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1. In~~duction 

Ca2+-ATPase from sarcoplasmic reticulum is an 
intrinsic membrane protein. It is one of the most 
intensively studied proteins in the field of lipid- 
protein interactions. 

The enzyme shows a nonlinear Arrhenius plot 
which has been attributed to phenomena related to 
thermotropic transitions in membrane lipid [l-S]. 

However, the break at 2O*C was also observed 
for a nearly lipid-free detergent-solubilized Ca2’- 
ATPase [6]. From physical-chemical studies, the 
changes in confo~ation of the protein were con- 
cluded to be responsibIe for the breaks. These studies 
include: hydrogen exchange [7]; saturation transfer 
ESR spectroscopy [8,9]; flash photolysis tech- 
niques [lo]. 

We have shown that the effect of pressure on the 
temperature at which the break occurs, presents a 
critical test for the involvement of lipids in discon- 
tinuities of Arrhenius plots [ 11 ,I 21. 

Here we show that the discontinuity in the 
Arrhenius plot of Ca2+-ATPase from sarcoplasmic 
reticulum is due to a thermotropic transition of 
lipids. 

2. Experimental 

Sarcoplasmic reticulum was prepared from rabbit 
hid leg muscle as in 1131. Ca2*dependent ATPase 
activity was measured with the coupled enzyme sys- 
tem as for NaK-ATPase [12]. The reaction mixture 
contains: 100 mM KCl; 36 IU/mI lactate dehydro- 
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genase; 40 IV/ml pyruvate kinase; 1 S mM phospho- 
enolpymvate; 0.26 mM NADH; 5 mM Na2ATP; 
5.7 mM MgC12; 5 mM NaNa; 30 mM imidazole 
(pH 6.8); 0.1 mM ouabain; 0.87 mM CaCl,; 1 mM 
EGTA. 

Activity under pressure was measured as in [ 121. 
The AYK, was followed at a preset temperature and 
pressure as a function of time. The activity of the 
enzyme is not irreversibly affected by pressure. Infact 
activities at 1 atm. were always higher after a series 
of measurements under pressure. The phenomena had 
no effect on the position of the break in the activity 
versus pressure profiles. 

3. Results and discussion 

The activity of Ca2’-ATPase decreases with 
increasing pressure. A logaritmic plot of the relative 
change in activity (referred to 1 atm) against pressure 
is shown in fig.1. The plot is biphasic. The activation 
volume (A*) is obtained from the relation: 

dlnk AI+ -=- - 
dP RT 

A* is small (t3.5 ml) below the break and increases 
above the break, A molecular interpretation of the 
activation volume cannot be given at present since it 
is not clear how this would be related to a confonna- 
tional tran~tion of the enzyme with dephospho~la- 
tion [ 141. If the pressure-dependent fluidity change 
of the membrane would be responsible for the activ- 
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F&l. Pressure dependence of the activity of Caa+-ATPase 
from sarcoplasmic reticulum. VP and VI de the enzyme 
activities at pressure P and 1 atm, respectively. Reaction tem- 
perature 24.7“C (0) and 35°C (0). 

ity change of the enzyme with pressure, one would 
expect a A@ = +7 ml from the pressure dependence 

of the viscosity of n-octane [ 151. 
If the experiments are done at lower tempera- 

tures (2S’C) the pressure at which the break occurs 
is lowered. If the temperature is increased, the 
pressure increases. A plot of the transition tempera- 

ture against the pressure is given in fig.2. The slope 
dT/dP = 27 K/l000 atm. Extrapolation of the break 
to 1 atm gives 18°C which corresponds to the break 
point in the Arrhenius plot observed in [l-5]. 
Similar effects of pressure on the Arrhenius plots 
have been observed for other systems where phos- 
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F&2. Temperature dependence of the breakpoint pressure as 
obtained from plots as in fig.1. dT/dP = 27 K/1000 atm. 

pholipids have been shown to be involved [11,12,16]. 
This is a first argument in favor of the involvement 
of lipids in the break of Ca’+-ATPase. 

A second argument comes from the pressure 
dependence of lipid phase transitions and phase sepa- 
rations as measured by several techniques [ 17-l 91. 
dT/dP for phospholipids range from 17-22 K/l000 
atm depending on the chainlength of the fatty acids. 
This is the range observed for normal hydrocarbons 
[20]. We can assume that other thermotropic transi- 
tions such as the melting of annular lipids or trapped 
lipids have a similar pressure dependence. 

The pressure-dependent conformation changes of 
proteins, although less documented, are much smaller 
(2-5 K/1000 atm) [21]. 

Thus, the pressure effect on the break in the 
Arrhenius plot, or as reported here, the temperature 
effect on the break in the In activity vs pressure plot, 
provides evidence for a mechanism whereby changes 
in the physical state of the lipids, trigger changes in 
the conformation and/or changes in the association 
of the protein as observed with saturation transfer 
ESR [89] or flash photolysis techniques [lo]. Since 
Arrhenius plots are not related to changes in fluidity 
of the bulk membrane lipid [22], the simplest inter- 
pretation of the observed effect is the existence of a 

lipid annulus [3]. 
The fact that breaks are also observed after sub- 

stitution experiments with detergents [6] can be 
explained by the observation that a correlation is 
observed between the melting point of detergents 
and the break in Arrhenius plots of adenylate 
cyclase [23]. 

A more general conclusion from this work is that 
temperature together with pressure are important 
parameters for the study of membrane phenomena. 
More specifically because thermotropic lipid transi- 
tions are more sensitive to pressure changes than 
protein conformational changes are, pressure changes 
present a useful tool for discrimination between both 
phenomena in more complex systems such as repeti- 
tive generation in crustacean axons [24] and heat 
activation of fungal spores [25]. 
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