performer is instructed to 
choose a fragment and play it; then to choose a d i f f e r e n t  fragment and play that; and 
so on. When whatever random device is being used chooses a fragment that has been 
played twice already, the performance stops. 

We ask, 'How many different performances are possible, and what is their average 
length?' More generally, we ask the same question for the case when there are n 
fragments, and when the performance ends with the choice of a fragment that has 
already been played some given number, r, of  times. The length of a performance is 
defined as the number of fragments it contains. 

We can state the problem more mathematically as follows. 
A 'performance' is a string formed from the alphabet (1 ,2 ,3 , . . . ,n )  having the 

following properties. 
(1) No two consecutive symbols are the same. 
(2) The last symbol occurs r + 1 times in all. 
(3) No other symbol occurs more than r times. 

Problem. Find the number of such strings and their average length. 

We start by considering strings subject only to property (1) above, and define a 
generating function 

~ ( X l , X 2 , . . . , X n )  = ~ Am,m2..m,X~'X~2 . . . x  m" 

where Am,m2 ..... is the number of strings in which the symbol 'i '  occurs m i times (i = 1 
to n). 

If, in such a string, we replace every occurrence of i by a number (at least one) of 
repetitions of i, then we shall get a general string over the given alphabet. In fact, all 
strings can be obtained in this way. The replacement of 'i '  by ' i i i . . . i '  corresponds to 
the substitution 

ti 
X i - -  

1 - t i  

and the generating function for all strings, obtained in this round-about way is therefore 

( t ,  t2 tn ) 
- -  ) . . ,  - -  . 

q~n 1 - q ' 1 t2 '  1 t ,  

But this generating function is known to be 

1 

1 - ~ t i  
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Making the substitution ti = X i / (1  + Xi) we find that 

1 1 
q~n(xl,x2 . . . . .  Xn)- -  1 - ~ x, -- .. 

lye:, 1 - -  ~ ( X  i - -  X 2 q -  X~ . )  

1 

1 --  ( P l  - -  P2 + P 3 . . . ) '  

where Pk = ~ i  x~ is the power sum symmetric function. 
Now choose one symbol, say t, to be the terminating symbol. Strings satisfying 

properties (1) and (2) above are then of the form. 

? ? . . . ? t ? ? . . . ? t ? ? . . . ? t ? ? . . . t ? ? . . . ? t  

A Bl B2 B, 

where A and the B's are strings on n - 1 symbols satisfying property (1). A may be 
empty, but the B's must not be. The generating function for these strings is therefore 

n ~ n - l ( ~ n - 1  -- 1) r, (4.1) 

where the multiplier n is for the ways of choosing t. 
In order to find the strings having also property (3) we must extract from the 

generating function (4.1) those terms for which no power of an xi exceeds r. This can 
be done by using a theorem which is implicit in [5]. 

T h e o r e m  4.1. I f  F ( p l , p 2 ,  P3 . . . .  ) & any func t ion  o f  the power  sums  Pi, then the 

coefficient o f  

al a2 a3 
X 1 X 2 X 3 . . .  

in F is 

ml m2 m3 
N ( h  I h 2 h 3 . . .  * F ( p l , p 2 ,  P 3 . . . ) ) ,  (4.2) 

where hi denotes the homogeneous  product  sum symmetr i c  Junction,  and mi is the 

number  o f  a 's  equal to i. 

We sum the left-hand operand of (4.2) over all choices of mi (i~<r), to get a single 
symmetric function on which we perform the * operation with (4.1) as the right-hand 
operand. The result of this operation is the required generating function by length for 
performances. This requires a fair amount of manipulation, but eventually yields the 
following procedure for finding a reasonably simple formula for the generating function. 

(a) Take the function 

(1 + hi t  + hzt 2 + " "  -4- hrtr) n- l  

and write it in terms of the p i ' s .  

(b) Replace each pi by (-1)i+1i2. 
(c) Replace every occurrence of 2 m by m!(m). 
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Table 3 

n Total number of performances when there are n fragments 

2 2 
3 114 
4 5844 
5 380900 
6 32817990 
7 3679720422 
8 524366318504 
9 92857556215944 

10 20037507147592650 
11 5180981746936701530 
12 1582222025035216228092 
13 563668692910591272692844 
14 231745357332413891454727694 
15 108930215000782607407231068750 
16 58055715904927265592770932599120 
17 34827257437680378101378978540586512 
18 23363311171682567813792072652701951634 
19 17423935148332958167310127282862901334594 
20 14370244926747901561521218780905183051217700 

(Details o f  this derivation and much else concerning the Stockhausen problem can be 

found in the research report [7] by myself  and a colleague Lily Yen.) 

For the case r -- 2 the total number o f  performances assumes a particularly simple 

form, namely 

~ ( n - 1 )  (2 i ) , i (2 i -1 )  
n . i 2 i 

from which the number o f  performances for the original problem (n = 19) is found to 

be 
1 74239 35148 33295 81673 10127 28286 29013 34594. 

Table 3 gives the numbers o f  performances when there are from 2 to 20 fragments. 

The total length of  all performances can be found by a modification o f  the above 

method. The average length o f  a performance can then be computed. For the original 

problem it is 38.0045857. The maximum possible length is, o f  course, 39. 

5. A variation and some asymptotics 

The identity o f  the fragment whose choice for the (r + l)th time terminates the 

performance is, o f  course, known to the performer, but not to the listener (since it 
is not played). Thus two performances, identical to the listener, could be considered 
distinct in the above treatment by virtue o f  being terminated by a different choice. 

Hence, from the listeners point of  view, the number o f  distinct performances will be 
less than the number given above. 
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This presents us with a slightly different problem, which, in mathematical terms, is 
that of  enumerating strings with the properties 

(1) No two consecutive symbols are the same; 
(2) No symbol occurs more than r times; 
(3) There is at least one symbol other than the last that occurs exactly r times. 

This problem can be solved by a variation of the method given above, but I shall 
not take space to give the details. They can be found in [7]. For the original problem 
(r  = 2, n = 19) the number of  performances drops to 

10249 37361 6664 45980 71114 32876 93179 82974 

with an average length of  36.9458622 (the maximum possible length being now 38). 

Asymptotic expressions for the number of  performances and their lengths as n ---* oc 
can be found quite easily for the case r = 2. The behaviour of  the averages is of  

some interest. From the performer 's  point of  view the average length (including the 
terminating fragment) is 2n + 1/(n- 1), so that the average approaches 2n from above. 
The average length from the listener's point of  view can be shown to approach 2n 1 
from below. Hence, in either case, the average performance length is almost exactly 
one less than the maximum possible length. 
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