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Abstract

A Smale flow is a structurally stable flow with one-dimensional invariant sets. We use information
from homology andemplatetheory to construct, visualize and in some cases, classify, nonsingular
Smale flows in the 3-spherg.2000 Elsevier Science B.V. All rights reserved.
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0. Introduction

The periodic orbits of a flow ir§® form knots. ForMorse—Smale flowthere are only
finitely many periodic orbits. Wada [15] has classified all links that can be realized as
a collection of closed orbits of nonsingular Morse—Smale flowsS@&nFurther, Wada’s
scheme includes an indexing of the components of the link according to whether the orbit
is an attractor, a repeller, or a saddle.

In a Smale flowby contrast, the saddle sets may contain infinitely many closed orbits,
while the attractors and repellers must still be collections of finitely many orbits. Franks [8]
devised an abstract classification scheme for nonsingular Smale flosisusing a device
he called theLyapunov graptof a flow. Each vertex of a Lyapunov graph corresponds
to an attractor, repeller or saddle set (Hesic setof the flow). The saddle vertices are
labeled with anincidence matrixdetermined non-uniquely by the first return map on a
cross section). A simple algorithm is used to decide if a given Lyapunov graph can be
realized by a nonsingular Smale flow 6A. However, the Lyapunov graph contains no
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explicit information about the embedding of the basic sets. In contrast to Wada’s study of
Morse—Smale flows, Franks’ work does does not allow orsesmale flows. It was our
curiosity to visualize Smale flows that motivated this paper. It is however worth noting
that Wada’s results have provided tools for understanding bifurcations between Morse—
Smale flows [3] and it is likely that some of our results may held light on bifurcations
between Smale flows and form Morse—Smale flows to Smale flows. Also see [11] for an
example.

The project of this paper is to visually construct examples of Smale flows and in
some special contexts classify all the possible embedding types. Our primary tools will
be the theory otemplates branched 2-manifolds which model the saddle sets [1] and
certain earlier results of Franks that do give some information about the embedding of
closed orbits. Specifically, computations of linking numbers and Alexander polynomials
are employed.

Sections 1 and 2 contain background information. Our main classification theorem
(Theorem 9) is in Section 3. Various generalizations and applications follow in Sections 4
and 5.

1. Knots and links

A knot k is an embedding of? into S3. It is traditional to usek to denote both the
embedding function and the image $3. A knot may be given an orientation. We will
always use a flow to induce an orientation on our knots. Khet groupof k is the
fundamental group a§2 \ k. A link of » components is an embeddingroftlisjoint copies
of st into S8

Two knotsk; andk; (or two links) are equivalent if there is an isotopy©f that takes
k1 to k2. When we talk about a knot we almost always mean its equivalence class, or
knot type A knot diagramis a projection of a knot or link into a plane such that any
crossings are transverse. If the knot has been given an orientation the crossings are then
labeled as positive or negative according to whether they are left-handed or right-handed,
respectively.

The knot group can be calculated from a diagram and, unlike the diagram, is invariant.
If a knot has a diagram with no crossings then it is callediaknotor atrivial knot. The
following proposition will be of use to us.

Proposition 1 (The Unknotting Theorem [14, p. 103])The knot group ok is infinite
cyclic if and only ifk is the unknot.

Given a diagram of a two component likkU k> thelinking numberof k1 with k; is half
the sum of the signs of each crossingcfunderk, and is denotetk(k1, k2). The linking
number is a link invariant, and thus is independent of the choice of the diagram. The Hopf
link shown in Fig. 1. Its linking number i&1, depending on the choice of orientations.
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Fig. 1. The Hopf link.
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Fig. 2. The square knot is the sum of two trefoils.

A knot k c S2 is compositef there exists a smooth 2-sphe§é such thats? N « is just
two pointsp andg, and ify is any arc ons? joining p to g then the knots

k1=y U (k Noutside ofs?) and
k2 =y U (k Ninside of$?),

are each nontrivial (i.e., not the unknot). We dalandk; factors ofk and writek = k1#k».
Of course the designation of the two components%fs? as “inside” and “outside” is
arbitrary. This implieski1#ko = ko#k1. We call k the connected sum dfy andk». If a
nontrivial knot is not composite then it gime Fig. 2 gives an example. It shows how to
factor thesquare knointo two trefoils. Trefoils are prime. It was shown by Schubert [2,
Chapter 5] that any knot can be factored uniquely into primes, up to order. The unknot
serves as a unit.

A knot which fits on a torus and wraps aboutpittimes longitudinally and; times
meridianally (p andg must be relatively prime), is called(@, ¢) torus knot If k is any
knot, then & p, ¢) cableaboutk, wherep andgq are relatively prime, is defined as follows.
Let N (k) be a solid torus neighborhoodbfwhose core i&. Let/ be astandard longitude
of aN (k) for k, i.e.,lk(/, k) = 0. Now consider a torug with a (p, q) knot on it. Let
h:T — 9N be a homeomorphism that takes a standard longitudetof/. The image of
(p, q) under this map is said to be(g, ¢) cable ofk or, (p, ¢)k.

We shall extend the usual cabling notation a bit. (G&etl)k be a meridian ok, (1, 0)k
be a standard longitude &f and(0, O)k be a loop bounding a disk df. (A curve on a
surface ignessentialf it bounds a disk in the surface, anddssentialf it does not.)

Thus, we have tools with which to build up new knots from old ones. In Wada’s paper
and in Sections 4 and 5 here, one builds new flows from old ones using processes based in
part on taking connected sums and forming cables.
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The cabling construction has been generalized in two ways. AKrstasatelliteof a
given knotk if £’ lives inside a tubular neighborho@dand meets every meridianal disk.
If the orientation ofk’ is always roughly the same as thatkofi.e., there is a fibration of
N (k) by meridianal disks which are always transversk }pwe say that’ is ageneralized
cableof k. It is known that the satellite of a nontrivial knot is nontrivial [14], a fact which
we shall make use of in Case 3 in the proof of Theorem 9.

Knot polynomials form an important class of knot and link invariants. We shall make use
of the first known knot polynomial, the Alexander polynomial. It can be readily calculated
from either a knot diagram or the fundamental group. The latter approach will be of special
importance to us. The reader who wishes to check our polynomial calculations should be
able to find all he or she needs in [4].

2. Dynamics of flows

A C* flow ¢, on a compact manifold/ is calledstructurally stablef any sufficiently
close approximatiog, in theC? topology istopologically equivalenthat is if there exists
a homeomorphismi: M — M taking orbits of¢, to orbits of ¥, preserving the flow
direction. Structurally stabl€* flows have a hyperbolic structure on their chain-recurrent
sets [12]. We define these concepts next.

A pointx € M is chain-recurrenfor ¢, if for everye > 0 andT > 0 there exists a chain
of pointsx = xg, ..., x, = x in M, and real numbers, ..., 1,1 all bigger thanT such
thatd (¢, (x;), xi+1) < & when ever 0<i < n — 1. The set of all such points is called the
chain-recurrent seR. It is a compact set invariant under the flow.

A compact invariant sek for a flow ¢, has ahyperbolic structuref the tangent bundle
of K is the Whitney sum of three bundlés’, E*, and E¢ each of which invariant under
D¢, for all r. Furthermore, the vector field tangentdp spanst© and there exist real
numbersC > 0 ande > O such that

| D¢ (v)|| < Ce ' |lv|| fort>0andv e E,
| Dg: (v)|| < Ce*'|vl|  fort < 0andv e E“.

We also define the local stable and unstable manifolds associated to a® oitiiey
are respectively

Wine(0) = | {y € M| d(¢:(x). ¢:(y)) — 0 ast — oo andd (x, y) <&}
xe0

and

Wise(0) = | {y e M | d(@/(x), ¢/(y)) > O ast — —occ andd (x, y) < e}.
x€0
The global stable and unstable manifolds are defined similarly by removing the condition
thatd (x, y) < e.
It was shown by Smale that if the chain-recurrentgetf flow has a hyperbolic structure
thenR is the union of a finite collection of disjoint invariant compact sets calledb#sic
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sets Each basic se8 contains an orbit whose closure contalisThe periodic orbits of

a basic sef5 are known to be dense ii. A basic may either consist of a single closed
orbit or it may contain infinitely many closed orbits and infinitely other nonperiodic chain-
recurrent orbits. In the later case any cross section is a Cantor set and the first return map
is asubshift of finite typen the former case any cross section is a finite number of points
but the first return map is still a (trivial) subshift of finite type. Thus, each basic set is a
suspension of a subshift of finite type. A nontrivial basic will be catiedotic

Definition 2. A flow ¢, on a manifoldM is called aSmale flowprovided
(a) the chain-recurrent s@& of ¢, has a hyperbolic structure,
(b) the basic sets dR are one-dimensional, and
(c) the stable manifold of any orbit iR has transversal intersection with the unstable
manifold of any other orbit oRR.

Most references allow for fixed points but we will be working primarily with nonsingular
flows. Smale flows on compact manifolds are structurely stable ufiigrerturbations
but are not dense in the space ©f flows. It is easy to see that for ditd = 3, each
attracting and repelling basic set is a closed orbit. The admissible saddle sets, however,
may be chaotic. A Smale flow with no chaotic saddle sets is callddrae—Smal@ow.

For a chaotic saddle set of a Smale flow in a 3-manifold one can construct a
neighborhood that is foliated by local stable manifolds of orbits in the flow. Collapsing
in the stable direction produces a branched 2-manifold. With a semi-flow induced from
the original flow, this branched 2-manifold becomes what is known tsrgplate The
template models the basic saddle set in that the saddle set itself can be recovered from
the template via an inverse limit process and that any knot or link of closed orbits in the
flow is smoothly isotopic to an equivalent knot or link of closed orbits in the template’s
semi-flow. The proof of this is due to Birman and Williams [1] and can also be found in [9,
Theorem 2.2.4].

A key tool in the analysis of hyperbolic flows is the concept of a Markov partition. We
refer the reader to [7] for details. In our context a Markov partition is a finite, disjoint
collection of disks transverse to a basic set of a flow. Each orbit of the basic set must pass
through some element of the Markov patrtition in forward time.

Definition 3. Given a Markov partitionms, ..., m,} for a suspended subshift of finite
type with first return map we define the correspondimgx »n incidence matrixA, by

)1 ifp(mi)ﬂmj;é@,
Y710 otherwise.

The incidence matrix, like a knot diagram, is not invariant but does contain invariant
information. We can encode additional information about the embedding of a basic set by
modifying the incidence matrix.
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Definition 4. Given a Markov partition for a basic set with first return mapassign an
orientation to each partition element. If the partition is fine enough the function

0(x) = +1 if p is orientation preserving at,
SRR p Is orientation reversing at,

is constant on each partition element. Tdteucture matrix$ is then defined bys;; =
O (x)A;j, wherex is any point in the'th partition element.

The next proposition was proved by Franks in [5].

Proposition 5 (Franks, 1977)Let¢, be a Smale flow with a single attracting closed orbit
a, and a single repelling closed orhit with saddle setsi, ..., A,. Then the absolute
value of the linking number @f andr is given by

|Ik(a, r)| =1_[|de‘(1 -8,

i=1
whereSs, ..., S, denote the respective structure matrices of the saddle sets.

The manner in which a saddle set “links” a closed okbis described by modifying the
structure matrixS to form alinking matrix L. Consider a Markov partitiofmy, . .., m,},
of the saddle with incidence matrik. Pick a base poink in $° — k and pathg; from b
to m;, also inS3 — k. For eachy;; # 0 lety;; be a segment of the flow going from; to
m ; without meeting any of the other partition elements. Now form a loop consistipg,of
pi, pj and, if needed, short segmentsinand inm ;. If the disks have been chosen small
enough, then the linking number of any such loop witdepends only o and j. That
this can always be done is shown in [6].

Definition 6. Thelinking matrix L associated with a suitable Markov partition for a given
closed orbitk is defined to by

Lij = Sijl‘q,

whereq is the linking number of the loops formed from segments conneetint m ;
andk as described above.

The following proposition is a special case of Theorem 4.1 in [6].

Proposition 7 (Franks, 1981).Let ¢, be a Smale flow irs® with one attracting closed
orbit a, one repelling closed orbit, and a single saddle setLet L, and L, be the linking
matrices fors with respect tax andr, respectively. Then the Alexander polynomialg of
and r are given byA,(r) =det/ — L,) and A, (t) = det/ — L,), respectively, up to
multiples ofz.

Finally, we record a proposition about Morse—Smale flows. It is an obvious corollary to
Wada’s theorem [15], though it is easy to prove directly.
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Proposition 8. In a (nonsingulaj Morse—Smale flow o8 with exactly two closed orbits,
the link of closed orbits forms a Hopf link with one component a repeller and the other an
attractor.

3. Lorenz—Smale flows

By a simple Smale flowe shall mean a Smale flow with three basic sets: a repelling
orbit r, an attracting orbit, and a nontrivial saddle set. In this section we will show how
to construct simple Smale flows in which the saddl€ sein be modeled by an embedding
of the Lorenz template shown in Fig. 3. That is, there is an isolating neighborhood of the
saddle sef foliated by local stable manifolds of the flow, such that when we collapse
out in the stable direction we get an embedding of the Lorenz template. Call such flows
Lorenz—Smale flowsn this section we classify all possible Lorenz—Smale flows.

We shall call the isolating neighborhood of the saddle/seThe set of points ofl L
where the flow is transverse outward is called éxé& set The backward orbits of these
points approach orbits in the saddle eThe exit set consists of two annul, andY,
connected by a long strif. The core of the exit set is homeomorphic to the boundary of
the Lorenz template. We shall refer to the coreXadndY, asx andy, respectively. See
Fig. 4. The set of points of L where the flow is transverse inward is called #mgrance
set The entrance set also consists of two annuli connected by a long strip. Denote these
two annuli by X" andY’ and their respective corae$ andy’ and the connecting strip by
S’. See Fig. 4. The intersection of the closures of the entrance and exit sets consists of
three closed curves where the flow is tangential o Although the entrance set is harder
to visualize, its topological type can be determined by an Euler characteristic argument.
Notice thatx andx’ are isotopic taX N X’ and hence have the same knot type. Similarly,

y andy’ must have the same knot type.

Take tubular neighborhoods efandr and denote them byt and R, respectively.

To build a Smale flow from these building blocks, we first attach the closure of the
exit set of L to dA. This gives a vector field on a new 3-manifold pointing inward along
its entire boundary. That this can be done smoothly was shown by Morgan in [13]. Next
attachd R to the boundary oft U L so that the uniom U L U R is S3.

Fig. 3. The Lorenz template.
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S

Exit Set Entrance Set

Fig. 4. Neighborhood of a Lorenz saddle set (top) with the exit set (bottom left) and entrance set
(bottom right).

We know from Proposition 5 that the linking number betweeanda must be+1, but
what types of knots can andr be? What are all the different ways the saddle set can
be embedded so as to still have the Lorenz template as a model? This later question is
made precise by asking, what types of knots eamdy be? Can they be linked? Can the
annuliX andY have any number of twists or are there restrictions? (This last question is
equivalent to finding th&amingof a knot.)

To answer these questions we use the following framework. First, we study what may
happen when the attaching of the exit seLdb d A is such that andy are both inessential
in dA. Then we investigate the case where one of them ysay essential but the other
is still inessential. Finally we consider the case where ho#tnd y are essential idA.
The results of this analysis are then consolidated into the statement of Theorem 9. Our
classification scheme is only up to isotopy £, plus mirror images and flow reversal.
Also, we shall not be concerned with the orientation, i.e., the flow directianpof, since
their orientations can be easily reversed by modifying the flow in a tubular neighborhoods
of a andr [15, first paragraph].

Theorem 9. For a Lorenz—Smale flow ir§® the following and only the following
configurations are realizable. The likJ r is either a Hopf link or a trefoil and meridian.
In the latter case the saddle set is modeled by a standardly embedded Lorenz template, i.e.,
both bands are unknotted, untwisted, and unlinked, with the core of each band a meridian
of the trefoil component ef U r. In the former case there are three possibilities
(1) The saddle set is standardly embedded.
(2) One band is twisted with full-twists for anyn, but remains unknotted and unlinked
to the other band, which must be unknotted and untwisted.
(3) One band is a(p, ¢g) torus knot, for any pair of coprime integers, with twist
p + g — 1. The other band is unknotted, untwisted and unlinked to the knotted one.
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Proof. The proofis divided into three cases.

Casel. Suppose botlr and y are inessential indA. It follows that X and Y are
untwisted, that is the linking number between each of the two componem¥ @&fnd
of aY is zero. It is also obvious thatandy are unknotted and unlinked.

There are two subcases to consider. It could be.thaid y are concentric id A, or it
could be that they are not. Thatisandy may or may not form the boundary of an annulus
in 9A. In Fig. 5 we show that both cases can be realized. The neighboth@oattached
to a 3-ballB along the closure of the exit set bf Fig. 5 also shows two ways one might
attach handles to the 3-ball so as to turn it into a solid torus. Suppose we attach the handle
to the small disks marke@ andC’ in the manner shown. Call the resulting solid toAus
If we take L U A1 the result is still a solid torus, and the complemens¥ris just another
solid torus,R1. We can now build a Smale flow with an attractor4n, a repeller inR;
and a Lorenz saddle set in Upon further inspection the reader should be able to see that
x andy are concentric.

Now, instead on attaching a handle@iand C’, we attach one t@ and B’ as shown
again in Fig. 5. This time call the solid torus obtainég As beforeL U A5 is a solid torus
with solid torus complement isi®. Thus, we have constructed another Lorenz—Smale flow
with x and y inessential on a tubular neighborhood of the attractor. Is it diffeomorphic
to the Lorenz—Smale flow we constructed before? To see that the answer is no, study the
loopsx andy again. They are still both inessential, that is they both bound diskg
But they are no longer concentric. This can be seen from careful study of Fig. 5.

In both these examples the attractor and repeller form a Hopf link. We claim that if both
x andy are inessential id A thena andr must form a Hopf link. Sincer is a tubular
neighborhood of a knot, the union afandL is a knot complement. But we will show that
AUL is asolid torus whose core has the same knot type as thafbius, we could remove
A U L from our flow and replace it with a solid torus containing just an attractor and no
saddle set. This gives us a nonsingular Morse—Smale flo§¥ evith just two closed orbits
whose link type is the same asJ r. But by Proposition 8 these must form a Hopf link.

Fig. 5. Lorenz saddle set neighborhood attached to a ball.
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We now show thatd U L is a solid torus of whose core is the same knot type .as
First, assume that andy are not concentric. Then they bound disjoint digksand D,
in 9A. ExpandD, and D,, if needed, so that they contain all & andY, respectively
but remain disjoint. ThickerD, and D, by pushing intoA a little, forming two 3-balls
B, and B,, which are disjoint and do not meet the orhit Let L’ = L U B, U B,
and A" = A — (B, U By). It is clear thatA’ is a solid torus whose core is stifl. The
setL’ is a 3-ball andL U A = L’ U A’. But the unionL’ U A’ is taken along the disk
S U (@Bx — Dy) U (3B, — D). Thus, there is a deformation retract frathu A" to A’.

This proves our claim fox andy not concentric.

Now supposer andy are concentric and assumes inner most. Then construct the
3-ball B, as before. Lef.’ = L U B, andA’ = A — B,. This timeL’ is a solid torus. It is
attached tod’ along the annulu¥ U S U (B, — D) whose core is inessential i A’ and
is a(1, 0) longitude inL’. Thus we can retradt’ to Y and push it intcA” without changing
the knot type of:. This finishes the proof of our claim.

Case2. Suppose that is inessential but that is essentialThe opposite case is similar.
Again, it is clear thatX is untwisted and that is unknotted and unlinked tp. We shall
again show that: andr must form a Hopf link. It then follows that since lives in a
standardly embedded torus4, y is a torus knot or unknot. If is a meridian(0, 1), or
a longitude(1, 0) thenY is untwisted. Ify is an unknot(1, ¢) or (¢, 1) thenY hasgqg full
twists. For nontrivial torus knots the twisting khis uniquely determined by the knot type
of y. If yisa(p, ¢) torus knot then the twist i is p + g — 1.

That any(p, g) torus knot can be realized by is shown by construction in Fig. 6.
One places @p, ¢) curve on a torus. Attach an annulus to this curve along one boundary
component. Add a “Lorenz ear” to form a Lorenz template. Next a “finger” pushes out of
the torus and snakes along the boundary of the template and finally pokes through the

Fig. 6.y isa(p, ¢q) cable ofa.
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Fig. 7. The top figure has an attractor in the fat tube and a repeller in the thin tube. A template for
the saddle set is shown below. The lopfs a(2, 1) torus curve. Any(p, ¢) torus curve, knotted or
unknotted, can be realized.

loop. Thicken this complex up to gétU L. The repeller is then placed as a meridian in
the complement. An example witha (2, 1) curve is shown in Fig. 7.

The argument that andr must form a Hopf link is the same as in the concentric subcase
of Case 1 above. The coseof the annulust’ is a (1, ¢) cabling of the core of the solid
torusL’. We can foliateL” with meridianal disks each of which meédtsin an arc. Thus,

Y is a deformation retraction df’. We then push into A’.

Case3. Suppose that bothandy are essential i A. In Fig. 8 we give an example. The
loopsx andy are meridians iM A. They are also standard longitudes)iR. The attractor
a is a trefoil knot whiler is unknotted and is a meridian of We claim that up to mirror
images and flow reversal, this is the only possible configuration.

Now consider the general setting. The attaching map féd@nto 9 A takesx andy to
two copies of somé&p, g) cable knot of the attractos, Here we allowp or g to be zero,
but not both. Likewise, the attaching map frémh to 9 R takesx’ andy’ to some pair of
(p’, ¢")r knots. Of course andy are respectively ambient isotopicitbandy’ within 9L,
so all four have the same knot type.



12 M.C. Sullivan / Topology and its Applications 106 (2000) 1-19

Fig. 8. Lorenz—Smale flow with a trefoil attractor.

For future reference, |6t = (x, y | xyx = yxy). A knotk with 71(S% — k) = T is a left-
or right-handed trefoil. See [2, Lemma 15.37, Corollary 15.23].

Lemma 10. The Alexander polynomials of the attractor and repeller arg=17 — 1 4
t~7andA, =17 — 1+, respectively.

Proof. If the linking matrix fora is

14 1
t=4 4|

then the result follows by Proposition 7. The only difficulty in determining the linking
matrix is the assignment of the signs to the powers of h@®ne can check our assignment
explicitly for theq = 1 case by studying Fig. 8. In general, if the powers are all of the same
sign, the polynomial that results is not symmetric,inor is any++ multiple. But it is well
known that the Alexander polynomial of a knot is symmetric,iip to multiples oftr.
ThatisA(t) = +t" A(1/t), for somen. See [4]. O

Not ready:

Lemma 11. The fundamental groups df U A and L U R are (xy | xPyx? = yxPy)
and (xy | x” yx?" = yxP'y), respectively. The Alexander polynomialsaofand r are
Ag=t" —1+1P andA, =tP —1+17P, respectively.

Proof. We shall findr1 (L U R) using the Seifert/VVan Kampen Theorem. The calculations
of m1(L U A) are similar. The Alexander polynomials can then be determined from Fox’s
Free Differential Calculus [4].

We must choose generators foy R and L N R. The generators fof. N R and L are
shown in Fig. 9. The base point is in the “middle” of the stripS’. For L we shall abuse
notation slightly and call the generatar@&ndy, as they are isotopic to theandy loops,
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-

Fig. 9. The generators af{ (R N L) andw1(L).

however, we do not use the orientation of the flow. (By the proof of the previous lemma the
images ofv andy must wrap aroundR in the same direction.) Denote the generators of
LN R by w andz. For R we shall use a loop isotopic tobut with base poink e 9RN §’.
Again we abuse notation and call this new loop

The fundamental groups of interest are thaiGR) = (r), w1(L) = (x, y), andw1(L N
R) = (w, z). The homomorphisms induced by inclusion mapscare1(L N R) — w1(R)
andp:m1(L N R) — m1(L). These givex(w) =r?, a(z) =r?, B(w) = yxy, andB(z) =
xyx. By Van Kampen’s theorem1(L U R) = (r,x,y | r? = yxy, ¥P =xyx) = (r, y |
yrPy =rPyrP). 0O

It follows from Lemmas 10 and 11 thatifis a(p, ¢) curve ond A thenx’ is a(+gq, p)
curve ondR.

If p orgq is zero then the other i1 since the curve is in a torus. Now suppasis a
(0, £1) curve ondA. Thenm1(L U R) = T, and sau is a trefoil knot. Sincer is a meridian
of a andx is isotopic tox’ which in turn is isotopic ta, we see that must be a meridian
of a.

If x is a(£1, 0) curve ond A then the rolls otz andr are switched.

Itis left only to show thaip andg cannot both be nonzero. It shall be useful to study the
attaching of the exit set af to dA in terms of the boundary curves of the exit set. They
consist of three loops denoted @sg andy. We takex to be isotopic tax and g to be
isotopic toy. Theny is the remaining curve. See Fig. 10. Our strategy is to show that if
p andqg are both nonzero thep bounds a disk i A and thaty is a nontrivial knot. This
contradiction will then prove our claim.

Letd; L be the closure of the exit set bf Clearly(d A\ 94+ L) Ud4 L is torus. Noww and
B bound an annulugg in (dA \ 9+L). Thus,(dA \ 94+ L) has two components, the annulus
af and another component we shall callwhich has a single boundary component
Now, 3+ L Uag is a torus with a disk removed. SindgL Ua U D must be atorus) is a
disk. Since this torus is embeddedsit follows thaty, the boundary oD, is unknotted.

The Alexander polynomial calculations in Lemma 11 show tha knotted, and thus
even for thgl, 1) casex andg are nontrivial knots. Now since and g are parallel knots
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Fig. 11.y is a satellite ofx.

in 9A we can deformL to appear as in Fig. 10. By studying Fig. 11 we see thid a
satellite ofe. This impliesy is nontrivial and completes the proof of Theorem &

Corollary 12. In any Lorenz—Smale flow there is a pair of unlinked saddle orbits.
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Proof. In the Lorenz template there are two fixed points in the first return map of the

branch line. These correspond to a pair of unlinked unknots in the semi-flow if the Lorenz
template is standardly embedded. In all of the embeddings allowed for in Theorem 9
these two orbits remain unlinked. Thus, by the Birman—Williams template theorem [1],

the saddle set also contains a pair of unlinked orbits.

Corollary 13. Consider a Smale flow o$? with an attracting fixed point, a repelling fixed
point, a Lorenz saddle set and no other basic sets. There is only one possible configuration,
and in it the template of the saddle set is a standardly embedded Lorenz template.

Proof. The proofis similar to Case 1 above[

4. Connected sums

Wada’s classification theorem for Morse—Smale flows is based on applying a series of
movedo one or two existing Morse—Smale flows and building up new ones. Conclusion (a)
of the next theorem establishes an operation that produces a new Smale flow from two
existing ones that is similar to Wada’s move |V [15].

Theorem 14. Let¢1 and ¢z be nonsingular Smale flows o1 such that
(1) they each have only one attracting closed orbit with knot typesand ko,
respectively,
(2) there is only one repelling closed orbit which is unknotted and is a meridian of the
attractor, and
(3) the repellers bound disks whose interiors meet the chain-recurrent sets in a single
point. Then(a) and(b) below hold true.

(a) There exists a nonsingular Smale flow 6A such that there is only one
attracting closed orbit which has knot typetko, and there is only one repelling
closed orbit which is unknotted and is a meridian of the attractor.

(b) There exists a nonsingular Smale flow §A such that there is only one
attracting closed orbit which has knot type, and there is only one repelling
closed orbit which has knot tyge. Furthermore, the attractor and the repeller
have linking number one, and can be placed into solid tori whose cores are
meridians of the each other.

Proof. The proofs are simple cut and paste arguments. Some details are left to the
reader. For (a) leV;, i = 1, 2, be tubular neighborhoods of the repellerspini =1, 2,
respectively. LetD;, i =1, 2, be the disks described in hypothesis (3). Thicken up these
disks a bit by taking cross product with a small intervak [—1, 1]. We require that
eachD; x I meet the correspondirig in an unknotted arc. LeDiﬂE = (D; x {£1H \ V;.

Choose the signs so that flows enter the thickened disks on the positive sides. See Fig. 12.
Delete from the 3-sphere of each flow the interior of the unioWw;oénd D; x I, for the
corresponding = 1, 2. We now have flows on two cylinde6s, i =1, 2. See Fig. 13. The
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Fig. 13. Paste cylinders together.

boundary ofC; is the union ofDl.*, D;,andthe annulud; = 9V; \ D; x I. The flow exits
C; on the interior ofD;", fori = 1, 2. GlueCy to C» by identifying D} with D, and D}
with D7 . This creates a solid torug,. The flow induced orV is inward ondV = A1 U A».
Further, the identifications can be chosen so that the flow bas an attracting orbit with
knot typeki#ko, assuming/ is standardly embedded. It is now clear how to construct the
desired flow ons®.

The proof of conclusion (b) is similar and in fact simpler and so is left as an exercise.
Note that hypothesis (3) is not required:

5. Attracting links

The class of links which can arise in Morse-Smale flows (nonsingulas®nis,
according to Wada’s Theorem, quite limited. For Smale flows it is easy to construct
examples in which every knot and link can be realized simultaneously as a saddle orbits.
This is a consequence of the existencemi/ersal templategemplates in which all links
all realized as closed orbits, [10]; also see [9,16].

Franks has shown that any link can be realized as an attractor of a Smale flow [6,
Proposition 6.1]. In the proof the link is realized as a braid in an unknotted solid torus
whose entrance set is its entire boundary. Thus given a Smale flow with attkaster
can replace with any generalized cable &f though a new saddle set will typically be
introduced.
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In [9] it is shown that given a Smale flog with a saddle set modeled by a template
containing the closed orbit, there exists another Smale flaw with the same basic sets
as¢ except that is an attractor and and the templdtehas been replaced (as a model)
with 7’7, a template formed by “surgering” alongk (a standard template operation).

Turning our attention to simple Smale flows we shall use a similar idea to show that
given any knot there exists a simple Smale flow with attractasnd repeller a meridian
of k. As a corollary of the construction we can give a “dynamics” proof that Alexander
polynomials multiply under connected sums.

Theorem 15. For any knotk there exists a simple Smale flow such that with attraétor
and repeller a meridian of that does not link any closed orbits in the saddle set.

Proof. The templateU shown in Fig. 14(a) is known to contain all knots as periodic
orbits [10]. Thus we can suppogehas been realized as an orbitih We shall work

with a variation ofU shown in Fig. 14(b) and denotéd It has five “Lorenz ears”. Notice
however that the middle ear does not stretch all the way across; it is to extend only as far as
an outer most arc df. (TechnicallyV is not a template, but it is still a branched manifold
with a semi-flow.)

Now consider the rather odd looking object in Fig. 15. The dark gray circle represents
the tubular neighborhood of a repeller. The the light gray tube has the same knot #ype as
(though only a portion of it is shown); we have only added an extra loop in an outermost
strand ofk. The dark region is a topological ball which meets the light gray tube at a single
disk near the cusp of the fourth Lorenz ear. Their union is a solid tarughe branched
manifold V has been cut open alortgand is now a true templaté (compare with the
proof of Theorem A.3.3 in [9]). The boundary &fis in the boundary ofA. We thicken

Fig. 14. Two templates containing all knots.
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Fig. 15. The attractok is inside the light gray tube, the repeller is in the dark gray tube while the
dark region is a ball in the basin of attractionkof

up T to getTT. Now we can regard'T as a neighborhood of a saddle set. Its exit set is
attached toA as required. From the figure we can see that 7T is a solid unknotted
torus. Thus, we can use a meridiarkads a repeller and build up the desired flov

Corollary 16. The Alexander polynomial multiplies under connected sums of knots.

Proof. The claim is that given knotk; andky then Ay, - Ax, = Ag,,. By Theorem 15
there exist Smale flows fdr; andk; that satisfy the hypotheses of Theorem 14. We use
conclusion (a) of Theorem 14 to construct a Smale flow with attragtér, and apply

[6, Theorem 4.1] noting that there are only two saddle sets and hence only two linking
matrices needed in the formula given in [6, Theorem 4.1].

Remark 17 (Concluding remarks We have in these last two sections given a variety

of tools for building new Smale flows from old ones. Many other such results could be
stated. But, we are nowhere close to developing a calculus of Smale flows along the lines
of what Wada has done for Morse—Smale flows. Indeed we do not even know if there are
any restrictions on the link type afU r for simple Smale flows.
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