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Visually building Smale flows inS3
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Abstract

A Smale flow is a structurally stable flow with one-dimensional invariant sets. We use information
from homology andtemplatetheory to construct, visualize and in some cases, classify, nonsingular
Smale flows in the 3-sphere. 2000 Elsevier Science B.V. All rights reserved.
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0. Introduction

The periodic orbits of a flow inS3 form knots. ForMorse–Smale flowsthere are only
finitely many periodic orbits. Wada [15] has classified all links that can be realized as
a collection of closed orbits of nonsingular Morse–Smale flows onS3. Further, Wada’s
scheme includes an indexing of the components of the link according to whether the orbit
is an attractor, a repeller, or a saddle.

In a Smale flow, by contrast, the saddle sets may contain infinitely many closed orbits,
while the attractors and repellers must still be collections of finitely many orbits. Franks [8]
devised an abstract classification scheme for nonsingular Smale flows onS3 using a device
he called theLyapunov graphof a flow. Each vertex of a Lyapunov graph corresponds
to an attractor, repeller or saddle set (thebasic setsof the flow). The saddle vertices are
labeled with anincidence matrix(determined non-uniquely by the first return map on a
cross section). A simple algorithm is used to decide if a given Lyapunov graph can be
realized by a nonsingular Smale flow onS3. However, the Lyapunov graph contains no
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explicit information about the embedding of the basic sets. In contrast to Wada’s study of
Morse–Smale flows, Franks’ work does does not allow one toseeSmale flows. It was our
curiosity to visualize Smale flows that motivated this paper. It is however worth noting
that Wada’s results have provided tools for understanding bifurcations between Morse–
Smale flows [3] and it is likely that some of our results may held light on bifurcations
between Smale flows and form Morse–Smale flows to Smale flows. Also see [11] for an
example.

The project of this paper is to visually construct examples of Smale flows and in
some special contexts classify all the possible embedding types. Our primary tools will
be the theory oftemplates, branched 2-manifolds which model the saddle sets [1] and
certain earlier results of Franks that do give some information about the embedding of
closed orbits. Specifically, computations of linking numbers and Alexander polynomials
are employed.

Sections 1 and 2 contain background information. Our main classification theorem
(Theorem 9) is in Section 3. Various generalizations and applications follow in Sections 4
and 5.

1. Knots and links

A knot k is an embedding ofS1 into S3. It is traditional to usek to denote both the
embedding function and the image inS3. A knot may be given an orientation. We will
always use a flow to induce an orientation on our knots. Theknot groupof k is the
fundamental group ofS3 \ k. A link of n components is an embedding ofn disjoint copies
of S1 into S3.

Two knotsk1 andk2 (or two links) are equivalent if there is an isotopy ofS3 that takes
k1 to k2. When we talk about a knot we almost always mean its equivalence class, or
knot type. A knot diagramis a projection of a knot or link into a plane such that any
crossings are transverse. If the knot has been given an orientation the crossings are then
labeled as positive or negative according to whether they are left-handed or right-handed,
respectively.

The knot group can be calculated from a diagram and, unlike the diagram, is invariant.
If a knot has a diagram with no crossings then it is called anunknotor a trivial knot. The
following proposition will be of use to us.

Proposition 1 (The Unknotting Theorem [14, p. 103]).The knot group ofk is infinite
cyclic if and only ifk is the unknot.

Given a diagram of a two component linkk1∪k2 thelinking numberof k1 with k2 is half
the sum of the signs of each crossing ofk1 underk2 and is denotedlk(k1, k2). The linking
number is a link invariant, and thus is independent of the choice of the diagram. The Hopf
link shown in Fig. 1. Its linking number is±1, depending on the choice of orientations.
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Fig. 1. The Hopf link.

Fig. 2. The square knot is the sum of two trefoils.

A knot k ⊂ S3 is compositeif there exists a smooth 2-sphereS2 such thatS2 ∩ k is just
two pointsp andq , and ifγ is any arc onS2 joining p to q then the knots

k1= γ ∪ (k ∩ outside ofS2) and

k2= γ ∪ (k ∩ inside ofS2),

are each nontrivial (i.e., not the unknot). We callk1 andk2 factors ofk and writek = k1#k2.

Of course the designation of the two components ofS3/S2 as “inside” and “outside” is
arbitrary. This impliesk1#k2 = k2#k1. We call k the connected sum ofk1 and k2. If a
nontrivial knot is not composite then it isprime. Fig. 2 gives an example. It shows how to
factor thesquare knotinto two trefoils. Trefoils are prime. It was shown by Schubert [2,
Chapter 5] that any knot can be factored uniquely into primes, up to order. The unknot
serves as a unit.

A knot which fits on a torus and wraps about itp times longitudinally andq times
meridianally (p andq must be relatively prime), is called a(p, q) torus knot. If k is any
knot, then a(p, q) cableaboutk, wherep andq are relatively prime, is defined as follows.
LetN(k) be a solid torus neighborhood ofk, whose core isk. Let l be astandard longitude
of ∂N(k) for k, i.e., lk(l, k) = 0. Now consider a torusT with a (p, q) knot on it. Let
h :T → ∂N be a homeomorphism that takes a standard longitude ofT to l. The image of
(p, q) under this map is said to be a(p, q) cable ofk or, (p, q)k.

We shall extend the usual cabling notation a bit. Let(0,1)k be a meridian ofk, (1,0)k
be a standard longitude ofk, and(0,0)k be a loop bounding a disk onT . (A curve on a
surface isinessentialif it bounds a disk in the surface, and isessentialif it does not.)

Thus, we have tools with which to build up new knots from old ones. In Wada’s paper
and in Sections 4 and 5 here, one builds new flows from old ones using processes based in
part on taking connected sums and forming cables.
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The cabling construction has been generalized in two ways. A knotk′ is asatelliteof a
given knotk if k′ lives inside a tubular neighborhoodk and meets every meridianal disk.
If the orientation ofk′ is always roughly the same as that ofk (i.e., there is a fibration of
N(k) by meridianal disks which are always transverse tok′), we say thatk′ is ageneralized
cableof k. It is known that the satellite of a nontrivial knot is nontrivial [14], a fact which
we shall make use of in Case 3 in the proof of Theorem 9.

Knot polynomials form an important class of knot and link invariants. We shall make use
of the first known knot polynomial, the Alexander polynomial. It can be readily calculated
from either a knot diagram or the fundamental group. The latter approach will be of special
importance to us. The reader who wishes to check our polynomial calculations should be
able to find all he or she needs in [4].

2. Dynamics of flows

A C1 flow φt on a compact manifoldM is calledstructurally stableif any sufficiently
close approximationψt in theC1 topology istopologically equivalent, that is if there exists
a homeomorphismh :M → M taking orbits ofφt to orbits ofψt , preserving the flow
direction. Structurally stableC1 flows have a hyperbolic structure on their chain-recurrent
sets [12]. We define these concepts next.

A point x ∈M is chain-recurrentfor φt if for everyε > 0 andT > 0 there exists a chain
of pointsx = x0, . . . , xn = x in M, and real numberst0, . . . , tn−1 all bigger thanT such
thatd(φti (xi), xi+1) < ε when ever 06 i 6 n− 1. The set of all such points is called the
chain-recurrent setR. It is a compact set invariant under the flow.

A compact invariant setK for a flowφt has ahyperbolic structureif the tangent bundle
of K is the Whitney sum of three bundlesEs , Eu, andEc each of which invariant under
Dφt for all t . Furthermore, the vector field tangent toφt spansEc and there exist real
numbersC > 0 andα > 0 such that∥∥Dφt (v)∥∥6 Ce−αt‖v‖ for t > 0 andv ∈Es,∥∥Dφt (v)∥∥6 Ceαt‖v‖ for t 6 0 andv ∈Eu.

We also define the local stable and unstable manifolds associated to an orbitO . They
are respectively

Ws
loc(O)=

⋃
x∈O

{
y ∈M | d(φt (x),φt(y))→ 0 ast→∞ andd(x, y)6 ε

}
and

Wu
loc(O)=

⋃
x∈O

{
y ∈M | d(φt (x),φt(y))→ 0 ast→−∞ andd(x, y)6 ε

}
.

The global stable and unstable manifolds are defined similarly by removing the condition
thatd(x, y)6 ε.

It was shown by Smale that if the chain-recurrent setR of flow has a hyperbolic structure
thenR is the union of a finite collection of disjoint invariant compact sets called thebasic
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sets. Each basic setB contains an orbit whose closure containsB. The periodic orbits of
a basic setB are known to be dense inB. A basic may either consist of a single closed
orbit or it may contain infinitely many closed orbits and infinitely other nonperiodic chain-
recurrent orbits. In the later case any cross section is a Cantor set and the first return map
is asubshift of finite type. In the former case any cross section is a finite number of points
but the first return map is still a (trivial) subshift of finite type. Thus, each basic set is a
suspension of a subshift of finite type. A nontrivial basic will be calledchaotic.

Definition 2. A flow φt on a manifoldM is called aSmale flowprovided
(a) the chain-recurrent setR of φt has a hyperbolic structure,
(b) the basic sets ofR are one-dimensional, and
(c) the stable manifold of any orbit inR has transversal intersection with the unstable

manifold of any other orbit ofR.

Most references allow for fixed points but we will be working primarily with nonsingular
flows. Smale flows on compact manifolds are structurely stable underC1 perturbations
but are not dense in the space ofC1 flows. It is easy to see that for dimM = 3, each
attracting and repelling basic set is a closed orbit. The admissible saddle sets, however,
may be chaotic. A Smale flow with no chaotic saddle sets is called aMorse–Smaleflow.

For a chaotic saddle set of a Smale flow in a 3-manifold one can construct a
neighborhood that is foliated by local stable manifolds of orbits in the flow. Collapsing
in the stable direction produces a branched 2-manifold. With a semi-flow induced from
the original flow, this branched 2-manifold becomes what is known as atemplate. The
template models the basic saddle set in that the saddle set itself can be recovered from
the template via an inverse limit process and that any knot or link of closed orbits in the
flow is smoothly isotopic to an equivalent knot or link of closed orbits in the template’s
semi-flow. The proof of this is due to Birman and Williams [1] and can also be found in [9,
Theorem 2.2.4].

A key tool in the analysis of hyperbolic flows is the concept of a Markov partition. We
refer the reader to [7] for details. In our context a Markov partition is a finite, disjoint
collection of disks transverse to a basic set of a flow. Each orbit of the basic set must pass
through some element of the Markov partition in forward time.

Definition 3. Given a Markov partition{m1, . . . ,mn} for a suspended subshift of finite
type with first return mapρ we define the correspondingn× n incidence matrixA, by

Aij =
{

1 if ρ(mi)∩mj 6= ∅,
0 otherwise.

The incidence matrix, like a knot diagram, is not invariant but does contain invariant
information. We can encode additional information about the embedding of a basic set by
modifying the incidence matrix.
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Definition 4. Given a Markov partition for a basic set with first return mapρ, assign an
orientation to each partition element. If the partition is fine enough the function

O(x)=
{+1 if ρ is orientation preserving atx,
−1 if ρ is orientation reversing atx,

is constant on each partition element. Thestructure matrixS is then defined bySij =
O(x)Aij , wherex is any point in theith partition element.

The next proposition was proved by Franks in [5].

Proposition 5 (Franks, 1977).Letφt be a Smale flow with a single attracting closed orbit
a, and a single repelling closed orbitr, with saddle setsΛ1, . . . ,Λn. Then the absolute
value of the linking number ofa andr is given by∣∣ lk(a, r)∣∣= n∏

i=1

∣∣det(I − Si)
∣∣,

whereS1, . . . , Sn denote the respective structure matrices of the saddle sets.

The manner in which a saddle set “links” a closed orbitk, is described by modifying the
structure matrixS to form alinking matrixLk . Consider a Markov partition,{m1, . . . ,mn},
of the saddle with incidence matrixA. Pick a base pointb in S3− k and pathspi from b

to mi , also inS3− k. For eachaij 6= 0 let γij be a segment of the flow going frommi to
mj without meeting any of the other partition elements. Now form a loop consisting ofγij ,
pi , pj and, if needed, short segments inmi and inmj . If the disks have been chosen small
enough, then the linking number of any such loop withk depends only oni andj . That
this can always be done is shown in [6].

Definition 6. Thelinking matrixL associated with a suitable Markov partition for a given
closed orbitk is defined to by

Lij = Sij tq ,
whereq is the linking number of the loops formed from segments connectingmi to mj
andk as described above.

The following proposition is a special case of Theorem 4.1 in [6].

Proposition 7 (Franks, 1981).Let φt be a Smale flow inS3 with one attracting closed
orbit a, one repelling closed orbitr, and a single saddle sets. LetLa andLr be the linking
matrices fors with respect toa andr, respectively. Then the Alexander polynomials ofa

and r are given by∆a(t) = det(I − La) and∆r(t) = det(I − Lr), respectively, up to
multiples of±t .

Finally, we record a proposition about Morse–Smale flows. It is an obvious corollary to
Wada’s theorem [15], though it is easy to prove directly.
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Proposition 8. In a (nonsingular) Morse–Smale flow onS3 with exactly two closed orbits,
the link of closed orbits forms a Hopf link with one component a repeller and the other an
attractor.

3. Lorenz–Smale flows

By a simple Smale flowwe shall mean a Smale flow with three basic sets: a repelling
orbit r, an attracting orbita, and a nontrivial saddle set. In this section we will show how
to construct simple Smale flows in which the saddle setl can be modeled by an embedding
of the Lorenz template shown in Fig. 3. That is, there is an isolating neighborhood of the
saddle setl foliated by local stable manifolds of the flow, such that when we collapse
out in the stable direction we get an embedding of the Lorenz template. Call such flows
Lorenz–Smale flows. In this section we classify all possible Lorenz–Smale flows.

We shall call the isolating neighborhood of the saddle setL. The set of points of∂L
where the flow is transverse outward is called theexit set. The backward orbits of these
points approach orbits in the saddle setl. The exit set consists of two annuli,X andY ,
connected by a long stripS. The core of the exit set is homeomorphic to the boundary of
the Lorenz template. We shall refer to the cores ofX andY , asx andy, respectively. See
Fig. 4. The set of points of∂L where the flow is transverse inward is called theentrance
set. The entrance set also consists of two annuli connected by a long strip. Denote these
two annuli byX′ andY ′ and their respective coresx ′ andy ′ and the connecting strip by
S′. See Fig. 4. The intersection of the closures of the entrance and exit sets consists of
three closed curves where the flow is tangential to∂L. Although the entrance set is harder
to visualize, its topological type can be determined by an Euler characteristic argument.
Notice thatx andx ′ are isotopic toX ∩X′ and hence have the same knot type. Similarly,
y andy ′ must have the same knot type.

Take tubular neighborhoods ofa andr and denote them byA andR, respectively.
To build a Smale flow from these building blocks, we first attach the closure of the

exit set ofL to ∂A. This gives a vector field on a new 3-manifold pointing inward along
its entire boundary. That this can be done smoothly was shown by Morgan in [13]. Next
attach∂R to the boundary ofA∪L so that the unionA∪L ∪R is S3.

Fig. 3. The Lorenz template.
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Fig. 4. Neighborhood of a Lorenz saddle set (top) with the exit set (bottom left) and entrance set
(bottom right).

We know from Proposition 5 that the linking number betweenr anda must be±1, but
what types of knots cana and r be? What are all the different ways the saddle set can
be embedded so as to still have the Lorenz template as a model? This later question is
made precise by asking, what types of knots canx andy be? Can they be linked? Can the
annuliX andY have any number of twists or are there restrictions? (This last question is
equivalent to finding theframingof a knot.)

To answer these questions we use the following framework. First, we study what may
happen when the attaching of the exit set ofL to ∂A is such thatx andy are both inessential
in ∂A. Then we investigate the case where one of them, sayy, is essential but the other
is still inessential. Finally we consider the case where bothx andy are essential in∂A.
The results of this analysis are then consolidated into the statement of Theorem 9. Our
classification scheme is only up to isotopy ofS3, plus mirror images and flow reversal.
Also, we shall not be concerned with the orientation, i.e., the flow direction, ofa or r, since
their orientations can be easily reversed by modifying the flow in a tubular neighborhoods
of a andr [15, first paragraph].

Theorem 9. For a Lorenz–Smale flow inS3 the following and only the following
configurations are realizable. The linka ∪ r is either a Hopf link or a trefoil and meridian.
In the latter case the saddle set is modeled by a standardly embedded Lorenz template, i.e.,
both bands are unknotted, untwisted, and unlinked, with the core of each band a meridian
of the trefoil component ofa ∪ r. In the former case there are three possibilities:

(1) The saddle set is standardly embedded.
(2) One band is twisted withn full-twists for anyn, but remains unknotted and unlinked

to the other band, which must be unknotted and untwisted.
(3) One band is a(p, q) torus knot, for any pair of coprime integers, with twist

p+ q − 1. The other band is unknotted, untwisted and unlinked to the knotted one.
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Proof. The proof is divided into three cases.
Case1. Suppose bothx and y are inessential in∂A. It follows that X and Y are

untwisted, that is the linking number between each of the two components of∂X and
of ∂Y is zero. It is also obvious thatx andy are unknotted and unlinked.

There are two subcases to consider. It could be thatx andy are concentric in∂A, or it
could be that they are not. That isx andy may or may not form the boundary of an annulus
in ∂A. In Fig. 5 we show that both cases can be realized. The neighborhoodL is attached
to a 3-ballB along the closure of the exit set ofL. Fig. 5 also shows two ways one might
attach handles to the 3-ball so as to turn it into a solid torus. Suppose we attach the handle
to the small disks markedC andC′ in the manner shown. Call the resulting solid torusA1.
If we takeL ∪A1 the result is still a solid torus, and the complement inS3 is just another
solid torus,R1. We can now build a Smale flow with an attractor inA1, a repeller inR1

and a Lorenz saddle set inL. Upon further inspection the reader should be able to see that
x andy are concentric.

Now, instead on attaching a handle atC andC′, we attach one toB andB ′ as shown
again in Fig. 5. This time call the solid torus obtainedA2. As beforeL∪A2 is a solid torus
with solid torus complement inS3. Thus, we have constructed another Lorenz–Smale flow
with x andy inessential on a tubular neighborhood of the attractor. Is it diffeomorphic
to the Lorenz–Smale flow we constructed before? To see that the answer is no, study the
loopsx andy again. They are still both inessential, that is they both bound disks in∂A2.
But they are no longer concentric. This can be seen from careful study of Fig. 5.

In both these examples the attractor and repeller form a Hopf link. We claim that if both
x andy are inessential in∂A thena andr must form a Hopf link. SinceR is a tubular
neighborhood of a knot, the union ofA andL is a knot complement. But we will show that
A∪L is a solid torus whose core has the same knot type as that ofa. Thus, we could remove
A ∪ L from our flow and replace it with a solid torus containing just an attractor and no
saddle set. This gives us a nonsingular Morse–Smale flow onS3 with just two closed orbits
whose link type is the same asa ∪ r. But by Proposition 8 these must form a Hopf link.

Fig. 5. Lorenz saddle set neighborhood attached to a ball.
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We now show thatA ∪ L is a solid torus of whose core is the same knot type asa.
First, assume thatx andy are not concentric. Then they bound disjoint disksDx andDy
in ∂A. ExpandDx andDy , if needed, so that they contain all ofX andY , respectively
but remain disjoint. ThickenDx andDy by pushing intoA a little, forming two 3-balls
Bx and By , which are disjoint and do not meet the orbita. Let L′ = L ∪ Bx ∪ By
andA′ = A − (Bx ∪ By). It is clear thatA′ is a solid torus whose core is stilla. The
setL′ is a 3-ball andL ∪ A = L′ ∪ A′. But the unionL′ ∪ A′ is taken along the disk
S ∪ (∂Bx −Dx) ∪ (∂By −Dy). Thus, there is a deformation retract fromL′ ∪ A′ to A′.
This proves our claim forx andy not concentric.

Now supposex andy are concentric and assumex is inner most. Then construct the
3-ballBx as before. LetL′ = L ∪ Bx andA′ = A−Bx . This timeL′ is a solid torus. It is
attached toA′ along the annulusY ∪S ∪ (Bx −Dx) whose corey is inessential in∂A′ and
is a(1,0) longitude inL′. Thus we can retractL′ toY and push it intoA′ without changing
the knot type ofa. This finishes the proof of our claim.

Case2. Suppose thatx is inessential but thaty is essential. The opposite case is similar.
Again, it is clear thatX is untwisted and thatx is unknotted and unlinked toy. We shall
again show thata and r must form a Hopf link. It then follows that sincey lives in a
standardly embedded torus,∂A, y is a torus knot or unknot. Ify is a meridian(0,1), or
a longitude(1,0) thenY is untwisted. Ify is an unknot(1, q) or (q,1) thenY hasq full
twists. For nontrivial torus knots the twisting inY is uniquely determined by the knot type
of y. If y is a(p, q) torus knot then the twist inY is p+ q − 1.

That any(p, q) torus knot can be realized byy is shown by construction in Fig. 6.
One places a(p, q) curve on a torus. Attach an annulus to this curve along one boundary
component. Add a “Lorenz ear” to form a Lorenz template. Next a “finger” pushes out of
the torus and snakes along the boundary of the template and finally pokes through thex

Fig. 6.y is a(p, q) cable ofa.
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Fig. 7. The top figure has an attractor in the fat tube and a repeller in the thin tube. A template for
the saddle set is shown below. The loopy is a(2,1) torus curve. Any(p, q) torus curve, knotted or
unknotted, can be realized.

loop. Thicken this complex up to getA ∪ L. The repeller is then placed as a meridian in
the complement. An example withy a (2,1) curve is shown in Fig. 7.

The argument thata andr must form a Hopf link is the same as in the concentric subcase
of Case 1 above. The corey of the annulusY is a (1, q) cabling of the core of the solid
torusL′. We can foliateL′ with meridianal disks each of which meetsY in an arc. Thus,
Y is a deformation retraction ofL′. We then pushY intoA′.

Case3.Suppose that bothx andy are essential in∂A. In Fig. 8 we give an example. The
loopsx andy are meridians in∂A. They are also standard longitudes in∂R. The attractor
a is a trefoil knot whiler is unknotted and is a meridian ofa. We claim that up to mirror
images and flow reversal, this is the only possible configuration.

Now consider the general setting. The attaching map from∂L to ∂A takesx andy to
two copies of some(p, q) cable knot of the attractor,a. Here we allowp or q to be zero,
but not both. Likewise, the attaching map from∂L to ∂R takesx ′ andy ′ to some pair of
(p′, q ′)r knots. Of coursex andy are respectively ambient isotopic tox ′ andy ′ within ∂L,
so all four have the same knot type.
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Fig. 8. Lorenz–Smale flow with a trefoil attractor.

For future reference, letT = 〈x, y | xyx = yxy〉. A knotk with π1(S
3− k)= T is a left-

or right-handed trefoil. See [2, Lemma 15.37, Corollary 15.23].

Lemma 10. The Alexander polynomials of the attractor and repeller are∆a = tq − 1+
t−q and∆r = tq ′ − 1+ t−q ′ , respectively.

Proof. If the linking matrix fora is[
tq tq

t−q t−q
]
,

then the result follows by Proposition 7. The only difficulty in determining the linking
matrix is the assignment of the signs to the powers of thet ’s. One can check our assignment
explicitly for theq = 1 case by studying Fig. 8. In general, if the powers are all of the same
sign, the polynomial that results is not symmetric int , nor is any±t multiple. But it is well
known that the Alexander polynomial of a knot is symmetric int , up to multiples of±t .
That is∆(t)=±tn∆(1/t), for somen. See [4]. 2

Not ready:

Lemma 11. The fundamental groups ofL ∪ A and L ∪ R are 〈xy | xpyxp = yxpy〉
and 〈xy | xp′yxp′ = yxp′y〉, respectively. The Alexander polynomials ofa and r are
∆a = tp′ − 1+ t−p′ and∆r = tp − 1+ t−p , respectively.

Proof. We shall findπ1(L∪R) using the Seifert/Van Kampen Theorem. The calculations
of π1(L ∪A) are similar. The Alexander polynomials can then be determined from Fox’s
Free Differential Calculus [4].

We must choose generators forL, R andL ∩ R. The generators forL ∩ R andL are
shown in Fig. 9. The base pointb, is in the “middle” of the stripS′. ForL we shall abuse
notation slightly and call the generatorsx andy, as they are isotopic to thex andy loops,
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Fig. 9. The generators ofπ1(R ∩L) andπ1(L).

however, we do not use the orientation of the flow. (By the proof of the previous lemma the
images ofx andy must wrap around∂R in the same direction.) Denote the generators of
L∩R byw andz. ForR we shall use a loop isotopic tor but with base pointb ∈ ∂R ∩ S′.
Again we abuse notation and call this new loopr.

The fundamental groups of interest are thenπ1(R)= 〈r〉, π1(L) = 〈x, y〉, andπ1(L ∩
R)= 〈w,z〉. The homomorphisms induced by inclusion maps areα :π1(L ∩R)→ π1(R)

andβ :π1(L∩R)→ π1(L). These giveα(w)= rp, α(z)= rp, β(w)= yxy, andβ(z)=
xyx. By Van Kampen’s theoremπ1(L ∪ R) = 〈r, x, y | rp = yxy, rp = xyx〉 ∼= 〈r, y |
yrpy = rpyrp〉. 2

It follows from Lemmas 10 and 11 that ifx is a(p, q) curve on∂A thenx ′ is a(±q,p)
curve on∂R.

If p or q is zero then the other is±1 since the curve is in a torus. Now supposex is a
(0,±1) curve on∂A. Thenπ1(L∪R)∼= T , and soa is a trefoil knot. Sincex is a meridian
of a andx is isotopic tox ′ which in turn is isotopic tor, we see thatr must be a meridian
of a.

If x is a(±1,0) curve on∂A then the rolls ofa andr are switched.
It is left only to show thatp andq cannot both be nonzero. It shall be useful to study the

attaching of the exit set ofL to ∂A in terms of the boundary curves of the exit set. They
consist of three loops denoted asα, β andγ . We takeα to be isotopic tox andβ to be
isotopic toy. Thenγ is the remaining curve. See Fig. 10. Our strategy is to show that if
p andq are both nonzero thenγ bounds a disk in∂A and thatγ is a nontrivial knot. This
contradiction will then prove our claim.

Let∂+L be the closure of the exit set ofL. Clearly(∂A\∂+L)∪∂+L is torus. Nowα and
β bound an annulusαβ in (∂A \ ∂+L). Thus,(∂A \ ∂+L) has two components, the annulus
αβ and another component we shall callD which has a single boundary componentγ .
Now,∂+L∪αβ is a torus with a disk removed. Since∂+L∪αβ ∪D must be a torus,D is a
disk. Since this torus is embedded inS3 it follows thatγ , the boundary ofD, is unknotted.

The Alexander polynomial calculations in Lemma 11 show thata is knotted, and thus
even for the(1,1) caseα andβ are nontrivial knots. Now sinceα andβ are parallel knots
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Fig. 10. The gray curve isγ .

Fig. 11.γ is a satellite ofα.

in ∂A we can deformL to appear as in Fig. 10. By studying Fig. 11 we see thatγ is a
satellite ofα. This impliesγ is nontrivial and completes the proof of Theorem 9.2
Corollary 12. In any Lorenz–Smale flow there is a pair of unlinked saddle orbits.
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Proof. In the Lorenz template there are two fixed points in the first return map of the
branch line. These correspond to a pair of unlinked unknots in the semi-flow if the Lorenz
template is standardly embedded. In all of the embeddings allowed for in Theorem 9
these two orbits remain unlinked. Thus, by the Birman–Williams template theorem [1],
the saddle set also contains a pair of unlinked orbits.2
Corollary 13. Consider a Smale flow onS3 with an attracting fixed point, a repelling fixed
point, a Lorenz saddle set and no other basic sets. There is only one possible configuration,
and in it the template of the saddle set is a standardly embedded Lorenz template.

Proof. The proof is similar to Case 1 above.2

4. Connected sums

Wada’s classification theorem for Morse–Smale flows is based on applying a series of
movesto one or two existing Morse–Smale flows and building up new ones. Conclusion (a)
of the next theorem establishes an operation that produces a new Smale flow from two
existing ones that is similar to Wada’s move IV [15].

Theorem 14. Letφ1 andφ2 be nonsingular Smale flows onS3 such that
(1) they each have only one attracting closed orbit with knot typesk1 and k2,

respectively,
(2) there is only one repelling closed orbit which is unknotted and is a meridian of the

attractor, and
(3) the repellers bound disks whose interiors meet the chain-recurrent sets in a single

point. Then(a)and(b) below hold true.
(a) There exists a nonsingular Smale flow onS3 such that there is only one

attracting closed orbit which has knot typek1#k2, and there is only one repelling
closed orbit which is unknotted and is a meridian of the attractor.

(b) There exists a nonsingular Smale flow onS3 such that there is only one
attracting closed orbit which has knot typek1, and there is only one repelling
closed orbit which has knot typek2. Furthermore, the attractor and the repeller
have linking number one, and can be placed into solid tori whose cores are
meridians of the each other.

Proof. The proofs are simple cut and paste arguments. Some details are left to the
reader. For (a) letVi , i = 1,2, be tubular neighborhoods of the repellers inφi , i = 1,2,
respectively. LetDi , i = 1,2, be the disks described in hypothesis (3). Thicken up these
disks a bit by taking cross product with a small intervalI = [−1,1]. We require that
eachDi × I meet the correspondingki in an unknotted arc. LetD±i = (Di × {±1}) \ Vi .
Choose the signs so that flows enter the thickened disks on the positive sides. See Fig. 12.
Delete from the 3-sphere of each flow the interior of the union ofVi andDi × I , for the
correspondingi = 1,2. We now have flows on two cylindersCi , i = 1,2. See Fig. 13. The



16 M.C. Sullivan / Topology and its Applications 106 (2000) 1–19

Fig. 12. Cut out these balls.

Fig. 13. Paste cylinders together.

boundary ofCi is the union ofD+i ,D−i , and the annulusAi = ∂Vi \Di × I . The flow exits
Ci on the interior ofD+i , for i = 1,2. GlueC1 to C2 by identifyingD+1 with D−2 andD+2
withD−1 . This creates a solid torus,V . The flow induced onV is inward on∂V =A1∪A2.
Further, the identifications can be chosen so that the flow onV has an attracting orbit with
knot typek1#k2, assumingV is standardly embedded. It is now clear how to construct the
desired flow onS3.

The proof of conclusion (b) is similar and in fact simpler and so is left as an exercise.
Note that hypothesis (3) is not required.2

5. Attracting links

The class of links which can arise in Morse–Smale flows (nonsingular onS3) is,
according to Wada’s Theorem, quite limited. For Smale flows it is easy to construct
examples in which every knot and link can be realized simultaneously as a saddle orbits.
This is a consequence of the existence ofuniversal templates, templates in which all links
all realized as closed orbits, [10]; also see [9,16].

Franks has shown that any link can be realized as an attractor of a Smale flow [6,
Proposition 6.1]. In the proof the link is realized as a braid in an unknotted solid torus
whose entrance set is its entire boundary. Thus given a Smale flow with attractork we
can replacek with any generalized cable ofk, though a new saddle set will typically be
introduced.
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In [9] it is shown that given a Smale flowφ with a saddle set modeled by a templateT
containing the closed orbitk, there exists another Smale flowφ′ with the same basic sets
asφ except thatk is an attractor and and the templateT has been replaced (as a model)
with T ′, a template formed by “surgering”T alongk (a standard template operation).

Turning our attention to simple Smale flows we shall use a similar idea to show that
given any knotk there exists a simple Smale flow with attractork and repeller a meridian
of k. As a corollary of the construction we can give a “dynamics” proof that Alexander
polynomials multiply under connected sums.

Theorem 15. For any knotk there exists a simple Smale flow such that with attractork

and repeller a meridian ofk that does not link any closed orbits in the saddle set.

Proof. The templateU shown in Fig. 14(a) is known to contain all knots as periodic
orbits [10]. Thus we can supposek has been realized as an orbit inU . We shall work
with a variation ofU shown in Fig. 14(b) and denotedV . It has five “Lorenz ears”. Notice
however that the middle ear does not stretch all the way across; it is to extend only as far as
an outer most arc ofk. (TechnicallyV is not a template, but it is still a branched manifold
with a semi-flow.)

Now consider the rather odd looking object in Fig. 15. The dark gray circle represents
the tubular neighborhood of a repeller. The the light gray tube has the same knot type ask

(though only a portion of it is shown); we have only added an extra loop in an outermost
strand ofk. The dark region is a topological ball which meets the light gray tube at a single
disk near the cusp of the fourth Lorenz ear. Their union is a solid torusA. The branched
manifoldV has been cut open alongk and is now a true templateT (compare with the
proof of Theorem A.3.3 in [9]). The boundary ofT is in the boundary ofA. We thicken

Fig. 14. Two templates containing all knots.
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Fig. 15. The attractork is inside the light gray tube, the repeller is in the dark gray tube while the
dark region is a ball in the basin of attraction ofk.

up T to getT T . Now we can regardT T as a neighborhood of a saddle set. Its exit set is
attached toA as required. From the figure we can see thatA ∪ T T is a solid unknotted
torus. Thus, we can use a meridian ofk as a repeller and build up the desired flow.2
Corollary 16. The Alexander polynomial multiplies under connected sums of knots.

Proof. The claim is that given knotsk1 andk2 then∆k1 ·∆k2 =∆k1#k2. By Theorem 15
there exist Smale flows fork1 andk2 that satisfy the hypotheses of Theorem 14. We use
conclusion (a) of Theorem 14 to construct a Smale flow with attractork1#k2 and apply
[6, Theorem 4.1] noting that there are only two saddle sets and hence only two linking
matrices needed in the formula given in [6, Theorem 4.1].2
Remark 17 (Concluding remarks). We have in these last two sections given a variety
of tools for building new Smale flows from old ones. Many other such results could be
stated. But, we are nowhere close to developing a calculus of Smale flows along the lines
of what Wada has done for Morse–Smale flows. Indeed we do not even know if there are
any restrictions on the link type ofa ∪ r for simple Smale flows.
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