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Abstract

We prove a long standing conjecture in the theory of two-point boundary value problems that uncon-
ditional basisness implies Birkhoff-regularity. It is a corollary of our two main results: minimal resolvent
growth along a sequence of points implies nonvanishing of a regularity determinant, and sparseness of nth-
order roots of eigenvalues in small sectors provided that eigen and associated functions of the boundary
value problem form an unconditional basis.

Considerations are based on a new direct method, exploiting almost orthogonality of Birkhoff’s solutions
of the equation l(y) = λy. This property was discovered earlier by the author.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

0.1. Preliminaries

Set D = −ıd/dx and consider a boundary value problem (bvp) in L2(0,1), defined by a
differential expression

l(y) ≡ Dny +
n−2∑
k=0

pk(x)Dky = λy, 0 � x � 1, pk ∈ L(0,1), (0.1)
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and n linearly independent boundary conditions

Uj (y) ≡
n−1∑
k=0

(
ajkD

ky(0) + bjkD
ky(1)

) = 0, j = 0, . . . , n − 1. (0.2)

Spectral theory of the operator L, defined by this bvp, is thoroughly investigated during the last
hundred years. The bibliography is enormous and we shall refer the reader to the fundamental
monographs [3,19,20]. Remind that inverse of L is a finite-dimensional perturbation of Volterra
operator

L−1f = Vf +
n−1∑
j=0

(f,hj )gj , (0.3)

where Vf gives solution to the Cauchy problem for l(y) and zero boundary conditions
Djy(0) = 0, j = 0, . . . , n − 1. Investigation of operators (0.3) was initiated by A.P. Hromov [7].

Question of unconditional basisness plays an important role in the spectral theory. In case of
the operator L we shall refer to it as the (UB) problem, assuming in addition that multiplicities
of the eigenvalues (evs) are uniformly bounded by some constant M . Sometimes we will also
use the term spectrality [3] as is customary in the theory of boundary value problems (bvps).
In this paper we give its final solution, Theorem 4, using a new method which works without
estimates from below for the characteristic determinant. We believe that this result will help in
investigation of much more difficult class (0.3) with nondissipative V .

0.2. Birkhoff- and Stone-regular bvps

Now let us assume that boundary conditions (0.2) are normalized [24]:

Uj (y) ≡ b0
jD

jy(0) + b1
jD

jy(1) + · · · = 0, j = 0, . . . , n − 1. (0.4)

The ellipsis takes place of lower-order terms at 0 and at 1, b0
j , b

1
j are column vectors of length rj ,

where

0 � rj � 2,

n−1∑
j=0

rj = n, rank
(
b0
j b

1
j

) = rj . (0.5)

Evidently rj = 0 implies absence of order j conditions. For rj = 2(b0
j b

1
j ) equals second-order

unit matrix. Below in the Definition 2 we define Birkhoff-regular boundary conditions. They
possess a lot of remarkable spectral properties, e.g. estimate of the Green function, asymptot-
ics of evs and eigenfunctions (efs). In 1958 N. Dunford announced J. Schwartz’ result that
Birkhoff-regular bvps are spectral [2, pp. 217, 221–222]. This statement contained an inaccu-
racy. The correct formulation asserts that strong regularity (briefly L ∈ (SR), see Definition 3),
implies (UB), and it was proved by G.M. Kesel’man [8], V.P. Mihaı̆lov [12] as well as in the third
volume of N. Dunford and J. Schwartz’ monograph [3, Chapter XIX].

In Definition 3 we also call Birkhoff but not strongly regular boundary conditions weakly reg-
ular for evident reasons and write L ∈ (WR). For them A.A. Shkalikov established unconditional
basisness with parentheses (two summands in each) [26], further (UBP).

Generally speaking, for L ∈ (WR) spectrality breaks down unless eigen- and associated func-
tions (eaf) are merged pairwise, see examples of G.M. Kesel’man [8], P. Walker [30], and
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J. Locker [10]. For instance, P. Walker considered a second-order bvp with efs sin�kx, such
that characteristic values (cvs) �k := √

λk are divided into two sequences:

2πk, k = 1, . . . ; 2πk + o(1), k = 0, . . . ; o(1) → 0, k → ∞.

The efs, corresponding to two close �k , have an angle tending to zero. Summarizing we have

Theorem A (Kesel’man, Mihaı̆lov, Schwartz, Shkalikov).

L ∈ (SR) ⇒ L ∈ (UB), L ∈ (WR) ⇒ L ∈ (UBP).

However, further investigations failed to find even a single bvp with the same list of properties
if Birkhoff-regularity is violated. Of course, there is a natural candidate for good boundary con-
ditions: namely the self-adjoint ones, but they are Birkhoff-regular [24, n even], [14, n odd]. In
case of smooth coefficients of l(y) the characteristic determinant Δ(�), see (1.8), admits further
terms of asymptotic expansion. Assuming that necessary amount of them is not vanishing, we
come to the notion of Stone-regularity [1,4,6,27], see also books [10,11]. This approach yields
spectrum asymptotics, completeness and upper polynomial estimate of the Green function. Note
that A.A. Shkalikov established unconditional convergence for Stone-regular problems in classes
of sufficiently smooth functions [27], see also [28]. Here the smoothness should be enough to
suppress possible growth of the resolvent.

For simplest two-point bvps with l(y) ≡ D2 P. Lang and J. Locker [9, p. 554] carried out a
complete classification of their spectral properties. It is based on the Plücker coordinates pij ,
i < j , i, j = 0, . . . ,3 (2 × 2 minor with columns i, j ) of the 2 × 4 matrix of coefficients in the
boundary conditions (0.2).

Further in the book [10] J. Locker performed a thorough investigation of two-point bvps for
l(y) ≡ Dny. He classified degeneracy of the polynomial coefficients by the leading exponentials
in the characteristic determinant and obtained same results as for classical Stone-regular bvps.
However, no claim of nonspectrality has been made, cf. [10, Remark, p. 98].

Thus for irregular two-point bvps criterion of (UB) was not established.

0.3. Functional model

In seventies B.S. Pavlov discovered a projection method [22,23], which afterwards solved
the (UB) problem for exponentials [15]. Later G.M. Gubreev deeply developed this method and
obtained criterion of similarity to normal operator for finite-dimensional perturbations of Volterra
dissipative operators [5]. Let us stress, however, that in (0.3) operator V is not dissipative.

Another approach relies on the functional model theory, which is deeply explored for dissipa-
tive operators [21]. Note a criterion of (UB) of a family of invariant subspaces [29]. Let us state
this remarkable result in a simplest form.

Theorem B. Assume that the differential expression (0.1) is formally self-adjoint and L is a
dissipative operator. Then L ∈ (UB) in the span of eaf ⇔ uniform minimality of eaf.

In abstract situation uniform minimality is much weaker than (UB). Nevertheless, the former
seems to be difficult to verify for operator L.

Hence we conclude that presently it is not possible to solve the (UB) problem via known
abstract approaches either.
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0.4. Notations

• [a] := a + O(1/�)—Birkhoff’s symbol;
• fss—fundamental system of solutions;
• |Δ←−

k
d|—determinant Δ with the kth column replaced by a vector d ;

• A � B means a double-sided estimate C1 · |A| � |B| � C2 · |A| with some absolute constants
C1,2, which do not depend on A and B;

• mcm—modified characteristic matrix;
• #E—number of elements in the set E;
• ∂S stands for boundary of the set S;
• given a system of elements {yj }mj=1 of a Hilbert space H their Gram matrix is

G[y1, . . . , ym] := [
(yj , yk)

];
• O(�−∞) = O(�−N),∀N > 0 with constants depending on N .

Throughout the paper components of matrices and vectors are enumerated beginning from zero.
Matrices and their brackets are written in boldface to distinguish from Birkhoff’s symbol. Differ-
ent constants are denoted C, C1, c, δ and so on. They may vary even during a single computation.

0.5. Paper outline

In the next section we recall background of the spectral theory of bvps, including a new no-
tion of mcm, and describe main results of the paper. The key ingredients of our method are
Theorem 8, which ties together minimal resolvent growth with nonvanishing of regularity de-
terminants, and Theorem 17 asserting sparseness of cvs in some small sectors away from the
real axis. Theorem 8 is formulated in the Section 2. As a consequence we immediately obtain
Theorem 6, asserting Birkhoff-regularity of even-order dissipative differential operators. Then in
Section 3 we investigate properties of the mcm and deduce Theorem 8. Further in Section 4 we
first establish almost orthogonality of an auxiliary system (4.7) and then prove the sparseness
Theorem 17. At last in the Section 5 we establish existence of a sequence of minimal resolvent
growth and prove Theorem 4.

1. Green function

1.1. Birkhoff’s solutions

Set εj = exp(2πıj/n), � = λ1/n, |�| = |λ|1/n,

arg� = argλ/n, 0 � argλ < 2π (1.1)

and define sectors Sν = {� | πν/n � arg� < π(ν + 1)/n}. Then � = λ1/n ∈ S0 ∪ S1. Let R0 be
a fixed positive number such that in every sector Sν there exists a fss {yj (x,�)}n−1

j=0 of (0.1) with
an asymptotics:

Dkyj (x,�) = (�εj )
k · exp(ı�εj x)[1], j, k = 0, . . . , n − 1, |�| � R0. (1.2)

Note that for sector Sν solutions yj (x,�) decay as j < p and exponentially grow otherwise (for
x > 0), except maybe for a boundary ray. The number p depends upon the sector’s choice, and
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Table 1
Values of p − 1

��n 2q 2q + 1

∈ S0 q − 1 q

∈ S1 q − 1 q − 1

values of p − 1 are presented in Table 1. It will be convenient to use another fss of Eq. (0.1) with
canceled growth:

zk(x,�) :=
{

yk(x,�), k = 0, . . . , p − 1,

yk(x,�)/ exp(ı�εk), k = p, . . . , n − 1,
(1.3)

zk = O(1), k = 0, . . . , n − 1, 0 � x � 1, � ∈ Sν. (1.4)

1.2. Formula for the Green function

Let Wj(x,�) be the algebraic complement of Dn−1yj in the Wronskian W(x,�) =
|Dkyj (x,�)|n−1

j,k=0. Setting ỹj (x, �) := Wj/W we calculate

ỹj (x, �) = 1

n(�εj )n−1
exp(−ı�εj x)[1]. (1.5)

Introduce the kernel

g0(x, ξ, �) = ı ·
{∑p−1

k=0 yk(x,�)ỹk(ξ, �), x > ξ,

−∑n−1
k=p yk(x,�)ỹk(ξ, �), x < ξ.

(1.6)

Then Green function admits a representation

G(x, ξ,�) = (−1)nΔ(x, ξ, �)

n�n−1Δ(�)
, (1.7)

Δ(�) = det�(�) = det
[
V (z0) . . . V (zn−1)

]
, (1.8)

Δ(x, ξ,�) = i ·
∣∣∣∣ zT g(x, ξ, �)

�(�) H(ξ,�)

∣∣∣∣ , (1.9)

where zT stands for the row (z0(x,�), . . . , zn−1(x,�)),

g(x, ξ, �) = g0(x, ξ, �) · (n�n−1)/i, H(ξ,�) = Vx

(
g(x, ξ, �)

)
and Vx(·) := (�−jUj (·))n−1

j=0. The subscript x means action over argument x. Δ(�) is referred to
as the characteristic determinant.

1.3. Regularity determinants

Definition 1. Fix some ε ∈ (0,π/2n). Let Sν(ε) be the sector

Sν(ε) =
{∣∣∣∣arg� − (ν + 1/2)π

n

∣∣∣∣ � ε

}
. (1.10)

Define the regularity determinants, corresponding to sectors Sν , via the formula

Θ(Sν) := lim
�→∞Δ(�), � ∈ Sν(ε). (1.11)
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Let q = entier (n/2). For 0 � k � n − 1 set

bı = (
bi
j

)n−1
j=0, Bı

k = (
bı
j · εj

k

)n−1
j=0, ı = 0,1. (1.12)

It is easy to calculate the limit in (1.11) for the determinant and its matrix

Θ(Sν) = Θp

(
b0, b1), (1.13)

�(Sν) = �p

(
b0, b1) := [

B0
k , k = 0, . . . , p − 1

∣∣ B1
k , k = p, . . . , n − 1

]
. (1.14)

The vertical line | separates columns with superscripts 0 and 1. Recall that p = p(ν), ν = 0,1,
see Table 1. From (1.13) it is clear that Definition 1 is equivalent to the standard one [24, p. 361].

Definition 2. We shall call boundary conditions (0.4) and the corresponding operator L Birkhoff-
regular and write L ∈ (R), if

Θ(S0) �= 0, Θ(S1) �= 0. (1.15)

Definition 3. Birkhoff-regular bvp is strongly regular, L ∈ (SR), if either n is odd or if it is even,
n = 2q , and the second-order polynomial F(s) = det F(s) has two simple roots. Here

F(s) := [
B0

0 + s · B1
0 ,B0

k , k = 1, . . . , q − 1
∣∣ s · B0

q + B1
q ,B1

k , k = q + 1, . . . , n − 1
]
.

Otherwise we shall call bvp weakly regular and write L ∈ (WR), i.e. for classes of bvps we define
(WR) := (R) \ (SR).

1.4. Necessity of Birkhoff-regularity

Theorem 4. L ∈ (UB) ⇒ L ∈ (R).

It was a widely held tacit conjecture though never formulated explicitly. Theorem 4 together
with Theorem 0.5 solves the (UB) problem except for L ∈ (WR). In the latter case we have only
(UBP).

Problem 5. Give necessary and sufficient conditions for L ∈ (WR) ∩ (UB).

Theorem 6. Even-order two-point dissipative bvps are Birkhoff-regular.

This theorem partially answers S.G. Krein’s question.

1.5. Modified characteristic matrix

Set

ut =
{

ỹt (ξ, �) · n(�εt )
n−1 · eı�εt = eı�εt (1−ξ) · [1], t < p,

ỹt (ξ, �) · n(�εt )
n−1 = eı�εt (−ξ) · [1], t � p.

(1.16)

The following formula stems immediately from definitions of zk and ut :

g(x, ξ, �) =
{+∑

k<p εkzk(x,�)uk(ξ, �)e−ı�εk , x > ξ,

−∑
εkzk(x,�)uk(ξ, �)e+ı�εk , x < ξ.

(1.17)

k�p
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Introduce notation

∼ (t) =
{

1, t < p,

0, t � p.

We shall omit index t if it is clear from context. Applying V over variable x to (1.17), we obtain
representation

H(ξ,�) =
n−1∑
t=0

(−1)(1−∼)[B∼
t ] · εtut (ξ, �). (1.18)

Lemma 7.

G(x, ξ,�) = g0(x, ξ, �) − 2πı

n�n−1

n−1∑
t,k=0

atk(�)zk(x,�)ut (ξ, �), (1.19)

where

atk :=
⎧⎨
⎩

+ εt

2π
· |Δ ←

k
[B1

t ]|/Δ, t < p,

− εt

2π
· |Δ ←

k
[B0

t ]|/Δ, t � p.
(1.20)

Proof. Denote Δk the kth column of the matrix �. Below we use the standard agreement that
d̂ means absence of the corresponding column in determinant. Expanding Δ(x, ξ,�) along the
topmost row and replacing H by the sum in (1.18), we obtain

G(x, ξ,�)

= g0(x, ξ, �) + (−1)ni

n�n−1Δ

n−1∑
k=0

(−1)kzk(x,�)|Δ0 . . . Δ̂k . . .Δn−1H |

= g0(x, ξ, �) + −i

n�n−1Δ

n−1∑
k=0

zk(x,�)

n−1∑
t=0

(−1)(1−∼)
∣∣Δ ←

k
[B∼

t ]∣∣ · εtut (ξ, �). �

Earlier coefficients (1.20) were introduced in [17,18]. So it would be natural to call the matrix

A = A(�) = [atk]n−1
k,t=0 (1.21)

mcm of the bvp (0.1), (0.4) because it differs from the analogous object in [20, p. 135] by another
choice of the fss. Namely, in [20] fss is analytic in λ.

2. Resolvent growth

For L ∈ (UB) holds an estimate

‖Rλ‖ � C

min(dist(λ,Λ),dist(λ,Λ)M)
. (RG)

Indeed, assume that f is a finite linear combination of eaf. Taking into account the resolvent
expansion near a pole [19, p. 41] and uniform boundedness of evs multiplicities, we see that
‖Rλf ‖ � const‖f ‖ where const equals the rhs of (RG) whence the latter immediately follows.
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Obviously (RG) implies an inequality

‖Rλ‖ � C|�|−n (2.1)

for all λ such that

dist(λ,Λ) � C|λ| � 1. (2.2)

Let us call {τm}∞m=1 a set of minimal resolvent growth (mrg) if (2.1) fulfills for � = τm,∀m with
C independent of m.

Theorem 8. Let L be a differential operator, defined by bvp (0.1), (0.4). Fix ν ∈ {0,1} and set
D := diag(ε0, . . . , εp−1,−εp, . . . ,−εn−1)/(2π). Given a mrg sequence {τm}∞1 ⊂ Sν(ε), we get
that

∃ lim
m→∞�(τm) = �p

(
b0, b1),

∃ lim
m→∞ A(τm) =: A∞(L) = �p

(
b0, b1)−1 · �p

(
b1, b0) · D

and all the matrices are invertible.

Thus in order to prove Theorem 4 it is enough to find one mrg sequence in S0(ε) and another
in S1(ε).

Remark 9. Theorem 6 is an immediate corollary of Theorem 8. Indeed, if L is dissipative, then
(2.1) is valid for S1(ε). Therefore the corresponding regularity determinant Θ(S1) is nonzero. It
is enough in the even-order case, since then the second determinant is the same, compare (1.13)
and the value of p − 1 in the Table 1.

Remark 10. Recently E.A. Shiryaev found another proof of Theorem 6 [25]. He established
self-adjointness of senior terms of even-order dissipative boundary conditions. In the odd-order
case he also presented an example where regularity is violated.

Let us add that one nonzero determinant is enough to assert that odd-order dissipative differ-
ential operator is half-regular in the sense of [13].

3. Limit of mcm

3.1. Almost orthogonality

An almost orthogonality property was proved in [16] and asserts that∥∥∥∥∥
n−1∑
k=0

ckyk(x,�)

∥∥∥∥∥
2

L2(0,1)

�
n−1∑
k=0

|ck|2
∥∥yk(x,�)

∥∥2
L2(0,1)

(3.1)

for any coefficients ck , which may vary with �.

Remark 11. Moreover, the system (1.16) is also almost orthogonal. This is valid because it has
an exponential asymptotics and this is the unique ingredient needed for this property.
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3.2. Boundedness of mcm

Below R0 is the positive number from (1.2).

Lemma 12. Consider an integral operator g0 in L2(0,1) with kernel (1.6). It admits an estimate

‖g0‖ � C|�|−n, � ∈ Sν(ε), |�| � R0. (3.2)

Proof. Removing brackets from the asymptotic expressions for the functions yk(x,�) and
ỹk(ξ, �), we come to a kernel G0(x, ξ, �) which naturally extends to R. Obviously the extended
kernel coincides with the Green function of the self-adjoint operator Dn in L2(R) and therefore
obeys an analogue of (3.2) in L2(R). Together with representation

g0(x, ξ, �) = G0(x, ξ, �) + O

(
1

�n

)

it completes the proof. �
Lemma 13. The mcm is uniformly bounded

n−1∑
t,k=0

∣∣atk(�)
∣∣2 = O(1) (3.3)

for � ∈ Sν(ε), |�| � R0 such that (2.2) is valid.

Proof. Let P = P(�) be an operator in L2(0,1) with the kernel

P(x, ξ, �) =
n−1∑
t,k=0

atk(�) zk(x,�)ut (ξ, �).

Under lemma’s conditions

‖P ‖ � C/|�|, |�| � R0, � ∈ Sν(ε) (3.4)

due to (1.19), (2.1) and (3.2). Our next goal is to establish a relation

‖P ‖ �
√√√√ n−1∑

t,k=0

∣∣atk(�)
∣∣2 · 1

|�|2 . (3.5)

Let f ∈ L2(0,1). Then Pf = ∑n−1
k=0 dkzk(x,�). Invoking (3.1), we arrive at the double sided

estimate

‖Pf ‖2
L2(0,1)

�
n−1∑
k=0

|dk|2‖zk‖2
L2(0,1)

.

Observe that ‖zk‖2 � ‖ut‖2 � 1
|�| , � ∈ Sν(ε), |�| � R0 and introduce a sum Tk = ∑n−1

t=0 |atk(�)|2.
Then (3.5) is equivalent to

sup
‖f ‖�1

n−1∑
|dk|2 � 1

|�|
n−1∑

Tk. (3.6)

k=0 k=0
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Applying Remark 11, we obtain

sup
‖f ‖�1

|dk|2 =
∥∥∥∥∥

n−1∑
t=0

atkut (·, �)

∥∥∥∥∥
2

L2(0,1)

� Tk

1

|�| ,

which yields (3.6). At last compare (3.4) and (3.5) and we are done. �
3.3. Proof of Theorem 8

Proof. In virtue of (1.20) the t th column At of the matrix (1.21) satisfies an equation

�At = (−1)(1−∼) · εt

2π
[B∼

t ], 0 � t � n − 1. (3.7)

Fix t ∈ {0, . . . , n − 1}. Using compactness of the set of vectors

At(�), � ∈ Sν(ε), |�| � R0,

we deduce existence of a limiting vector ηt = liml→∞ At(�ml
) for some subsequence �ml

. Ob-
viously

lim
l→∞�(�ml

) = �p

(
b0, b1).

Together with (3.7) it shows that

R
(
�p

(
b0, b1)) ⊃ span

(
B1

0 , . . . ,B1
p−1,B

0
p, . . . ,B0

n−1

)
, (3.8)

where R(·) stands for the matrix’ image. The second relation is trivial

R
(
�p

(
b0, b1)) ⊃ span

(
B0

0 , . . . ,B0
p−1,B

1
p, . . . ,B1

n−1

)
. (3.9)

Inclusions (3.8)–(3.9) yield that

R
(
�p

(
b0, b1)) ⊃ span Q, Q = [

Q0,Q1], Qı = [
Bı

0 . . .Bı
n−1

]
.

Set � = [εk
j ]n−1

j,k=0. Since a (j, k)th block-entry of the product Qı · �∗ is an rj × 1 vector

bı
j

n−1∑
t=0

εt
j · εt

k = bı
j · n · δjk, ı = 0,1; j, k = 0, . . . , n − 1,

we conclude that rank(Q�∗) = ∑n−1
j=0 rj = n. Hence Q is a full range matrix, and the same is

�p(b0, b1). �
4. Sparseness of cvs

4.1. Preliminaries

Denote Γ = {�j }∞j=1 the sequence of all distinct cvs �j := λ
1/n
j , not counting multiplicities.

Fix ν ∈ {0,1} and set

Γε := Γ ∩ Sν(ε). (4.1)

Let bμ(�) = (� − μ)/(� − μ̄) be the Blaschke factor. Draw a hyperbolic circle K(�j , δ) =
{�: |b�j

(�)| � δ} around every �j ∈ Γ , remove them from Sν(ε) and denote Sν(ε, δ) the re-
maining domain. Set D(�, δ) := {|z − �| � δ| Im�|}. Below we shall often use relations from
[21, Lecture XI, formulas after (9)]
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K(�, δ) ⊃ D(�, δ), (4.2)

K(�, δ) ⊂ D(�, δ1), δ1 = 2δ

1 − δ
(4.3)

and δ1 will always have the value from (4.3).
Recall a definition of a sparse sequence.

Definition 14. Let P be a sequence of points in C+. Then P is sparse, P ∈ (S), if for some δ > 0
K(�, δ) ∩ K(μ, δ) = ∅, � �= μ, �,μ ∈ P . Equivalently each circle K(�, δ) contains � 1 element
from P . In addition P is N -sparse, P ∈ (NS) if for some δ > 0

#
(
P ∩ K(�, δ)

)
� N, ∀� ∈ C+.

4.2. System {ωlm}

In what follows we will need functions

ωlm(x,�) := 1

m!
dm

d�m
ωl0(x,�), l = 0, . . . , n − 1; ωl0(x,�) := zl(x, �).

Define by χ± an indicator function of the half-axis R±. Introduce functions

Wlm(x, ξ) = 1

m! (ıεlx)m
{

exp(+ıξεlx) · χ+, 0 � l < p,

exp(−ıξεlx) · χ−, p � l � n − 1.

Let � = rξ ∈ Sν(ε), r = |�| � R0. Then ξ belongs to a closed arc arcνε of opening 2ε and
‖Wlm‖L2(R) � 1, ξ ∈ arcνε .

Lemma 15. The following relation holds true

∥∥ωlm(x,�)
∥∥2 = [1]

r2m+1
· ∥∥Wlm(·, ξ)

∥∥2
L2(R)

� 1

r2m+1
, � ∈ Sν(ε), r � R0. (4.4)

Proof. For the sake of definiteness let ν = 0. Fix δ > 0 small enough such that ∀� ∈ Sν(ε) the
circle D(�, δ) lies in a sector Sν(ε1), 0 < ε1 < π

2n
which is strictly contained in Sν . Observe that

ωlm(x,�) is a sum of the main term exp(ıεl�x) and remainder exp(ıεl�x)[0]. Rewrite this as a
representation

ωlm(x,�) = (iεlx)m

m! exp(ıεl�x) + 1

2πı

∫
∂D(�,δ)

exp(ıεlzx) · [0](x, z)

(z − �)m+1
dz. (4.5)

The L2(0,1)-norm of the remainder is

O

(
1

|�| · (Im�)−m

)
= O

(
�−m−1). (4.6)

The L2(0,1)-norm of the first summand is

r−m−1/2 · ∥∥Wlm(·, ξ)
∥∥

L2(R)
+ O(�−∞)

and we are done. �
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Lemma 16. The system{
ωlm(x,�)

}n−1,N−1
l=0,m=0 , � ∈ Sν(ε), r � R0 (4.7)

is almost orthogonal in L2(0,1).

Proof. Actually we need to prove that Gram matrix of the normalized system (4.7) is positive
definite uniformly with respect to �. For the sake of definiteness let ν = 0. Consider a scalar
product

(ωlm,ωjk)L2(0,1). (4.8)

First assume that l, j < p and substitute representation (4.5) for both functions in (4.8). Scalar
product of main terms equals r−(m+k+1) · (Wlm,Wjk)L2(R) + O(�−∞). Next consider scalar

product of the remainder in (4.5) with the main term
(iεj x)k

k! exp(ı�εj x). Remainder’s norm is
O(r−(m+1)), see (4.6), whereas the exponential’s norm is � r−(k+1/2). Hence impact of remain-
der terms to (4.8) is O(r−(k+m+3/2)).

For l, j � p (4.8) is estimated along the same lines whereas for all other cases it is O(�−∞).
Thus taking into account (4.4) we see that Gram matrices of the normalized system (4.7) and of
the normalized system {Wlm}n−1,N−1

l−0,m=0 coincide upto [0]. The latter system is almost orthogonal
uniformly with respect to ξ ∈ arcνε which completes the proof. �
4.3. Spectrum sparseness

Theorem 17. For sufficiently small δ in Definition 14 the cvs are n-sparse in the sector Sν(ε),
i.e. Γε ∈ (nS).

Proof. Choose some circle K(�, δ) intersecting Γε . Assume on the contrary that #(K(�, δ) ∩
Γε) > n. Take any N = n + 1 cvs from this intersection and enumerate them {�j }Nj=1. They are
distinct because we chose Γ not counting multiplicities. Obviously |�j | � |�|, j = 1, . . . ,N . De-
note respective normalized efs u1, . . . , uN . Expanding uj (x) over the system (1.3) and applying
its almost orthogonality we get

uj (x) =
n−1∑
l=0

djlωl0(x,�j ),

n−1∑
l=0

|djl |2 · 1

|�j | � 1, j = 1, . . . ,N. (4.9)

Consider linear combination u(x) = ∑N
j=1 cjuj (x) with normalized coefficients:∑N

j=1 |cj |2 = 1. Then (UB) yields

‖u‖2 � 1. (4.10)

Expand the function ωl0(x,�j ) in Taylor series centered at � with respect to the second argument
and substitute the result into (4.9). Thus we come to the representation

u(x) =
n−1∑
l=0

∞∑
m=0

aml · ωlm(x,�), (4.11)

aml =
N∑

cj · djl · (�j − �)m. (4.12)

j=1
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Denote uN the double sum as in (4.11) with summation over m taken from 0 to N − 1. In [17,
Chapter 4, Lemma 6.1] we established an estimate

‖u‖ � ∥∥uN
∥∥. (4.13)

In fact there we assumed that � lies in a strip | Im�| � C but the case in question may be consid-
ered along the same lines and even simpler, e.g. there I 0 = ∅ whence the summand u1(x) [17,
Chapter 4, (6.4)] disappears.

Fix 0 < ε1 < π . Due to almost orthogonality of the system (4.7) and formulas (4.4), (4.13) we
arrive at

‖u‖2 �
n−1∑
l=0

N−1∑
m=0

|aml |2 · 1

|�|2m+1
, ε1 � | argλ| � π − ε1. (4.14)

Now observe that the row (a00, . . . , a0,n−1) coincides with linear combination of matrix d =
[djl]N n−1

j=1, l=0 rows. Since N > n they are linearly dependent. Therefore for appropriate normal-
ized coefficients cj in (4.12) a0l = 0, l = 0, . . . , n − 1. Further

|aml |2 �
N∑

j=1

|djl |2 · |δ1 · Im�|2m �
N∑

j=1

|djl |2 · δ2m
1 · |�|2m.

Substituting it into (4.14) and taking into account (4.9), we obtain

‖u‖2 � C ·
n−1∑
l=0

N−1∑
m=1

N∑
j=1

|djl |2 · δ2m
1 · |�|2m

|�|2m+1
� (N + 1)Cδ2

1 (4.15)

which contradicts (4.10) if δ1 is sufficiently small. �
4.4. Estimate off cvs

Lemma 18. Let 0 < ε < π/2n. Then Sν(ε, δ) is a set of mrg.

Proof. We need to verify the estimate (2.2). Let for definiteness ν = 0. We will use the identity

∣∣�n − �n
j

∣∣ =
n−1∏
m=0

|�εm − �j |. (4.16)

Case m = 0. Then |b�(�j )| ≡ |b�j
(�)| > δ because � ∈ S0(ε, δ). So �j /∈ K�(δ) and all the

more �j /∈ D(�, δ). Therefore |�j − �| > δ| Im�|.
Case 0 < m � n − 1. Let us demonstrate that

|�εm − �j | � c| Im�|, m = 1, . . . , n − 1.

Assume for simplicity m = 1. Other m may be considered in a similar way. Recall that �ε1 /∈
S0 ∪ S1, whereas �j belongs to this union due to the choice of the root’s branch (1.1). Suppose
n > 2. Then

|�ε1 − �j | � dist(�ε1, ∂S1) = dist(�,R+) � | Im�|.
If n = 2 then �ε1 = −�, S0 ∪ S1 = C+ and dist(−�,C+) = | Im�|.

Substitute the estimates above into (4.16), taking into account that | Im�| � sin( π
2n

− ε)|�|,
and we arrive at (2.2). �
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5. Proof of Theorem 4

Step 1. For the sake of definiteness let ν = 0. The case ν = 1 may be considered similarly.
Define

D = S0(ε) ∩ {
r � |�| � r + |δ|r}.

Set ω = (2ε)/M . We will choose the integer M later. Dissect S0(ε) by M rays into sectors of
opening ω. They divide D into M quadrilaterals Πk , k = 0, . . . ,M − 1. Since Πk has vertices

V1 = r · exp(iθ), V2 = r · exp
(
i(θ + ω)

)
, V3 = (r + δr) · exp

(
i(θ + ω)

)
,

V4 = (r + δr) · exp(iθ), θ = π

2n
− ε + ωk,

its diameter coincides with |V3 − V1| = |V4 − V2|. Obviously

|V3 − V1| � |V3 − V2| + arc-length between V1 and V2 � δr + ωr � 2δr,

if we take M � 2ε
δ

, say M = entier( 2ε
δ

) + 1.
Let Q be the center of the interval [V1,V3]. Taking δ2 = 2δ/ sin( π

2n
− ε), we cover Πk with

the circle D(Q,δ2), which in turn contains in K(Q,δ2). Decreasing δ we make δ2 as small
as is needed in Theorem 17. Thus K(Q,δ2) contains no more than n cvs from Γε . Assuming
2ε + δ < 1, we conclude that

#(Γ ∩D) � Mn <
n

δ
.

Step 2. Areas’ estimates. Reenumerate cvs in D:

�1, . . . , �N , N � N0 := entier

(
n

δ

)
+ 1

and set K = ⋃N
j=1 D(�j ,

δ
N0

). Let us prove a relative area’s estimate

|K|/|D| � Cδ2/ε. (5.1)

From one hand |D| = ε · (r2(1 + δ)2 − r2) > ε · 2r2δ. From the other hand

|K| �
N∑

j=1

∣∣∣∣D
(

�j ,
δ

N0

)∣∣∣∣ � Nπ
δ2

N2
0

· (r(1 + δ)
)2 � πδ2(1 + δ)2r2/N0

whence (5.1) follows.

Step 3. We have also to take into account the area of the circles K(�j , δ), intersecting D,
such that �j lie outside S0(ε). Replacing them with greater ones D(�j , δ1), we see that their
area attains maximum if they are moved in a parallel way to R into S0(ε) such that new circles
are tangent to one of the boundary rays of S0(ε). Consider for instance one of the rays, say
Ray1 = {arg� = π

2n
+ ε}. Then respective intersections are inside the angle

Ang1 =
{

π

2n
+ ε − ν � arg z � π

2n
+ ε

}
.

Let us show that its opening ν � cδ1. Draw a circle D(�, δ1) in S0(ε), tangent to the ray Ray1 at
some point A and also tangent to the ray

Ray2 =
{

arg z = π + ε − ν

}
.

2n
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Obviously the bisector of Ang1 passes through the circle’s center. Radius |−−→�A| is perpendicular
to Ray1. Thus δ1| Im�| = |−−→�A| = |�| · sinν/2, whence

sinν/2 = δ1 sin

(
π

2n
+ ε − ν/2

)
.

Then the desired estimate of ν follows after elementary calculations.
The intersection with circles K(�j , δ), �j /∈ S0(ε) near the other boundary ray of S0(ε) is

estimated along the same lines and is contained within the angle

Ang0 =
{

π

2n
− ε � arg z � π

2n
− ε + ν

}
.

Step 4. Now let us show that mrg domain D ∩ S0(ε, δ) is not empty.
Set Ang = Ang0 ∪ Ang1. Note that

|D ∩ Ang|/|D| � 2ν

2ε
� cδ1

ε
. (5.2)

Summing up the rhs of inequalities (5.1)–(5.2), we come to an expression which can be made as
small as needed for sufficiently small δ. Hence, D ∩ S0(ε, δ) �= ∅.

Step 5. At last, setting rm = (1+ δ)m, m = 1,2, . . . , we get a sequence of domains Dm and thus
a sequence of mrg points τm ∈ Dm ∩ Sν(ε, δ), tending to infinity. It suffices to apply Theorem 8
and Theorem 4 is proved.
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