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We show that contrary to the common lore it is possible to spontaneously break N = 2 supersymmetry
even in simple theories without constant Fayet–Iliopoulos terms. We consider the most general N = 2
supersymmetric theory with one hypermultiplet and one vector multiplet without Fayet–Iliopoulos terms,
and show that metastable supersymmetry breaking vacua can arise if both the hyper-Kähler and the
special-Kähler geometries are suitably curved. We then also prove that while all the scalars can be
massive, the lightest one is always lighter than the vector boson. Finally, we argue that these results
also directly imply that metastable de Sitter vacua can exist in N = 2 supergravity theories with Abelian
gaugings and no Fayet–Iliopoulos terms, again contrary to common lore, at least if the cosmological
constant is sufficiently large.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

It is by now well understood that the difficulty of achiev-
ing metastability for vacua leading to spontaneous supersymmetry
breaking has a simple and universal origin related to Goldstone’s
theorem applied to supersymmetry. Indeed, since the Goldstino
fermion must be massless, its sGoldstini scalar superpartners have
masses that are entirely controlled by supersymmetry breaking ef-
fects and cannot be adjusted through supersymmetric mass terms.
More precisely, it turns out that the average mass of these sGold-
stini is entirely controlled by the geometry of the scalar manifold
and the data of the local gauge symmetries, if present [1–3] (see
also [4]). This fact is true not only in rigid supersymmetry but also
in local supersymmetry, and its consequences have already been
extensively investigated in a number of situations [5,6]. The gen-
eral outcome is that one can infer a simple upper bound on the
mass of the lightest scalar, which depends only on the geometric
data of the theory and is increasingly stringent in theories with
increasing number of supercharges. In some special classes of the-
ories, this upper bound is vanishing or even negative, and therefore
results in no-go theorems forbidding metastable spontaneous su-
persymmetry breaking [7,8].

In N = 1 theories, the situation is quite simple and clear, espe-
cially in the rigid limit [9]. In theories with only chiral multiplets,
the upper bound on the lightest mass is controlled by the sectional
curvature of the scalar manifold along the supersymmetry break-
ing direction. This implies that in renormalizable theories with flat
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geometry, there are always two massless scalars (corresponding
to the so-called pseudo-moduli of O’Raifeartaigh models), while
in non-renormalizable non-linear sigma-models all the scalars can
be massive if the sectional curvature can be positive. In theories
involving also vector multiplets, the situation is qualitatively sim-
ilar but the vector multiplets can give quantitatively important
effects. As a result, all the scalars can in general be massive, al-
ready in renormalizable theories (corresponding to the absence of
pseudo-moduli in gauged O’Raifeartaigh models) and clearly also
in non-renormalizable ones, even without Fayet–Iliopoulos terms.

In N = 2 theories, the situation is more interesting and less
clear, even in the rigid limit [10]. In theories with only hyper-
multiplets, supersymmetry breaking stationary points are possible
only for curved geometries and the upper bound on the lightest
mass happens to always vanish, as a consequence of the structure
of the sectional curvature of hyper-Kähler manifolds. This implies
that there is always at least one tachyonic scalar, and thus that
the vacuum cannot be metastable. In theories with only Abelian
vector multiplets, a similar result holds true, and again it is im-
possible to get metastable supersymmetry breaking vacua. On the
other hand, in more general theories with both hyper- and vector
multiplets, only partial results concerning the possible metastabil-
ity of supersymmetry breaking vacua exist. One general result in
this direction has been presented in [13], where it was shown
that for theories admitting an SU(2)R symmetry and a supercur-
rent conservation law involving a linear superconformal anomaly
multiplet, it is impossible to construct a consistent non-linear real-
ization of N = 2 supersymmetry. This suggests that in this class of
theories there should be an unavoidable obstruction against hav-
ing a non-supersymmetric stationary point at all or more plausibly
against it to be metastable, originating from the presence of the
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SU(2)R symmetry or the existence of the linear superconformal
anomaly multiplet. The common lore is that in order to sponta-
neously break supersymmetry, one needs constant Fayet–Iliopoulos
terms, which spoil the SU(2)R symmetry in the vector multiplet
sector (see [11,12] for examples). However, the SU(2)R symmetry
can also be spoiled by the lack of isometries on the scalar manifold
in the hypermultiplet sector, and this might provide an alternative
to Fayet–Iliopoulos terms.

The aim of this Letter is to assess whether the possibility of
having metastable supersymmetry breaking in N = 2 theories is
really linked to the presence of Fayet–Iliopoulos terms. For this we
shall study in full generality the simplest class of such theories
for which no-go theorems based on the sGoldstino masses do not
exist so far, namely theories involving just one hypermultiplet and
one vector multiplet with an Abelian gauge symmetry.

2. General setup

Let us consider the most general N = 2 supersymmetric the-
ory involving only one hypermultiplet and one vector multiplet
without Fayet–Iliopoulos terms. This has the form of a gauged
non-linear sigma-model on a target space that is the product of
an arbitrary four-dimensional hyper-Kähler manifold admitting a
triholomorphic isometry and an arbitrary two-dimensional special-
Kähler manifold. The bosonic part of the action, describing the four
real scalars qu belonging to the hypermultiplet and the complex
scalar z plus the real vector Aμ belonging to the vector multi-
plet, is given by [14–21] (see [10] for a recent review on the rigid
case):

L = −1

4
ρ Fμν F μν + 1

4
θ Fμν F̃ μν − 1

2
guv Dμqu Dμqv

− gzz̄∂μz∂μ z̄ − V . (2.1)

In this expression Fμν = ∂μ Aν − ∂ν Aμ , F̃μν = 1
2 εμνρσ F ρσ and

Dμqu = ∂μqu + ku Aμ . Moreover, guv denotes the metric of the
hyper-Kähler manifold, ku a triholomorphic Killing vector on it
and P i the three associated Killing potentials. Similarly, gzz̄ de-
notes the metric of the special-Kähler manifold, while ρ and θ

are the real and imaginary parts of the corresponding holomor-
phic gauge kinetic function, such that in particular ρ = gzz̄ . Fi-
nally

V = guvkukv |z|2 + 1

2
ρ−1| �P |2. (2.2)

Happily, it turns out that there exists a general local parametriza-
tion for the two kinds of manifolds that are involved in this con-
struction, in terms of two harmonic functions f and l of three and
two real variables, respectively. It is then possible to construct a
general theory based on arbitrary choices for these two harmonic
functions. The trivial choices of constant f and l correspond to
flat spaces while less trivial choices of non-constant f and l corre-
spond to curved spaces.

Any four-dimensional hyper-Kähler manifold admitting a tri-
holomorphic isometry can be locally described with coordinates
qu = xi, t and a Ricci-flat metric of the Gibbons–Hawking form
[22–24]:

ds2 = guv dqu dqv = f d�x2 + f −1(dt + �ω · d�x)2. (2.3)

This depends on a single real function f = f (�x) of the three vari-
ables xi , which must be harmonic and therefore satisfies the three-
dimensional Laplace equation:

	 f = 0. (2.4)
The three functions ωi are determined, modulo an irrelevant ambi-
guity, by the following equation, whose integrability is guaranteed
by the Laplace equation:

�∇ × �ω = �∇ f . (2.5)

The three closed Kähler forms, which satisfy d J i = 0 thanks to the
above equation defining ωi , are given by (see for instance [25])

J i = (dt + �ω · d�x) ∧ dxi − 1

2
f εi jk dx j ∧ dxk. (2.6)

Finally, the isometry acts as a simple shift of the t coordinate by
some real parameter ξ , and the associated Killing vector reads

k = ξ∂t . (2.7)

In this parametrization, the components guv and guv of the met-
ric and its inverse are easily worked out, and their positivity re-
quires f > 0. The components ( J i)uv of the three Kähler forms are
easily verified to satisfy the quaternionic algebra ( J i)

u
w( J j)

w
v =

−δi jδ
u
v + εi jk( Jk)

u
v . Finally, it is also straightforward to verify that

this Killing vector (2.7), whose only non-vanishing component is
kt = ξ , is triholomorphic, and that the corresponding Killing po-
tentials P i , defined by ∇u Pi = −( J i)uvkv , read:

�P = ξ�x. (2.8)

Any two-dimensional special-Kähler manifold can be locally de-
scribed with special complex coordinate z and a metric of the
following form:

ds2 = 2gzz̄ dz dz̄ = 2l |dz|2. (2.9)

This depends on a single real function l = l(z, z̄) of the two vari-
ables z, z̄, which must be a harmonic function corresponding to
the real part of a holomorphic function related to the prepotential
and therefore satisfies the two-dimensional Laplace equation:

∂∂̄l = 0. (2.10)

In this parametrization, the unique non-trivial components of the
metric and its inverse are given by gzz̄ = l and gzz̄ = l−1. Positivity
of the metric requires l > 0.

It is worth emphasizing that the above general constructions
can also be obtained in an algebraic way, using superfields. In the
hyper-Kähler case, one can consider an N = 2 single tensor multi-
plet, which consists of a linear multiplet L plus a chiral multiplet
Q from the N = 1 perspective and automatically incorporates a
shift symmetry [26] (see also [27]). The most general N = 2 ki-
netic Lagrangian for such a multiplet is then obtained from a
potential H = H(L, Q , Q̄ ) which must be a harmonic function:
HLL + H Q Q̄ = 0. After switching to a description in terms of four
real scalars, one then finds a Gibbons–Hawking space, with H LL

mapping to the harmonic function f and Re H L Q , Im HL Q map-
ping to the two non-trivial components of �ω (see for instance
Appendix C of [28]). In the special-Kähler case, one can use an
N = 2 vector multiplet, which consists of a chiral multiplet Φ plus
a vector multiplet V from the N = 1 perspective. The most general
N = 2 kinetic Lagrangian for such a multiplet involves a potential
F = F (Φ) which must be a holomorphic function: FΦ̄ = 0. Keep-
ing complex coordinates, one then directly finds the special-Kähler
space in the above-described form, with Im FΦΦ mapping to the
harmonic function l.

Summarizing, with the above local parametrization of the two
components of the scalar manifold, the data defining the model
are the following:
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guv =

⎛
⎜⎜⎜⎝

f + f −1ω2
1 f −1ω1ω2 f −1ω1ω3 f −1ω1

f −1ω2ω1 f + f −1ω2
2 f −1ω2ω3 f −1ω2

f −1ω3ω1 f −1ω3ω2 f + f −1ω2
3 f −1ω3

f −1ω1 f −1ω2 f −1ω3 f −1

⎞
⎟⎟⎟⎠ ,

ku =
⎛
⎜⎝

0
0
0
ξ

⎞
⎟⎠ , (2.11)

gzz̄ = l, ρ = l, (2.12)

V = ξ2
[

f −1|z|2 + 1

2
l−1|�x|2

]
. (2.13)

3. Vacua and masses

Let us now look for Poincaré invariant vacuum states of the
above theory, defined by constant expectation values for the six
independent scalar fields qI = xi, t, z, z̄. To start, we compute the
first derivative V I and find that Vt = 0 while

V i = ξ2[− f −2|z|2 f i + l−1xi
]
, (3.14)

V z = ξ2
[
−1

2
l−2|�x|2lz + f −1 z̄

]
. (3.15)

For the matrix of second derivatives V I J̄ , we instead find Vtt = 0
and V it = 0 while

V ij = ξ2[− f −2|z|2( f i j − 2 f −1 f i f j
) + l−1δi j

]
, (3.16)

V zz̄ = ξ2
[
−1

2
l−2|�x|2(lzz̄ − 2l−1|lz|2

) + f −1
]
, (3.17)

V zz = ξ2
[
−1

2
l−2|�x|2(lzz − 2l−1l2z

)]
, (3.18)

V iz = ξ2[− f −2 z̄ f i − l−2xilz
]
. (3.19)

Finally, we also need to compute the vielbein eI
P that allows us to

locally trivialize the metric as gI J̄ = eI
P δP Q̄ (e†)Q̄

J̄ and thus canon-
ically normalize the scalar fields. One finds a block diagonal result
given by:

ei
p =

⎛
⎜⎜⎜⎝

f 1/2 0 0 f −1/2ω1

0 f 1/2 0 f −1/2ω2

0 0 f 1/2 f −1/2ω3

0 0 0 f −1/2

⎞
⎟⎟⎟⎠ , (3.20)

ez
z = l1/2. (3.21)

The possible vacua correspond to the stationary points of the
potential V . The stationarity conditions V I = 0 determining them
are easy to analyze. We see that whenever f or l are constant
and at least one of the factors of the scalar manifold is flat, sta-
tionarity implies vanishing values for all the fields and unbroken
supersymmetry with vanishing vacuum energy. To get non-trivial
supersymmetry-breaking stationary points, we thus need both of
the functions f and l to be non-trivial and thus both factors of the
scalar manifold to be curved. In that case the value of the fields is
non-vanishing and the stationarity conditions imply that:

f i = f 2l−1|z|−2xi, (3.22)

lz = 2l2 f −1|�x|−2 z̄. (3.23)

Using these results we can then simplify the unnormalized mass
matrix V I J̄ , and finally compute the physical mass matrix associat-

ed to canonically normalized fields as m2¯ = (e−1)I
P V P Q̄ (e−1†)Q̄

J̄ .

I J
Although the form of eI
P depends on ωi in the entries related to

the would-be Goldstone mode t , the final result for m2
I J̄

does not

depend on ωi . One finds that m2
tt = 0 and m2

it = 0 while

m2
i j = ξ2[− f −3|z|2 f i j + 2l−2|z|−2xix j + f −1l−1δi j

]
, (3.24)

m2
zz̄ = ξ2

[
−1

2
l−3|�x|2lzz̄ + 4 f −2|�x|−2|z|2 + f −1l−1

]
, (3.25)

m2
zz = ξ2

[
−1

2
l−3|�x|2lzz + 4 f −2|�x|−2 z̄2

]
, (3.26)

m2
iz = ξ2[− f −1/2l−3/2|z|−2 z̄xi − 2 f −3/2l−1/2|�x|−2 z̄xi

]
. (3.27)

The unnormalized mass of the vector field Aμ can be read off
from the kinetic term of the hypermultiplet scalars and is given by
guvkukv = ξ2 f −1. One then has to rescale this by ρ−1 = l−1 to get
the physical mass for the canonically normalized vector, finding

m2
A = ξ2 f −1l−1. (3.28)

A convenient way of parametrizing the above results is to in-
troduce an angle θ that controls the relative orientation of the
supersymmetry breaking direction between the hyper and the vec-
tor sectors. To do so, we consider the ratio of the two contributions
in V and define at the vacuum point:

tan2 θ = 1

2
f l−1|z|−2|�x|2. (3.29)

Let us also introduce the direction vi to which the vacuum point
corresponds in the hypermultiplet field subspace, and similar the
phase ϕ defined by the vacuum point in the vector multiplet field
subspace, namely:

vi = xi

|�x| , ϕ = arg z. (3.30)

We then parametrize the overall scale of the fields at the vacuum
point by an energy scale Λ defined as:

Λ2 = l|z|2 + 1

2
f |�x|2. (3.31)

In this way, the values of the fields are parametrized as:

xi = √
2 f −1/2Λ sin θ vi, z = l−1/2Λ cos θeiϕ. (3.32)

In addition, let us introduce the following dimensionless parame-
ters associated to the second derivatives of the functions f and l:

aij = f −1|�x|2 f i j, bzz̄ = l−1|z|2lzz̄, bzz = l−1z2lzz. (3.33)

In this parametrization, the scalar masses m2
I J̄

can then be rewrit-

ten in the following very simple form:

m2
i j =

[
δi j + 4 tan2 θ vi v j − 1

2
cot2 θaij

]
m2

A, (3.34)

m2
zz̄ = [

1 + 2 cot2 θ − tan2 θbzz̄
]
m2

A, (3.35)

m2
zz = [

2 cot2 θ − tan2 θbzz
]
e−2iϕm2

A, (3.36)

m2
iz = [−√

2(cot θ + tan θ)vi
]
e−iϕm2

A . (3.37)

Notice also that the vacuum energy is related to the vector mass
and the scale defined by the expectation values of the fields:

V = Λ2m2
A . (3.38)
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4. Bounds on the scalar masses

We would now like to understand what kind of values can be
achieved for the scalar masses m2

i corresponding to the eigen-
values of the mass matrix m2

I J̄
. To this aim, we shall take the

point of view that we choose some definite point corresponding
to some values of �x and z to be a priori the vacuum point, and
then scan over all the possible forms of the functions f and l in
the neighborhood of such a point. The condition that the chosen
point should be a stationary point of V fixes the values of the first
derivatives f i and lz . But the values of the functions f and l them-
selves as well as those of their second derivatives f i j and lzz̄ , lzz

are then arbitrary, except for the harmonicity constraints δi j f i j = 0
and lzz̄ = 0. One may then scan over the two real parameters f
and l and the seven independent real parameters among the f i j
and lzz̄ , lzz , and see what kind of masses one can achieve. In terms
of the parametrization introduced at the end of previous section,
this means in particular that we can scan over all the possible val-
ues of m2

A , which controls the overall scale of the scalar masses,
and θ , aij , bzz̄ , bzz which control instead the detailed form of the
scalar mass matrix, with the only constraints being that:

δi jai j = 0, bzz̄ = 0. (4.39)

To get an idea of whether it is possible or not to make all
the eigenvalues positive, we may now look at the average values
of the three blocks of the mass matrix, and reduce the original
(4 + 2)-dimensional matrix to a simpler (1 + 1)-dimensional aver-
aged matrix. More precisely, taking into account that we already
know that there is one null eigenvalue in the hyper sector corre-
sponding to the unphysical would-be Goldstone mode t absorbed
by Aμ in a Higgs mechanism, let us look at

m2
hh = 1

3
δi jm2

i j, m2
vv = m2

zz̄, m2
hv =

√
1

3
δi jm2

izm2
j̄ z̄. (4.40)

After a straightforward computation and using the constraints
(4.39) imposed by the three-dimensional and two-dimensional
Laplace equations satisfied by the functions f and l, one finds:

m2
hh =

[
1 + 4

3
tan2 θ

]
m2

A, (4.41)

m2
vv = [

1 + 2 cot2 θ
]
m2

A, (4.42)

m2
hv =

[√
2

3
(tan θ + cot θ)

]
m2

A . (4.43)

We see that as a result of the constraints imposed by N = 2 super-
symmetry, and in particular (4.39), these average blocks are almost
completely fixed, the only leftover parameter being the angle θ

controlling the relative strength of the hyper- and vector multiplet
sectors in the supersymmetry breaking process.

The first, qualitative information that we can extract from the
knowledge of the above averaged blocks concerns the sign of the
eigenvalues m2

i . Some simple linear algebra shows that the full
six-dimensional mass matrix m2

I J can be positive definite only if
the two-dimensional averaged mass matrix is also positive defi-
nite. This is the case if m2

hh > 0, m2
vv > 0 and m2

hhm2
vv − m4

hv > 0. It
is straightforward to check that all these three conditions are al-
ways satisfied by the expressions (4.41), (4.42) and (4.43), and this
for any possible value of the angle θ . This suggests that it is a pri-
ori possible to adjust the parameters aij and bzz̄ , bzz subject to the
constraints (4.39) in such a way to make all the eigenvalues m2

i
positive.

The second, quantitative information that we can extract from
the knowledge of the above averaged blocks concerns the size of
the eigenvalues m2
i . Since for a given θ all the averaged blocks are

bounded, relative to the overall scale m2
A , it is clear that the eigen-

values m2
i must also be bounded to lie in a certain interval, again

relative to the overall scale m2
A . More precisely, there must be an

upper bound m2− on how large the smallest m2
i can be, and also

a lower bound m2+ on how small the largest m2
i can be. Through

some simple linear algebra, one can show that these bounds m2±
are in fact simply the two eigenvalues of the two-dimensional ma-
trix formed by the averaged mass blocks m2

hh, m2
vv and m2

hv, and
are thus given by:

m2± = 1

2

(
m2

hh + m2
vv

) ±
√

1

4

(
m2

hh − m2
vv

)2 + m4
hv. (4.44)

Using the fact that m2
hh > 0, m2

vv > 0 and m2
hhm2

vv − m4
hv > 0, one

can then infer the following bounds, which can be derived by
studying the necessary conditions for the matrix m2

I J −m2±δI J to be
negative or positive definite obtained after averaging and reducing
to a two-dimensional matrix:

min
{
m2

i

}
� m2− � min

{
m2

hh,m2
vv

}
, (4.45)

max
{
m2

i

}
� m2+ � max

{
m2

hh,m2
vv

}
. (4.46)

A simple computation shows that the quantities m2± are given by

m2± =
[

1 + cot2 θ + 2

3
tan2 θ

±
√

2

3
cot2 θ + cot4 θ + 2

3
tan2 θ + 4

9
tan4 θ

]
m2

A . (4.47)

One can easily verify that m2+ > 0 and m2− > 0 for any value of θ ,
as already implied by the analysis of the previous paragraph. One
can, however, also study more quantitatively what happens when
θ is varied. m2− starts from a local minimum for θ = 0 with value
2
3 m2

A , then goes through an absolute maximum for θ = π
4 with

value m2
A and finally reaches a local minimum for θ = π

2 with
value 1

2 m2
A . m2+ starts from a maximum for θ = 0 with infinite

value, goes through a minimum at θ � 0.83 (close to θ = π
4 ) with

value 4.27m2
A (close to 13

3 m2
A ) and then reaches again a maximum

at θ = π
2 with infinite value. We then conclude that:

min
{
m2

i

}
� m2

A, max
{
m2

i

}
� 4.27m2

A . (4.48)

This result suggests that it should not only be possible to make
all the mass eigenvalues m2

i positive, but actually all greater than
or equal to m2

A . In other words, it should be possible to achieve
a genuinely metastable supersymmetry breaking vacuum with siz-
able masses for scalar fluctuations by adjusting the parameters of
the model.

Note that the cases of theories with just one hypermultiplet
or just one vector multiplet can formally be obtained as special
cases of the more general situation studied here, by taking the lim-
its l → +∞, z → z0 and f → +∞, �x → �x0, respectively. In those
two limits one thus gets θ → 0 and θ → π

2 , respectively, but also
mA → 0 and Λ → +∞ with V → finite, in both cases. One then
correctly recovers the vanishing upper bound for the smallest mass
that leads to a no-go theorem in those cases [7,8], as a conse-
quence of the vanishing of the trace of the relevant mass matrix
block.

5. Existence of metastable vacua

The final question that we need to address is whether the full
five-dimensional non-trivial part of the mass matrix m2¯ defined
I J
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by Eqs. (3.34)–(3.37) can really be made positive definite by a
suitable choice of the parameters aij and bzz̄,bzz , subject to the
constraints (4.39). We saw that the necessary conditions for this
to be possible that come from the study of the two-dimensional
matrix obtained by averaging over each of the hyper and vector
subsectors are satisfied for any value of θ , so the question is more
precisely whether for any given θ and vi,ϕ it is possible or not
to make all the m2

i positive through a suitable choice of the pa-
rameters aij and bzz̄,bzz . The answer to this question is yes, and in
fact it turns out that one can always saturate the bounds defined
by m2+ or m2− by suitably adjusting aij and bzz̄,bzz . An intuitive ar-
gument for this is as follows. Due to the restriction that δi jai j = 0
and bzz̄ = 0, the average of the eigenvalues of the two diagonal
blocks of the mass matrix are fixed and cannot be changed. More-
over, the off diagonal block is also fixed and independent of the
above parameters. As a result, there is certain amount of level-
repulsion between the two groups of eigenvalues that the diagonal
blocks would have on their own, and the average value of all the
eigenvalues of the full matrix is also fixed. It is then clear that
changing aij and bαβ can only affect the spread of the eigenvalues
around what is dictated by the two-dimensional matrix obtained
by averaging over the directions defining each subsector, and as a
consequence it is possible to choose aij and bzz̄,bzz in such a way
as to saturate the bounds defined by m2+ or m2− .

Let us illustrate the above statement with an explicit example
of metastable supersymmetry breaking vacuum. For simplicity, we
choose the vacuum point to be defined by values of the fields in
the maximally symmetric direction such that

θ = π

4
, vi =

√
1

3
, ϕ = 0. (5.49)

The values of the functions f and l at such a point are arbitrary
and are mapped to arbitrary values for the scales mA and Λ. The
first derivatives of the functions f and l at such a point are in-
stead completely fixed by the requirement that the stationarity
conditions should be satisfied. Finally, the second derivatives of the
functions f and l at such a point are arbitrary and are mapped to
arbitrary values for the dimensionless parameters aij and bzz̄,bzz .
For generic values of the latter, we then get the following structure
for the three blocks of the mass matrix:

m2
i j =

⎛
⎜⎝

7
3 − 1

2 a11
4
3 − 1

2 a12
4
3 − 1

2 a13

4
3 − 1

2 a12
7
3 − 1

2 a22
4
3 − 1

2 a23

4
3 − 1

2 a13
4
3 − 1

2 a23
7
3 − 1

2 a33

⎞
⎟⎠m2

A, (5.50)

m2
αβ̄

=
(

3 − bzz̄ 2 − bzz

2 − bz̄z̄ 3 − bzz̄

)
m2

A, (5.51)

m2
iβ̄

=

⎛
⎜⎜⎜⎝

−
√

8
3 −

√
8
3

−
√

8
3 −

√
8
3

−
√

8
3 −

√
8
3

⎞
⎟⎟⎟⎠m2

A . (5.52)

Recalling the constraints δi jai j = 0 and bzz̄ = 0, in this case we
have

m2
hh = 7

3
m2

A, m2
vv = 3m2

A, m2
hv =

√
8

3
m2

A, (5.53)

and

m2− = m2
A, m2+ = 13

m2
A . (5.54)
3

We can finally make some definite choice for the parameters aij

and bzz̄,bzz and compute the mass eigenvalues m2
i explicitly. As

expected, by choosing appropriate values for these parameters it
is possible to make all the m2

i positive, but at least one of these
is always lighter that m2− = m2

A and one is always heavier than
m2+ = 13

3 m2
A . A very simple working example of the above type is

obtained by making the following choice of parameters:

aij = 0, bzz̄,bzz = 0. (5.55)

In this case, the five non-trivial eigenvalues of the full mass matrix
can be computed analytically and are found to be:

m2
i = {1,1,1,1,9}m2

A . (5.56)

These are all positive, and the vacuum is thus metastable. We
moreover see that in this simple example the upper bound on the
lightest mass is saturated.

6. Generalization to supergravity

The results that we have derived here in the context of rigid
supersymmetry can be generalized to local supersymmetry. To
do so, one needs to consider a generic supergravity theory with
one hyper- and one vector multiplet. The hypermultiplet sector
is described by a four-dimensional quaternionic-Kähler manifold
with negative Ricci curvature set by the Planck scale, and this
must again admit a triholomorphic isometry. Fortunately, the most
general space with these properties is also known and goes un-
der the name of the Przanowski–Tod space [29,30]. This is the
Ricci-curved generalization of the Gibbons–Hawking space, and is
based on a function of three variables satisfying the non-linear
three-dimensional Toda equation, rather than the linear three-
dimensional Laplace equation. The vector multiplet sector is in-
stead described by a two-dimensional local-special-Kähler mani-
fold. This can also be described in a completely general way. The
new feature is again a deformation in the structure of the curva-
ture by effects linked to the Planck scale.

A detailed analysis of the structure of the mass matrix, the
bounds that can be put on its eigenvalues and the constraints on
the possibility of achieving metastable de Sitter vacua in this kind
of theories can be performed by using the technology described
in [31] and will be presented elsewhere [32], along with some ex-
plicit examples. It is however clear that the existence of metastable
supersymmetry-breaking vacua in the rigid limit directly implies
also the existence of metastable supersymmetry breaking de Sit-
ter vacua in supergravity. This shows that Fayet–Iliopoulos terms
and non-Abelian gauge symmetries are not necessary ingredients
to achieve metastable supersymmetry breaking even within su-
pergravity, again contrary to the common lore in the literature
and in particular the claim of [33]. The only subtle point con-
cerns the values of the cosmological constant V and the grav-
itino mass m3/2 that can be compatible with metastability. It is
obvious that in the limit where V 
 m2

3/2M2
Pl, gravitational ef-

fects on supersymmetry breaking and on the masses are small
and it must therefore be possible to achieve metastable de Sit-
ter vacua exactly as in the rigid case. On the other hand, in the
limit where V � m2

3/2M2
Pl, gravitational effects on supersymme-

try breaking and on the masses are sizable and the possibility of
achieving metastable de Sitter vacua must be carefully reinvesti-
gated. The quantitative question that one then has to deal with
consists in understanding for which range of values of the dimen-
sionless ratio V /(m2

3/2M2
Pl) metastability can be achieved. This is a

particularly relevant question, since small and large values of the
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above parameter are needed in applications to particle physics and
inflation, respectively.

7. Conclusions

In this Letter, we have demonstrated that metastable sponta-
neous breaking of global N = 2 supersymmetry is possible even
in very simple theories that do not involve Fayet–Iliopoulos terms
or non-Abelian gaugings. We then argued that the same qualita-
tive result also holds true in the presence of gravity, although the
relative size of the cosmological constant and the gravitino mass
allowing for metastable vacua might be constrained and remains
to be analyzed.

To conclude, let us compare our findings with the general state-
ment in [13] that N = 2 theories admitting an SU(2)R symmetry
and a supercurrent conservation law based on a linear super-
conformal anomaly multiplet cannot spontaneously break super-
symmetry. Our examples of N = 2 theories possessing metastable
supersymmetry-breaking vacua have a priori no SU(2)R symme-
try, since the generic Gibbons–Hawking manifolds we considered
do not admit an isometry group that could contain this. We be-
lieve that this is the reason why they evade the result of [13]. As
a consistency check of this interpretation, we verified that in the
special models built on spaces with a larger isometry group, such
as flat space and the Eguchi–Hanson manifold, there are in fact
no supersymmetry-breaking vacua. Nevertheless, it would be in-
teresting to understand whether or not our models admit a linear
superconformal anomaly multiplet coping with the potential prob-
lems emphasized in [34,35].
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