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Abstract

We examine cosmological models with generalized phantom energy (GPE). Generalized phantom energy satisfies the
supernegative equation of state, but its evolution with the scale factor is generally independent, i.e., not determined by its
equation of state. The requirement of general covariance makes the gravitational constant time-dependent. It is found that a
large class of distinct GPE models with different evolution of generalized phantom energy density and gravitational constant,
but the same equation of state of GPE have the same evolution of the scale factor of the universe in the distant future. The time
dependence of the equation of state parameter determines whether the universe will end in a de Sitter-like phase or diverge in
finite time with the accompanying “big rip” effect on the bound structures.

0 2004 Elsevier B.VOpen access under CC BY license

Results of recent cosmological observations, such the universe. The most prominent and studied candi-
as distant supernovae of type la (SNla) [1] and cosmic dates for the title of dark energy are the cosmological
microwave background radiation (CMBR) [2], have constant [4-6] (together with its dynamical variants,
dramatically altered our perception of the dynamics such as renormalization group running cosmological
and composition of the universe and reshaped the land-constant [7-9]), quintessence [10] and the Chaplygin
scape of standard cosmology [3]. The universe seemsgas [11].
to be in the phase of accelerated expansion, which  The majority of dark energy models share a com-
started at a relatively small redshift,~ 1. This ac- mon constraint on their equation of stae; (and pg
celeration is attributed to a new form of matter, usu- represent pressure and energy density of dark energy,
ally referred to aslark energythe nature of which is  respectively)
still not definitely established. Observations indicate
that the energy density of the universe is very close Pd = Wpd, @)
to its critical density where dark energy presently ac- \yherew > —1. Such a constraint is, however, not jus-
counts for approximately/3 of the total energy den-  tified by the unbiased fits to the data of cosmologi-
sity, while the remaining A3 comes predominantly  ca| observations. Moreover, the allowed interval for
from dark matter another unidentified component of  {he parameter of the equation of state extends signifi-

cantly into the region witw < —1. The use of obser-
vational data on CMBR, large scale structure (LSS),
E-mail addressshrvoje@thphys.irb.hr (H. Steféia). SNla and Hubble parameter measurements from the
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Hubble Space Telescope (HST) under the assumptionwherey > 0. Furthermore, we assume that the energy—
of the redshift independent parametergive the re- momentum tensor of the “ordinary” matter is con-
striction —1.38 < w < —0.82 at the 95% confidence served

level [12]. Therefore, a possible supernegative equa- _,,,

tion of state of dark energy deserves due attention. Ty =0. ©)

A new type of dark energy with the equation of The equation given above ensures that the parameter
state characterized by < —1 was proposed in [13]  of the equation of state governs the evolution of the
and nameghantom energyPhantom energy is con-  “ordinary” matter energy density, i.e.,
sidered to be separate from other components of the _3(14y)
universe and its energy—momentum tensor is con- = Om O(i) . (4)
served separately. In such a setting, the equation of “\a
state of dark energy determines its evolution with the Dark energy has the equation of state
scale factom. The supernegative nature of the equa-
tion of state of the phantom energy leads to the grow- Pd = W0d, ®)

ing energy density of phantom energy ~ a3, where w generally depends on time explicitly or
for a constant parameter. The cosmological dynam-  jmplicitly, via explicit dependence on some other
ics of the universe with such a phantom energy com- time-dependent quantity, such as the scale fagtor

ponent possesses many interesting features [14]. Thein the case of dark energy, we allow the possibility

growth of the energy density of phantom energy drives of non-conservation of the energy—momentum tensor,
the scale factor of the universe to infinity in finite je

time. The increasing negative pressure of phantom en-

ergy leads to the unbounding of all bound structures in 7., 7 0. (6)

the universe. This dramatic and picturesque scenario-rhus, the evolution of the dark energy density is not
of the cosmic doomsday was appropriately named getermined by the parameter from its equation of state.
“big rip”. The formulation of microscopic models for With the properties of the components of the

phantom energy [15] relies on the machinery devel- | hiverse defined, we can specify the laws of its

oped in quintessence models, namely the evolution of eyo|ution. We start from the Einstein equation
the scalar field in a suitably chosen potential. How-

ever, the description of phantom energy may require G*" = —8xGT"", (7)
an introdu_ction of some non-standard al_terations, €.9., where G1” is the Einstein tensor anfi*’ = Tf” +
the negative kinetic term of the scalar field. Detailed T
considerations of the Lagrangians describing phan-
tom energy show that in some cases the universe with
phantom energy ends in a “big rip”, while in oth-
ers it asymptotically approaches the de Sitter expan-
sion.
In this Letter, we consider models with generalized

is the total energy—momentum tensor. The recon-
ciliation of the requirement of the general covariance
of (7) and the non-conservation relation (6) is possible
with the promotion of gravitational consta6tinto a
space—time dependent quantity. This change can be in-
terpreted as a modification of the dynamics of general
; relativity. This additional dynamics is effectively de-
phantom energy (GPE). First, we setup a more generalgqyinad hy the introduction of space—time dependence
model of the evolution of the universe with phantom ¢ ~ \we consider the models whetgis a function of
energy. We assume that there are two cOmMponentsime only, G = G(r). Models with the time-dependent
of the universe: the dark energy component (Which ¢ \yere extensively studied in the framework of the

will have the phantom energy characteristics), and time-dependent cosmological teutr) [16]. The co-
the “ordinary” matter component with the respective |, iant derivative of (7) then implies

energy densitiep; and p,,. The “ordinary” matter is

taken to satisfy the equation of state (G(t)T“”);v =0. (8)

This equation can be rewritten in the form

Pm =Y P @ d(Gom + pa)a®) = —G(pw + pa) da®. )
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Combining the evolution laws (4) and (9) and intro- equations. Egs. (10) and (11) thus become
ducingw = —1+ « (wherex describes the deviation

-\ 2
from the parameter of the equatiop of state inherent to ‘_’) + % = S—HGpd (13)
the cosmological constant) we arrive at a a 3

. . and

G(pm + pa) +Gpg +3cHGpys =0. (10)

Here H = a/a is the Hubble parameter, while dots 5 (GP4) +3¢<HGpa =0. (14)
denote time derivatives. Eq. (10) clearly shows the Furthermore, from Eq. (14), we obtain

generality of the model. In the case of the constant

we recover the standard equation of conservation 4(Gpd) =—3;<d—a (15)
of 7', Eq. (10) shows that the time evolution@fis Gpa a’

the result of two competing effects. Namely, for dark  aAs the condition—« > 0 is satisfied by assumption
energy with growing energy density, the second term () we obtain

in (10) causes the decrease®fwhile for negativec,

the third term in (10) increases with time. Gpa = (Gpa)o. (16)

Finally, Friedmann equations for the evolutipn Therefore, a5py is a growing function in an expand-
of th(=T scale factor complete the set of evolution ing universe, for large: we can disregard the term
equations (4) and (10) k/a?in Eq. (13). For the flat universe, this approxima-

2 tion is exact, while for the closed or the open universe,

a k 8 . . . . . . .
) +== ?G(pm + p4), (1)) this approximation is applicable in the sufficiently dis-
a a tant future.

a i Finally, we end up with the following two equations

= =G (om + pa + 3pm + 3pa). 12  We € ; . .

a 3 (P +Pd + 3pm + 3pa) (12) for the dynamics of the universe in the distant future:

The set of Egs. (4), (10) and (11) reveals that we , 8m

have essentially two independent equations for three 1°= —-(Gpa). 17)

dynamical quantitiess, p; anda (assuming that is

the function of these quantities and time). Without a E(G,Od) + 3k H(Gpa) =0. (18)

more specific identification of the dynamics 6f or

pd, it is not possible to solve the aforementioned set By cc_)mbmmg Eas. (.17) and (18), we obtain an
of equations. However, as we show below, with mild equation for the evolution of the Hubble paramefer

assumptions about the evolution of dark energy with With time

the scale factor, it is possible to obtain information on dH n §ICH2 -0 (19)
the future evolution of the universe for geneabnd dt 2 ’
pq Satisfying the equations given above. with the solution
Next, we introduce the concept of generalized H(to)
phantom energy (GPE). Generalized phantom energy H(¢) = - . (20)
is the form of dark energy satisfying the equation of 1+ (3/2)H (t0) [,k (t)dr’
state (1) with the non-conserved energy-momentum once we have found the expression for the evolution
tensor (6) and the following two properties: of the Hubble parameter, it is easy to obtain an

expression for the evolution of the scale factor

(a) GPE energy density is a hon-decreasing function
t

of the scale factor, H (to)
(b) GPE equation of state satisfies< 0. a(t) = a(to) exp fdt’ 7 -
A 1+ (3/2)H (tp) fto k(") dt”
We further examine the future evolution of the (21)

universe. In the sufficiently distant future we have General solutions (20) and (21) exhibit some inter-
om < pg and p, can be neglected in the evolution esting features. The evolution of the universe in the
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sufficiently distant future is governed only by the para-

meter of the equation of state of dark energy. The pre-

cise form of the growth op; with the scale factoa is
irrelevant in this limit. This implies that the entire class
of models with different functional forms @f; andG,

important case [13]

k(1) = —ko. (25)

With such a choice for the parameter of the equation
of state of generalized phantom energy, we have the

obeying the same equation of state, show the Samesy|lowing evolution laws:

behaviour in the sufficiently distant future. Therefore,

we can divide all GPE models with the characteristics
specified above into classes with the same equation of

state.
An important question regarding the fate of the uni-

verse is whether, for a particular class of generalized

phantom energy modelsandH diverge in finite time
or reach infinite values only in infinite time. For the
Hubble parameteH, the answer is straightforward.
There will be no divergence df in finite time if the

denominator of the expression on the right-hand side

of (20) remains positive for all times. This leads to the
condition

]

/ (= () di’ <

fo

30 (22)

As in this case there is no singularity i(z) in finite
time, the scale factou(r) also does not diverge in
finite time. In order to have the convergence of the
integralj;go(—x(t’))dt’ required in (22), the function
«(t) has to tend to zero at asymptotically large times.
Therefore, for generalized phantom energy which
exhibits no divergence off or a in finite time, the
parameter of the equation of state approachds

_ H (t0)
O = 1@ Haowot —10)° (20)

3 —2/(3k0)
a(t) = a(to) (1 — EH(to)Ko(l — to)) . (27

These solutions clearly show the onset of the diver-
gence inH anda. The universe with generalized phan-
tom energy with the constant parameter of the equa-
tion of state evolves to infinity in finite time.

Comparison with the case of the “standard” phan-
tom energy [13,14] shows that, for the same parameter
of the equation of state(r), the scale factor follows
the same evolution law. Given the fact that the para-
meter of the equation of state does not determine the
scaling witha, and thaiG is variable in the framework
of generalized phantom energy, it is by no means obvi-
ous that coincidence of this sort should exist. However,
from Eq. (10), we readily see that for the case of con-
stantG, we recover the equation of evolution for the
“standard” phantom energy. As far as the evolution in
the sufficiently distant future is concerned, the “stan-
dard” phantom energy model is just one instance of
the class of generalized phantom energy models with
the same functior (7).

Given the same evolution properties of the broad

i.e., generalized phantom energy approaches the time-¢|ass of GPE models with the samér), it is nat-

dependent cosmological term.

In the case when the condition (22) is not satisfied,
the Hubble parametéf diverges in finite time. From
Friedmann equations we have
(23)

a=Ha,

3
a= (1— EK)HZa.

These expressions indicate that, whgndiverges in
finite time¢, botha andd diverge as well, so the scale
factor a cannot remain finite, but diverges in finite
timer as well.

(24)

ural to look at the destiny of bound structures, an-
other peculiarity of phantom energy models [14]. The
relevant quantity with respect to the stability of the
bound structures is the analogue of the gravitational
potential proportional to the quantity(o; + 3ps) =

(—2 + 3k)Gpq. Eq. (17) shows thaGp; ~ H? and
Gpg grows with time. If the condition (22) is not satis-
fied, H andGp, diverge in finite time. Furthermore, as
pa grows with the scale factofp, certainly increases
compared toG. For gravitationally bound systems,
the GPE contribution of the order G (pq + 3pa) R®
(whereR denotes the characteristic spatial scale of the
bound system) overwhelms the “mass” contribution

From the general expessions (20) and (21), we can~ GM (M denotes the mass of the bound system).

obtain evolution laws for the conceptually simple, but

Gravitationally bound systems fall apart in finite time.
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For the systems bound by electromagnetic or strong ergy is generalized in the sense that its equation of
forces, mere growth ofip; ensures their unbounding state does not determine its evolution with the scale
at some finite time before the time at which scale fac- factor a, i.e., GPE density becomes an independent
tor goes to infinity. Consequently, all bound structures function of the scale factor. The requirement of gen-
are unbound in finite times. The scenario of the “big eral covariance in this setting imposes conditions on
rip” is present in generalized phantom energy models the gravitational constar@ which acquires time de-
as well. pendence. Investigation of future dynamics of the gen-
Finally, let us make some comments on fundamen- eralized phantom energy models with growing gener-
tal aspects of the GPE model. As the gravitational con- alized phantom energy density and the parameter of
stant G(¢) is time-dependent, the description of the the equation of state less tharl exhibits some gen-
gravitational sector in the GPE model represents a dec-eral properties. A large class of models with differ-
lination from the Einsteinian gravity. One important ent evolutions ofp; and G, but the same equation
aspect is whether the scale factoreally describes  of state of GPE, have the common law of the evo-
the growth of length scales. One can raise two argu- lution of the scale factor in the sufficiently distant
ments in favour of the standard interpretation of the future. The time dependence of the GPE parameter
scale factow. The first is that no intervention in the  of the equation of state determines whether the uni-
geometrical structure or interpretation of the left-hand verse evolves infinitely in a de Sitter regime or di-
side of Eq. (7) has been made. The other, more physi- verges in finite time. One would expect that bounds on

cal one, is that the density of “non-relativistic” mat-
ter scales ag,, ~ a2 in our GPE model, Eq. (4)
with y = 0. Given that no interaction (production
or annihilation) of the “ordinary” matter component
with other components is assumed, this fact estab-
lishesa as a natural measure of the growth of length
scales.

In some theories with the time-dependent effective
gravitational constant, such as scalar-tensor or non-
minimally coupled scalar field theories, one can con-
struct many mathematically equivalent theories using
conformal transformations. It turns out that all these
theories are not physically equivalent, i.e., some for-
mulations are more physically viable than others (the
Einstein frame formulation is more viable than the
Jordan frame formulation) [17]. Generally, it might
be of interest to consider conformally related mod-
els of GPE obtained by the transformation of the type
guw = f(G())guv, Wheref is a suitably chosen func-
tion. However, the time variation @ () in our model
can be very general and includes possibilities to which
requirements on the choice of the conformal frame do
not necessarily apply. Some examples of such a varia-
tion are the renormalization group running®@f[ 7—-9]
or the time variation ofG emanating from extra di-
mensions [18].

In conclusion, in this Letter we have considered
cosmological models with the time-dependent gravita-
tional constanG and dark energy with the superneg-
ative equation of state (phantom energy). Phantom en-

the variation ofG in the past epochs of the evolution
of the universe would produce the most stringent con-
straints on the parameters of the GPE model. There-
fore, it is important to point out that our main results
qualitatively do not depend on the size of the parame-
ter |« | or on the intensity of growth of; (of course,
within classes of these parameters that satisfy or do
not satisfy the condition (22)). For smaller parameter
values and slowlier varying functions; and G, the
onset of the general evolution (dependent onlyxdn
will come later. For instance, for constant and neg-
ative «, but very small|«|, the entire class of GPE
models leads to the “big rip” event, but at very late
times.

Clearly, the present accelerating phase of the evo-
lution of the universe carries the seed of the possibly
very dramatic future of our cosmos. Therefore, more
precise observations of the past variatiorpgfand G
with time (redshift) will be able to unravel the fate of
the universe.
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