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Abstract

Multiple growth- and differentiation-inducing polypeptide factors bind to and activate transmembrane receptors tyrosine kinases (RTKSs), to
instigate a plethora of biochemical cascades culminating in regulation of cell fate. We concentrate on the four linear mitogen-activated protein
kinase (MAPK) cascades, and highlight organizational and functional features relevant to their action downstream to RTKs. Two cellular
outcomes of growth factor action, namely proliferation and migration, are critically regulated by MAPKs and we detail the underlying molecular
mechanisms. Hyperactivation of MAPKs, primarily the Erk pathway, is a landmark of cancer. We describe the many links of MAPKs to tumor
biology and review studies that identified machineries permitting prolongation of MAPK signaling. Models attributing signal integration to both
phosphorylation of MAPK substrates and to MAPK-regulated gene expression may shed light on the remarkably diversified functions of MAPKs

acting downstream to activated RTKs.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Critical cellular decisions such as proliferation, migration
and differentiation, are regulated by stimulatory cues from the
extracellular environment, primarily growth factors, extracel-
lular matrix (ECM) proteins and adhesion molecules presented
on the surface of neighboring cells. These extracellular cues are
converted to a cellular response through their binding to specific
receptors present at the surface of the recipient cell. Many
growth factors (GFs) bind and activate transmembrane
glycoproteins of the receptor tyrosine kinase (RTK) family
[1,2]. All RTKSs contain an extracellular ligand binding domain,
a single transmembrane domain, and an intracellular part that
contains a tyrosine kinase domain and several regulatory
tyrosines, which are modified through auto- or trans-phosphor-
ylation. Upon binding to their respective receptors, GFs drive
the formation of receptor dimers, leading to the activation of the
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intrinsic tyrosine kinase domain [3]. Subsequent phosphoryla-
tion of specific tyrosines enables the recruitment of various
signaling adaptors containing Src homology 2 (SH2) and
phosphotyrosine-binding (PTB) domains [4].

Much understanding has been gained in recent years, by
solving the atomic structure of several RTKs, for how a growth
factor may promote receptor activation. In this respect, one
extensively studied RTK is the epidermal growth factor receptor
(EGFR). According to the reported atomic structures [5,6],
epidermal growth factor and transforming growth factor o
(TGFa binding to two non-contiguous extracellular sub-
domains of the receptor, results in a conformational change
that induces the release of a “dimerization loop”, which is
otherwise held in a closed conformation. As a result the
“dimerization loop” protrudes from each ligand bound-mono-
mer and facilitates the formation of a receptor dimer. In the
intracellular side, the kinase of monomeric receptors is kept in
an inactive state. This results from stabilization of the activation
loop located at the carboxyl lobe of the kinase domain, through
an intramolecular interaction with the amino-terminal lobe [7].
The induction of a receptor dimer induces kinase activation by
driving the formation of an asymmetric kinase-dimer, in which
the C-lobe of one kinase domain interacts with the N-lobe of the
second kinase domain. This facilitates formation of a salt bridge
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in the N-lobe and the release of the intramolecular activation
loop, resulting in its proper positioning for catalysis. Thus, one
kinase in a dimer activates the other through an allosteric
mechanism. Yet, for other RTKs, processes like trans-
phosphorylation of the activation loop or of the juxtamembrane
regions are required for the stabilization of the activation loop in
an active conformation [8,9].

Kinase activation induces phosphorylation of tyrosine
residues located at the cytoplasmic tail of the receptor, as well
as phosphorylation of effector proteins, which are physically
recruited to the active receptor. This step simultaneously
initiates multiple signal transduction pathways, schematically
depicted in Fig. 1. The four best characterized signaling
pathways induced by RTKSs are the mitogen-activated protein
kinase cascades (MAPKSs), the lipid kinase phosphatidylinositol
3 kinase (PI3K), a group of transcription factors called Signal
Transducers and Activator of Transcription (STAT), and the
phospholipase Cy (PLCwy) pathway. Activation of these
signaling pathways results in modulation of target proteins, as
well as activation of transcription factors, leading to cellular
alterations. After reviewing these pathways, we concentrate on
GF-activated MAPKSs, their linear organization and functional
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features, as well as effects on cell behavior and ability to
integrate incoming signals.

2. Signaling pathways activated by growth factors
2.1. The PLCy signaling pathway

PLCY is recruited to an activated GF receptor through the
binding of its SH2 domain with phosphorylated tyrosines on
the receptor, and as a result it undergoes tyrosine phosphoryla-
tion [10]. This phosphorylation, along with a translocation to
the plasma membrane, results in enzyme activation. Active
PLCvy hydrolyzes phosphatidylinositol 4, 5 bisphosphate
(PtdIns(4,5)P,) to form two second messengers, diacylglycerol
and Ins(1,4,5)P3;. Binding of Ins(1,4,5)P; to specialized
receptors on the membrane of the endoplasmic reticulum
(ER) leads to Ca®" release. Free cytosolic Ca”", together with
diacylglycerol, can then activate certain members of the protein
kinase C (PKC) family, resulting in the phosphorylation of
various effector proteins. In addition, high cytosolic Ca**
initiates the activation of calcium/calmodulin-dependent
protein kinases and phosphatases [11].

Raf-1
(14-3-3,

PN

Mek1/2

IEG (e.g. c-fos, jun, egr)

Fig. 1. Signaling pathways stimulated by growth factors and their receptor tyrosine kinases. Growth factor binding to and dimerization of transmembrane receptors is
followed by trans-phosphorylation of the cytoplasmic portions of the receptors (P letters represent phosphate groups). The activated receptor physically recruits from
the cytoplasm and from the plasma membrane a large variety of adaptors and enzymes, which subsequently put in motion several linear cascades, some of which are
presented. The four canonical MAPK pathways are presented, although growth factors rarely activate p38-MAPK. Also shown are the PI3K-Akt, phospholipase
C-PKC and the STAT pathways. All routes culminate in regulation of gene expression, such as rapid transcription of a group of immediate early genes (IEGs).
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2.2. The PI3K/Akt signaling pathway

Another phospholipid modifying signaling pathway acti-
vated by RTKs is the PI3K pathway. This heterodimeric
enzyme comprises two subunits, the p85 regulatory subunit
harboring two SH2 domains, and the p110 catalytic subunit.
PI3K activation may be achieved by binding of its p85
regulatory subunit to an activated receptor. Alternatively, RTK
signaling may activate the small G protein Ras, which in turn
recruits PI3K to the plasma membrane and induces a
stimulatory conformational change in the lipid kinase [12].
Upon activation, PI3K induces PtdIns(3,4,5)P; formation at the
inner leaflet of the plasma membrane, which serves as a
docking site for various proteins containing phospholipid
binding domains, such as the PH domain, including the kinases
PDK1 and Akt/PKB. Recruitment of Akt to the plasma
membrane, along with Akt phosphorylation by PDK1 and by a
still unknown kinase, enables activation and subsequent
phosphorylation of various substrate proteins, including
major effectors of apoptosis, as well as several transcription
factors [13].

2.3. The STAT signaling pathway

RTKs may directly phosphorylate and activate in the
cytoplasm STAT-family transcription factors, thereby promot-
ing their translocation to the nucleus. Originally identified as
substrates activated by cytokines, several STATs have been
shown to undergo phosphorylation by multiple RTKs [14].
Upon phosphorylation-induced dimerization and translocation
to the nucleus, STAT proteins elevate transcription of genes
involved in cell proliferation.

2.4. The MAPK signaling pathways

The MAPK pathway is a three layer signaling cascade, in
which the MAPK elements (the most downstream tier) are
activated upon tyrosine and threonine phosphorylation within
a conserved Thr—Xxx—Tyr motif in the activation loop of
the kinase domain. This phosphorylation is catalyzed by
dual-specificity kinases, MAPK kinases (MAPKK, MEK).
MAPKKSs are regulated by serine/threonine phosphorylation
within a conserved motif, located in the kinase activation loop,
catalyzed by MAPKK kinases (MAPKKK or MEKK; the most
upstream tier). The latter are activated by various upstream
activators, including kinases and small GTP-binding proteins.
The generic MAPK signaling pathway is shared by four distinct
cascades, which are named according to their MAPK tier
component; the extracellular signal-related kinases (Erkl/2),
Jun amino-terminal kinases (Jnk1/2/3), p38-MAPK and Erk5.
Although all these MAPK cascades are regulated by growth
factor signaling, GFs are considered to be the major regulators
of the Erk1/2 cascade, whereas ErkS5 is regulated by both GFs
and stress, and out of the two major stress-induced cascades, the
IJNK pathway is partially regulated by GFs, and only a few
studies have documented activation of the p38-MAPK cascade
by GFs.

3. Architectural features of MAPK cascades activated by
growth factors

3.1. The Erkl/2 signaling cascade

The adaptor protein Grb2 can bind with activated RTKs
through an SH2 domain-phosphotyrosine interaction, while
through the SH3 domain (a binding domain specific to proline-
rich sequences) Grb2 interacts with the guanine nucleotide
exchange factor, Sos. Consequently, Sos is recruited to the
vicinity of the plasma membrane, where it promotes the
exchange of GDP for GTP on a small G protein, namely Ras.
Alternatively, recruitment of the Grb2/Sos complex to an
activated receptor may be mediated by the adaptor protein Shc,
which interacts with activated RTKs by means of its PTB
domain. GTP-bound active Ras can then bind with and activate
the MAPKKK protein, Raf. Upon activation, Raf induces the
phosphorylation of serine residue in the activation loop of Mek
(MAPKK) [15]. Thereafter, activated Mek1/2 phosphorylates
the MAPK protein, Erk, on adjacent threonine and tyrosine
residues, spaced by a glutamic acid residue, at the activation
loop. Active Erk phosphorylates multiple cytoplasmic and
cytoskeletal proteins [16], including MAPK-activated protein
kinases and the family of approximately 90-kDa ribosomal S6
kinases (Rsk). Additionally, active Erk and Rsk1/2 translocate
to the nucleus, where Erk phosphorylates and activates various
transcription factors including Sp1, E2F, Elk-1 and AP-1 (for a
recent review see [17]). The latter comprises two short-lived
proteins, namely Jun and Fos, which are the product of
immediate early genes (IEGs), whose regulation and role in
signal integration will be highlighted in another part of this
review. Eventually, this pathway can control various cellular
processes such as proliferation, migration and differentiation, as
we will exemplify below.

3.2. The Erk5 signaling cascade

ErkS, which is also known as Big MAP kinase (Bmkl),
contains in its activation loop a threonine—glutamate—tyrosine
sequence, which is characteristic of the Erkl1/2 MAPKSs.
However, in contrast to Erk1/2, Erk5 is specifically activated
by the MAPKK tyrosine—threonine kinase, MekS5 [18], which is
the substrate of the Mekk2/3 serine/threonine kinases [19]. The
Erk5 cascade was initially found to be activated in vascular
smooth muscle cells challenged by stress-inducing agents, such
as oxidative stress and hyperosmolarity, but inflammatory
cytokines (for example, the tumor necrosis factor; TNF) do not
induce Erk5 activation [20], indicating that in contrast to the
JNK and p38-MAPK pathways (see below), the Erk5 cascade is
not a typical stress-induced MAPK. Indeed, significant Erk5
activation occurs in HeLa and in PCI12 cells stimulated by
various growth factors [18,21], and in contrast to the Erk1/2
pathway, Raf cannot activate Erk5 [22]. An exception is the
PC12 pheochromocytoma cell line, in which Ras is involved in
ErkS activation following GF treatment [21]. Interestingly,
Mekk?2 (the MAPKKK of the Erk5 cascade) activation by EGF
is a surprisingly complex process involving c-Src, the SH2-
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containing adaptor Lad [23], the unique protein kinase Wnk1
[24], as well as inhibition by the cyclic AMP-activated protein
kinase, PKA [25]. Upon activation, Erk5 phosphorylates
several transcription factors, including Myc, MEF2 family
members, Fos [26], as well as the serum- and glucocorticoid-
inducible kinase (SGK) [27]. Collectively, these factors affect a
variety of cellular outcomes, such as cell cycle progression [18]
and nerve cell survival [28].

3.3. The JNK signaling cascade

The c-Jun amino-terminal kinase (JNK), also known as the
stress activated protein kinase (SAPK), is stimulated primarily
by a plethora of stress conditions, such as UV irradiation, DNA
damage, heat shock and oxidants, as well as by inflammatory
cytokines. Nevertheless, less efficient stimulants are GFs like
insulin, EGF, PDGF and FGF [29]. The JNK family includes
three isoforms, JNK-1 through -3, and like other MAPKs, INKs
are activated by phosphorylation on tyrosine and threonine
residues, which in this case, are separated by a proline. JNK
phosphorylation is catalyzed by the MAPKKs, MKK4 and
MKK?7, which are phosphorylated and activated by several
MAPKKKs including MEKK1-4, MLK1-3 and Takl [30].
Several pathways have been identified through which GFs can
activate the MAPKKK proteins of the JNK cascade. One
pathway is mediated by the small G protein Rac, which can
induce the activation of MLK3, MEKK 1 and MEKK4 [31-33].
Growth factors can activate Rac either through a Ras-induced
activation of the Rac-specific guanine exchange factor (GEF),
Tiam1 [34], or by means of PI3K activation [35]. Indeed, PI3K
activation downstream to EGFR signaling was found to mediate
the activation of INK [36], whereas knockdown of Shc in DT40
chicken B cells abolished the activation of JNK by EGF [37],
implying that JNK activation by EGF may involve both Shc and
PI3K. Alternatively, activation of Eph-family receptor tyrosine
kinases may induce the JNK cascade through an Nck-mediated
recruitment of the Ste20 kinase, namely NIK (NCK-interacting
kinase) [38]. Thereafter, NIK induces the activation of MEKKI,
a MAPKKK of the JNK pathway [39]. Activation of the
JNK pathway results in the phosphorylation and activation of
several transcription factors, including c-Jun, JunA, JunB,
ATF2 and Elk. Finally, although JNK activation is predomi-
nantly associated with promotion of cell death, under certain
conditions it enables cell survival and even tumor progres-
sion [30].

3.4. The p38-MAPK signaling cascade

The p38-MAPK is another stress-activated MAPK cascade.
p38-MAPK activation is mediated by phosphorylation on a
conserved motif that includes a glycine residue between the
canonical threonine and tyrosine. This dual phosphorylation is
catalyzed mainly by the MKK3 and MKK6 kinases, which are
activated by several MAPKKKSs, most of which are shared with
those of the JNK cascade (e.g., MEKK1—4 and MLK1-4). In
analogy to the JNK cascade, the p38-MAPK route is predo-
minantly activated by stress conditions and inflammatory cyto-

kines, but it seems almost insensitive to growth factor stimuli.
Like in the JNK cascade, the reported GF- induced p38-MAPK
activation is regulated by Rac [29]. On the other hand, GF
withdrawal induces p38-MAPK and JNK activation, to
stimulate death of PC12 cells [40]. Another interface between
GFs and the p38-MAPK signaling cascade has recently been
unraveled. Activation of p38-MAPK by stress stimuli,
including DNA damage by platinum ions and UV irradiation,
was found to induce serine/threonine phosphorylation of the
EGFR. This phosphorylation serves as a signal that mediates a
p38-MAPK-dependent endocytosis of EGFR, which unlike the
ligand-induced endocytosis, does not result in receptor
degradation [41,42]. These observations imply that p38
induction under stress conditions induces apoptosis on the
one hand, and on the other hand it removes mitogenic receptors
from the cell surface, thereby preventing GF-induced cell
survival.

4. Functional features common to MAPK cascades
activated by growth factors

A major open issue in the field of GF-to-MAPK signaling
relates to the ability of the canonical linear pathway to generate
different cellular outcomes in response to activation by various
extracellular stimulants. For example, in PC12 cells FGF and
NGF induce neurite outgrowth by stimulating the Erk1/2
pathway, along with other signaling routes, whereas EGF and
insulin weakly induce cell proliferation, although these factors
similarly recruit Erk1/2 [43]. Overexpression of the receptor for
either EGF or insulin, resulted in prolonged Erk activation and a
differentiated phenotype [44,45]. Accordingly, in NIH3T3 cells,
low levels of Raf-1 stimulation resulted in cell proliferation,
whereas sustained high activation of Raf-1 resulted in cell cycle
arrest, through the p21Cip1 inhibitor [46]. Receptor expression
levels, differential recruitment of the four MAPKSs, co-lateral
regulatory pathways, the presence of adaptor proteins, as well as
sub-cellular compartmentalization of specific signaling mole-
cules have been reported as potential mechanisms that confer
output specificity to GF-induced MAPK activation (for a recent
review see [17]; see also Fig. 2). What follows is a discussion of
the major functional attributes of the MAPK pathway, which
contribute to the ability of this kinase cascade not only to
diversify signal output, but also store memory, integrate signals
and transform a graded input into a binary output.

4.1. Linearity and cross-talks

Although linearity is a hallmark of all MAPK cascades,
several cross-talks to other signaling pathways, including GF-
stimulated small G proteins and kinases, richly regulate the
MAPK signaling cascades. In the case of Erk1/2, most of this
lateral input is apparent upstream to the Raf proteins
(MAPKKK tier). Part of this complexity is contributed by the
multiplicity of Raf proteins. B-Raf not only receives signals
from several GF receptors [47], but according to recent reports,
by means of hetero-oligomerization and trans-phosphorylation
it activates Raf-1 in a mechanism that requires the scaffold



M. Katz et al. / Biochimica et Biophysica Acta 1773 (2007) 11611176 1165

e ~\
> <
v @ 4
RGP Hhe A @ *RasGTP.  Ras
R GTP
4 £ 2
af *Raf
S
v h . ENDOSOME ' GOLGI/ER
Mek Mek = MP1
v £ ® v
Erk---------bFosb% Fos < Fos= - - Erf
v 0 | v
Rsk x //‘/ Rsk
- - d
3 \m/ 4
i I
o o
TIME LE
o S

Fig. 2. Potential mechanisms regulating the duration of Erk (extracellular signal-regulated kinase) activation. The left part of the scheme presents transient activation of
Erk. This pathway culminates in dual phosphorylation within the activation segment of the kinase, followed by translocation of Erk, as well as its substrates, the p90
ribosomal S6 kinases (Rsk1 and Rsk2), to the nucleus. The upstream canonical cascade links a growth factor-induced dimer of receptor tyrosine kinases to sequential
activation of Ras, Raf, and Mek, which is a dual-specificity kinase that phosphorylates Erk. The phosphorylated form of Erk decays very rapidly, primarily through the
action of double-specificity phosphatases. Concurrently, the phosphorylated (P), active receptors undergo endocytosis and they are sorted to degradation in lysosomes
by means of a mechanism that conjugates ubiquitin molecules (Ub) to the cytoplasmic tail of the receptor. While in the nucleus, Erk mediates increased transcription of
a large group of genes, including the immediate early gene c-fos, which encodes the short-lived Fos protein. Prolonged activation of Erk enables it to phosphorylate the
newly synthesized Fos protein, thereby stabilizing Fos and other factors involved in gene expression. Several mechanisms may prolong Erk activation (right part of the
scheme): gene amplification and autocrine loops can increase receptor numbers and receptor activation at the cell surface. Alternatively, mechanisms that derail active
receptors, shunting them to a recycling endosome, extend growth factor signals. Recruitment of a MAPK scaffold protein, MP1, to late endosomes may also prolong
Erk signaling. Naturally occurring mutations (represented by asterisks) of growth factor receptors, Ras proteins and the downstream tier, namely Raf kinases, similarly
help sustain MAPK activation. Likewise, delayed but sustained activation of Ras may take place in the endoplasmic reticulum (ER) and Golgi.

protein 14-3-3 [48,49]. Interestingly, nerve growth factor
(NGF)-induced activation of B-Raf in PC12 cells is mediated
by both Ras and the small G protein Rapl. Activation of the
Rapl-GEF protein, C3G, by RTKs is mediated by the Crk
adaptor protein, and it leads to prolonged Erk activation,
compared to the transient activation achieved through the Ras/
Raf-1 pathway [50]. Alternatively, B-Raf stimulation down-
stream to EGFR may be mediated by the mixed lineage kinase-3
(MLK3) [51]. Likewise, in fibroblasts the Erk pathway may be
regulated by a crosstalk with PKCa [52], in a mechanism
mediated by PKC-induced Ras activation [53], or by a PI3K/
Rac pathway that induces the activation of the p21 serine/
threonine kinase, Pak, which regulates Raf-1 activity [54,55].
Moreover, in neuronal cells Erk-activation may be induced by
various GFs that activate different PKC isoforms, while FGF
stimulates Erk through PKC6 induction [56], and EGF induces
Erk through the activation of PKC¢ in a pathway involving

PI3K and PDK1 [57]. On the other hand, activation of the PI3K/
Akt pathway, in human colon cancer cell lines, may result in
inhibition of the Erk pathway, through the activation of
glycogen synthase kinase-3 (GSK3) and PKCd [58].

4.2. Regulation of signal duration

Several studies that utilized fibroblasts [59], T lymphocytes
[60] and megakaryocytes [61] concluded that sustained
activation of the Erk1/2 pathway precedes cellular differentia-
tion. As aforementioned, studies performed with PCI12
pheochromocytoma cells found that transient activation of the
Erk1/2 cascade results in cell proliferation, but prolonged Erk1/
2 activation results in cell differentiation to sympathetic-like
neurons, a response normally observed after stimulation with
NGF or the fibroblast growth factor (FGF). These observations
led Chris Marshall to propose that Erk1/2 inactivation, or the
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duration of the signal, may dictate cellular outcomes [43].
According to one model, transient Erkl1/2 activation results
from recruitment of the Grb2—Sos complex to EGFR, but
prolonged Erk activation is associated with the recruitment of
the Shc—Grb2—Sos complex to the NGF-activated Trk receptor
[62—64]. In addition, prolonged Erk1/2 activation results in Erk
translocation to the nucleus, which broadens the repertoire of
substrates compared to the transiently activated cytoplasmic Erk
[45].

4.3. Control of MAPK compartmentalization

The sub-cellular localization of MAPKs is considered a
major mechanism that controls signaling, because it can
regulate the accessibility to specific substrates. All MAPKs
can shuttle between the cytoplasm and the nucleus [65]. While
in the nucleus, MAPKs may phosphorylate/activate various
transcription factors, leading to induction of distinct sets of
genes, whereas at the cytoplasm MAPKs can phosphorylate/
activate proteins involved in processes such as metabolism,
actin cytoskeleton organization and cell adhesion [16].
Blocking the transfer of Erk to the nucleus severely affects
Erk-mediated cellular processes such as proliferation. More-
over, in primary foreskin fibroblasts, EGF induces neither the
nuclear translocation of Erk, nor Fos induction [66]. Yet, if Erk
is forced to shuttle to the nucleus following EGF-treatment, it
will induce transcription of FOS [66]. The compartmentaliza-
tion of signaling molecules is mediated by interactions with
scaffold proteins (e.g., MP1, KSR and paxillin). For example
the scaffold protein Sef, a transmembrane protein induced by
FGF-signaling, interacts with the active Mek—Erk complex to
retain it in the cytoplasm [67]. The complex may localize to
sites of actin polymerization, thus affecting cell migration in
cooperation with the scaffold protein IQGAP1. Accordingly,
IQGAPI1 expression levels strongly regulate Erk signaling
[68]. Alternatively, paxillin-mediated targeting of the Mek—
Erk complex to sites of focal adhesion may regulate cell
adhesiveness [69].

4.4. Endocytosis of RTKs regulates MAPKs

Generally, endocytosis of GF-receptors is considered a major
desensitization mechanism, as internalized receptors cannot
bind to activating ligands, and the endocytic route leads
receptors to degradation in lysosomes [70—72]. Nevertheless,
several studies have defined the endosome as a compartment
that enables assembly of signaling complexes. EGF treatment of
rat livers leads to the association of activated Shc, Grb2 and Sos
with the phosphorylated EGFR in endosomes [73]. The
association of Grb2 and Shc with the activated receptor in
endosomes has been confirmed by the use of fluorescence
resonance energy transfer (FRET) [74]. According to an
alternative model, endocytosis of activated MEK, rather than
activated RTKs, is a critical event in the MAPK activation
cascade [75]. Signals generated at endosomes seem sufficient
for promotion of epithelial cell proliferation [76], probably
through the activation of Erk [77]. Further, dissection of

receptor-associated signaling complexes formed throughout the
endocytic pathway defined different molecular assemblies at
endosomes, compared to those formed on the cell surface [78].
For example, Rapl, which is activated by NGF in PC12 cells
and associates with Erk-induced cellular differentiation, is
localized primarily to endosomes [79], suggesting that spatial
regulation of signaling complexes may affect cellular outcomes.
Association of Erk proteins with activated signaling adaptors in
endosomes can be mediated by the scaffolding protein MP1,
which is recruited to endosomes by the adaptor protein p14 [80].
Interestingly, Erk is co-localized with activated Ras on
rasosomes, which are Ras-enriched, fast moving small cytosolic
nanoparticles [81]. Presumably, the relationships between early
endosomes and Ras nanoparticles will shed light on the role
played by endocystosis of RTKs and translocation of MAPK
components in signal transmission across the cytoplasm.

4.5. How signals are interpreted by the MAPK circuitry?

The capacity of a cell to differentiate between true signals,
which are meant to drive cellular outcome, and inconsequential
noise, has been demonstrated to depend on mechanisms of
feedforward and feedback regulation (reviewed in [82]), as will
be discussed below. Essentially, the induction of positive
cellular signals is balanced by pathways of negative regulation,
resulting in stringent control of signal intensity and duration.
Hence, hyperactivation of RTK signaling, due to loss of
attenuation mechanisms, frequently associates with malignant
transformation, as exemplified by EGFR/ErbB family proteins
[83,84], and discussed in the end of this review. This highlights
the importance of mechanisms of signal attenuation, which
unlike the better-studied stimulatory pathways, remain poorly
understood [85]. Negative regulators may pre-exist and undergo
activation by means of either oligomerization or post-transcrip-
tional modification (e.g., phosphorylation and ubiquitinylation).
Alternatively, other negative regulators are newly synthesized
as a part of negative feedback loops. Two examples of pre-
existing negative regulators are RKIP, a Raf kinase inhibitor
protein [86], and c-Cbl. This phosphotyrosine-activated mam-
malian E3 ubiquitin ligase plays a critical role in signal
attenuation by tagging activated EGFRs with ubiquitin, thereby
promoting receptor endocytosis and sorting for lysosomal
degradation [71,72]. On the other hand, RALT is a newly
synthesized feedback inhibitor of EGFR, which is up-regulated
following stimulation of EGFR and the MAPK pathway [87].
More examples of inducible negative feedback regulators
include Sprouty, Spred and Lrig-1 [82].

Feedback loop negative regulation is a central mechanism by
which systems attain robustness [88,89]. One straightforward
role for negative feedback is to limit the duration of a signal;
once a predefined threshold is reached, the signal induces its
own negative regulators. When incorporated in a pathway, the
negative feedback circuit confers output stabilization, even
when the system is challenged with a high degree of
environmental noise. Several studies have shown that admin-
istration of protein synthesis inhibitors results in ‘super-
induction’ of both MAPK and a set of IEGs, attesting to a
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central role for transcription of negative regulators in limiting
MAPK signaling and transcription of IEGs [90,91]. A direct
negative feedback arm, which is sensitive to both transcription
and translation inhibitors is the family of dual specificity
phosphatases (Dusp or MKP) [92]. The Dusps are induced by
multiple extracellular stimulants and inactivate specific MAPKs
by dephosphorylating critical phosphate groups within the
activation segment of MAPKSs. One possible explanation for the
unique targeting of the MAPK tier by Dusps is their pivotal
position. At this distal point of the linear pathway, the otherwise
narrow phosphorylation signal spreads to many substrates and it
translates into transcription events, whereas upstream steps may
be regulated by their downstream effectors, such as the
regulation of Raf by MAPK [93].

4.6. Feedback loop negative regulation of immediate-early
gene transcription

One important node, which is richly populated by feedback
loops, is the early transcription network lying downstream to
growth factor signaling and MAPK activation [94]. Within this
transcription network, pre-existing negative regulators may be
activated post-translationally. For example, Pointed is a pre-
existing ETS transcription factor activated by the Drosophila
EGFR. Pointed’s activity is restricted by another Ets-family
transcription factor, namely Yan [95], and their phosphorylation
by Erk leads to antagonistic effects: whereas phosphorylation
of Pointed is stimulatory, the repression activity of Yan is
inhibited by phosphorylation, which results in a burst of
transcription. Super-induction of IEGs upon treatment with an
inhibitor of protein synthesis revealed another layer of control
[91], that combines several types of negative feedback
regulators. The MAPK-regulated transcription complex TCF—
SRF-SRE is feedback regulated by the Id proteins, whose
expression is driven in a delayed manner by the TCF factors
themselves, thus forming a reliable time delayed negative
feedback loop [96]. Another example relates to the cAMP
signaling pathway: the transcription factor ‘inducible cAMP
early repressor’ (ICER) is transcriptionally induced by cAMP
in a delayed manner, to repress the activity of the cAMP
pathway [97]. Similarly, the immediate early gene product
Egrl, which is induced in response to NGF stimulation of PC12
cells [98], is inactivated by the delayed induction of the nuclear
protein Nab2, and likewise both Fosll/Fral and JunB are
induced in a delayed manner to physically engage transcrip-
tionally active complexes of Fos and Jun (AP-1 complex) and
limit their activity [99,100].

4.7. The role for RNA-binding proteins in feedback loop
negative regulation

An important component of the ‘super induction’ of IEGs
comprises proteins able to bind AU-rich elements (AREs) in 3’
untranslated regions (UTR) of mRNAs. Characteristically, such
transcripts are very unstable and relatively abundant in the
population of mRNAs induced by GF signaling ([101] and our
unpublished observations). The growing list of proteins that

bind AREs and regulate mRNA turnover includes AUF1, HuR,
BRF1 and KRSP ([102] and references therein). One of the
major proteins responsible for binding, and later on, for
targeting AU-rich transcripts for degradation is TTP/Z{p36
[103]. Originally, TTP was shown to be induced by various
cytokines and to dramatically affect the expression levels of
TNF-alpha, whose transcript is AU-rich. Further, a large
number of the EGF-induced genes contain AU-rich sequences
within their 3’-UTR, including c-fos [101]. Interestingly, in the
case of c-fos, it has been shown that a segment of the 3’-UTR
containing the AU-rich sequences is responsible for instability
[104]; removal of this region converts c-fos to a transforming
gene, presumably due to overproduction of the Fos protein
[105]. Interestingly Zfp36 cooperates with a microRNA
(miR16) in mRNA degradation [106]. Another microRNA
(miR7) is induced by Pointed to degrade transcripts of Yan and
activate EGFR signaling, as a part of a positive feedback loop
[107]. These observations raise the possibility that microRNAs
play essential roles in feedback regulation of GF signaling. In
conclusion, IEGs contain regulatory elements in both 5’ and 3’
sequences proximal and distal to the coding region. The 5'-UTR
elements are regulated by delayed induction of transcription
factors or repressors, such as 1d2, JunB and Nab2, whereas 3’-
UTR regulatory elements are recognized by newly induced
RNA-binding proteins, such as Zfp36, or microRNAs, that
decrease RNA stability and/or translation. Thus, output’s
duration and amplitude are regulated in the nucleus by complex
feedback inhibitory loops acting at the RNA level, which
complements the rich cytoplasmic regulation at the level of
substrate phosphorylation.

4.8. The circuitry of GF-to-MAPK regulation of cell division

While the signaling cascades and transcription events
regulated by the GF-to-MAPK pathway have been studied
thoroughly, the basic principles employed by mammalian cells
to decode GF signals into distinct biological outcome have only
recently received attention. According to one model, bistable
circuits convert a graded input into a switch-like ‘yes’ or ‘no’
response (such as growth) [108]. Another model argues that
cells must receive two sequential stimuli in order to mount a full
response [109]. Adhering to the first model, the group of James
Ferrell has shown that in the Erk-regulated maturation of
Xenopus oocytes, a transient stimulus (in the form of proges-
terone) can be transformed into an irreversible biochemical
response by means of multiple positive feedback machineries
[110]. The group of John Blenis described another bistable
circuit in proliferating mammalian fibroblasts, in which the
switch-like all-or-none response resides at the level of IEGs
[111]. Accordingly, sustained activation of Erk (1-2 h) permits
phosphorylation-mediated protection of IEG products from
degradation, thereby establishing a positive feedback loop.
Unlike oocyte maturation, which is stimulated by a 2 h-long
exposure to a steroid hormone, cell cycle progression in
fibroblasts requires prolonged exposure to polypeptide growth
factors until 2 h before they enter S phase. The group of Andrius
Kazlauskas has shown that continuous exposure to GF may be
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replaced by two intervals: the initial pulse of GF involves Mek
activation and induction of c-Myc, whereas the essential second
pulse may require PI3K activity [109].

5. Regulation of cellular outcomes by MAPKs

Growth factor signals regulate not only cell division, but also
a variety of other outputs, ranging from cell migration to
regulation of apoptosis, cellular adhesion and differentiation, as
well as alterations in gene expression and intracellular
metabolism. Below we review two of the most widely studied
MAPK-regulated cellular outcomes, namely cell proliferation
and cell migration, with the aim of exemplifying the functional
diversity of GF-to-MAPK signaling. Notably, both outcomes
are relevant to the process of malignant transformation. Hence,
we separately discuss the ability of the MAPK pathway to
contribute to the formation of malignant phenotypes.

5.1. Cell proliferation

The Erk1/2 cascade was initially identified as a growth-
promoting pathway, whose major components associate with
unleashed cell growth and cancer progression. For example,
transforming forms of RAS and RAF are encoded by retroviral
oncogenes, and the Erk cascade has been linked to cellular
proliferation by using constitutively active, or dominant-
negative mutants of Mek1, which promoted or suppressed cell
transformation, respectively [112—114]. Several distinct
mechanisms enable active Erk1/2 to induce cell cycle progres-
sion. Through the phosphorylation of carbamoyl phosphate
synthetase II, which is involved in pyrimidine nucleotide
biosynthesis, Erk1/2 can support DNA synthesis during the S
phase [115]. Alternatively, Erk1/2 may remove obstructions of
cell cycle progression either by activating p90Rsk, which
mediates the inactivation of a cell cycle inhibitory kinase,
MYTI1 [116], or by promoting the degradation of the cyclin-
dependent kinase (CDK) inhibitor, p27Kip1, thereby stimulat-
ing cyclin E/Cdk2 [117]. In addition, Erk1/2 can promote the
transition from G1 into the S phase, by inducing transcription of
cyclin D1, which in turn promotes DNA synthesis through the
regulation of CDK4 and CDK6 [118]. Importantly, Erkl1/2-
signaling alone is insufficient for cyclin D1 induction, but
requires also the activation of the PI3K pathway. The latter is
probably induced by an Erk-dependent expression of autocrine
growth factors [119]. In addition to the regulation of G1 to S
phase transition, at least in some cell types Erk1/2 activation
involves progression through the G2 phase [120]. Accordingly,
activated Erk was found to be associated with kinetochores and
spindle poles, as well as with the midbody in late stages of
mitosis [121,122], implying multiple functions of Erk during
mitosis. Surprisingly, however, sustained activation of the
upstream regulators, Ras and Raf-1, may result in growth arrest
rather than cell proliferation, perhaps because potent inhibitors
of cell cycle progression (i.e., p53, p21Waf/Cipl and p16) are
up-regulated under these conditions [46,123]. Recently, it has
been shown that hyperactivation of Erk may arrest the G1-S and
the G2-M transitions during the cell cycle [124]. Moreover,

hyperactivation may override spindle checkpoints, thereby
causing chromosomal aberrations [125]. Likewise, sustained
Raf activation in lung fibroblasts [126], or hyperactivation of
Erk through depletion of the dual specificity phosphatase VHR
[124], resulted in premature onset of senescence.

5.2. Cell migration

Cell migration is a cyclic process involving the formation of
adhesion sites at the leading edge of the cell, and at the same
time, disintegration of adhesion sites at the rear edge of
migrating cells (reviewed in [127,128]). Directed polymeriza-
tion of the actin cytoskeleton in lamellipodia or in fillopodia
structures, along with actin stress fiber-dependent contractile
forces leading to forward translocation of the cell body, are
necessary for robust cell movement. In the case of epithelial
cells, migration requires disintegration of intercellular adhesive
contacts, as well as invasion through the extracellular matrix
and endothelial cells lining blood vessels. Cell migration can be
regulated by signals initiated by integrins (reviewed by [129])
and by RTKs, such as the hepatocyte growth factor (HGF)
receptor (c-Met) (reviewed in [130]), EGF-receptor, PDGF-
receptor and the IGF-l-receptor (reviewed in [131]). For
example, HGF function as a scattering factor for various
epithelial cells. During embryonic development, HGF regulates
muscle cell migration [132], and serves as a chemoattractant for
spinal motor axons [133]. Likewise, EGFR is involved in the
regulation of trophoblast cell migration [134], motility of
various nerve cells [135], and pancreatic islet cells [136], as
well as in cell migration taking place in eyelid closure [137] and
in wound re-epithelialization [138]. Moreover, hyper-activation
of RTKSs is highly associated with cancer progression, where the
transition from localized primary tumor mass to invasive
secondary metastasis is the result of unleashed cell migration
(reviewed in [139]).

Several signaling pathways have been implicated in GF-
induced cell migration, including the activation of PLCvy and
the subsequent activation of gelsolin, profilin and cofilin.
These proteins interact with the actin cytoskeleton, leading to
formation of fillopodia and lamellipodia extensions [140,141].
Alternatively, GFs may stimulate alterations in membrane
ruffling through the activation of Rac [142], which is a major
target of the PI3K signaling pathway. Similarly, the Erk1/2
pathway has repeatedly been implicated in GF-induced cell
migration and in tumor invasion. By using various Ras
mutants, it was shown that Erk activation is sufficient for
induction of lung metastasis [143]. On the other hand,
inhibition of Erk activity impaired cell migration stimulated
by different GFs, such as VEGF, EGF, FGF and insulin.
Moreover, the migration ability of Mek-deficient (Mek ")
fibroblasts or vascular endothelial cells is impaired when
plated on fibronectin [144]. Interestingly, activation of the
PI3K pathway may prevent EGF-induced cell migration [145],
probably through activation of Aktl [146]. Yet, EGF
activation can lead to reduction of Aktl expression and to
induction of Erkl/2 activity, resulting in enhanced cell
migration [146].
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5.2.1. Phosphorylation-mediated mechanisms of MAPK
involvement in cell motility

A number of mechanisms have been identified through
which the GF-to-Erk1/2 pathway may regulate cell migration
(Fig. 3). EGF-activated Erk1/2 can mediate the phosphorylation
of Calpain, which is an intracellular protease that modulates
focal adhesion sites. Phosphorylation of Calpain stimulates its
catalytic activity, resulting in turnover of adhesion sites and
substrate detachment at the rear part of migrating cells [147]. In
addition, Erk1/2 induces the phosphorylation and activation of
the myosin light chain kinase (MLCK) following EGF
treatment. Once phosphorylated, MLCK induces phosphoryla-
tion of the myosin light chain, thus promoting myosin’s ATPase
activity. Active myosin promotes the polymerization of actin
fibers [148], and the protrusion of membranes at the front of
polarized cells [149]. Moreover, Ras-induced activation of Erk
and PI3K is required for the disassembly of adhesion sites
following cell stimulation with HGF [150]. HGF-activated Erk
can translocate from endosomes to adhesion complexes at the
plasma membrane, where it becomes associated with adhesion
proteins, such as vinculin, paxillin and actin, and promotes cell

migration [69,151]. This translocation of Erk to adhesion sites is
regulated by PKCe [151]. Paxillin can interact with Erk, Mek
and Raf, thus serving as a scaffold protein. Formation of this
complex, following HGF treatment, leads to the phosphoryla-
tion of paxillin. In turn, phosphorylated paxillin recruits the
focal adhesion kinase (FAK) to adhesion sites, which activates
Rac, resulting in rapid focal adhesion turnover and lamellipodia
extension [69]. Interestingly, upon recruitment to adhesion sites,
FAK promotes interactions between Erk1/2 and Calpain, and
consequently serves as a proteolytic substrate for Calpain [152].

5.2.2. Transcription-mediated mechanisms of MAPK
involvement in cell motility

In addition to the direct, phosphorylation-mediated effects of
Erk activation on cell migration, MAPKs may regulate cellular
motility by promoting specific gene transcription. For example,
activation of the transcription factor complex AP-1, which is
partly regulated by Erk, is required for EGF-induced migration
of human epidermoid cancer cells [153]. Moreover, inhibition
of either gene transcription or mRNA translation impairs
endothelial cell migration [154,155]. Several transcriptional

s )
PE
J Erki/2
Y
Wigration D
\_ J

Fig. 3. Involvement of growth factor-regulated Erk in cell motility. Several signaling pathways underlie regulation of cellular movement by growth factors and
cytokines. The Erk pathway controls transcription of multiple proteins, which engage in cell motility upon their synthesis and re-folding. In advance, Erk regulates pre-
existing proteins that modulate the actin cytoskeleton. The scheme represents this aspect of Erk’s action. A major target of Erk is the focal adhesion site, a junction of
extracellular matrix (ECM) proteins and the actin cytoskeleton. Integrin, a major receptor of ECM proteins, engages several adaptors (e.g., Paxillin) and actin-binding
proteins (e.g., Talin, and Tensin) just beneath the plasma membrane. Upon activation, Erk phosphorylates (thereby activates) an intracellular protease, Calpain, that
disintegrates focal adhesion sites located at the rear part of migrating cells. Simultaneously, Erk phosphorylates the myosin light chain kinase (MLCK), which
stimulates the ability of myosin light and heavy chains to polymerize actin at cellular extensions protruding from the front part of migrating cells. Erk itself translocates
from endosomes to adhesion complexes, where it promotes recruitment of the focal adhesion kinase (FAK) and a GTP-binding protein, Rac.
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targets, which lay downstream of the Erk pathway and promote
cell migration, have been identified. Thus, a set of proteolytic
enzymes that degrade the extracellular matrix (e.g., MMP-1,
MMP-3, MMP-7 and MMP-9) have an AP-1 consensus
sequence in the respective promoters, and they undergo up-
regulation upon activation of Erk1/2 [156]. In addition, Erk1/2
may control cell migration through transcription-mediated
regulation of the small G proteins Rac and Rho. Erk-dependent
activation of the Fos family transcription factor, Fra-1, results in
inhibition of integrin signaling. This leads to inhibition of RhoA
activity, and consequently to deformation of actin stress fibers,
which is a prerequisite for the formation of membrane
protrusions [157]. Rho inhibition was also implicated in Erk-
induced cell spreading on fibronectin; inhibition of Rho activity
is mediated by a Pak1-induced Mek1 activation, which involves
the scaffold MP1/p14 complex [158]. In addition, Erkl/2
activation promotes expression of uPAR, the receptor for
urokinase-type plasminogen activator, thus leading to a
signaling cascade that activates Rac and induces the formation
of lamellipodia extensions [157].

5.2.3. Involvement of other MAPKs in cell motility

In addition to the Erkl/2 pathway, several other MAPK
cascades were also implicated in GF-induced cell migration.
The disruption of actin stress fibers, which is a prerequisite for
motility, was apparent upon activation of Erk5 [159]. Moreover,
recent studies indicate that the JNK cascade plays a crucial role
in the regulation of cell migration. Activation of JNK by EGF or
Ephrin B1 enhances cell migration [160,161]. The develop-
mental process of eyelid closure, which is regulated by EGF
signaling, involves the activation of MEKKI1, an upstream
kinase of JNK [162,163]. Several mechanisms have been
identified through which JNK may regulate cell migration,
including phosphorylation of paxillin at the focal adhesion site,
phosphorylation of Dcx, a protein involved in neurite out-
growth, and phosphorylation of Spir, a protein involved in the
regulation of actin reorganization. In addition, JNK regulates
cell migration through activation of the transcription factor Jun
(reviewed in [164]). EGF-induced JNK activation results also in
the induction of insulin receptor substrate (IRS)-1 [165]. The
increase in IRS-1 expression was found to be essential for the
promotion of cell migration. Growth factors like PDGF, HGF,
VEGF and EGF have been found to promote the migration of
various cell lines through the induction of the p38 cascade.
This pathway may involve the activation of specific p38
substrate proteins, like MAPKAPK 2/3, paxillin and caldes-
mon (reviewed in [164]). Alternatively, p38 may down-
regulate the expression of E-Cadherin, thereby inducing cell
migration in embryogenesis [166].

6. The oncogenic potential of the GF-to-MAPK signaling
axis

The transforming ability of the MAPK pathway is best
understood in the case of the Ras/Raf/Mek/Erk pathway. A
constitutively active form of Mek can transform mammalian
cells in culture [59]. Furthermore, naturally occurring mutations

affecting certain components of the pathway result in sustained
activation of Erk, and the mutations associate with progression
of specific types of tumors. Examples include the majority
(>90%) of pancreatic tumors, which carry mutations in K-Ras,
and approximately 70% of melanomas (and 82% of nevi),
which contain mutations in B-Raf. Many other components of
the pathway are genetically or epigenetically modified in human
tumors, as will be described below. It is interesting, however,
that germline mutations affecting KRAS, BRAF and two
downstream effectors, MEK] and MEK?2, cause Cardio-facio-
cutaneous Syndrome (CFC), a developmental disorder invol-
ving cardiac and craniofacial defects [167,168]. Unlike HRAS
mutations of the autosomal dominant disease Costello Syn-
drome, CFC mutations are not cancer predisposing. Likewise,
melanocytic nevi can be relatively indolent for many years,
despite the presence of activating B-Raf mutations. Thus,
although mutations leading to sustained activation of the
pathway are important for the carcinogenic process, Erk
activation may not be sufficient for tumorigenesis.

6.1. Oncogenic deregulation of RTKs

More than half of the known RTKs have been repeatedly
found in either mutated or overexpressed forms in association
with human cancer [2]. The discussion below concentrates on
three out of more than 30 examples of oncogenic RTK mutants,
which are coupled to MAPK activation.

6.1.1. c-Kit/SCF-receptor

Naturally occurring loss of function mutations affecting
c-Kit (stem cell factor receptor) revealed the importance of this
receptor for gametogenesis and melanogenesis, as well as for
normal intestinal functions (reviewed in [169]). Multiple gain
of function mutations or short deletions have been identified
in c-kit in gastrointestinal tumors, as well as in myeloid and
mast cell leukemias [170]. The mutations either activate the
intrinsic tyrosine kinase catalytic function or remove an
inhibitory component, like the SH 2 containing phosphatase,
Shp-1, which dephosphorylates and inactivates RTKs [171].

6.1.2. Ret/GDNF-receptor

Similar to c-kit and gastrointestinal tumors, multiple endo-
crine neoplasm 2B (MEN2B) displays a somatic gain of
function mutation in the gene encoding Ret, an upstream
activator of Erk and a subunit of the glial-derived neurotrophic
factor (GDNF). The mutation affects a conserved methionine
within the kinase domain, causing kinase activation and altering
substrate specificity [172]. An alternative mode of oncogenic
activation of Ret is found in papillary thyroid carcinomas
(PTCs). Somatic rearrangements result in fusions between the
kinase domain of Ret and amino-terminal portions of many
other proteins and cause constitutive, ligand-independent
dimerization and activation of Ret.

6.1.3. EGFR and ErbB-2/HER2
Kinase domain mutations have been identified in EGFR
of non-small cell lung cancer, and their presence predicts
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significant clinical responses to a kinase inhibitor [173,174].
These aberrations include the deletion of a few amino acids,
introduction of duplications, or insertion of single point
mutations. In addition to MAPK activation, superior Akt and
STAT signaling have been shown to occur with EGFR kinase
mutants [174], such that kinase inhibition selectively induces
apoptosis of mutant-expressing cells [175]. Interestingly, the
presence of mutant receptors often associates with weak
overexpression. In addition, the wild type form of EGFR is
highly expressed in a variety of human tumors, which
include non-small cell lung cancer, breast, colorectal and
head and neck tumors [176]. In concurrence with a dramatic
reduction in patient survival rates [177], high expression
levels of EGFR have been associated with advanced tumor
stage, as well as resistance to standard therapies [178].
Malignant gliomas display amplification of the EGFR gene
in 40-60% of tumors [179]. Often, amplification of the
EGFR gene is accompanied by gene rearrangements, which
result in a number of variant EGFR transcripts [180]. The
most common rearrangement is a genomic deletion of exons
2—7, which results in an in-frame deletion of 801 nucleotides
of the coding sequence. This mutant receptor, EGFRVIII, is
constitutively phosphorylated on the cell surface, although it
lacks the ability to bind ligands [181]. Furthermore, the
mutant receptor’s ability to undergo endocytosis is defective,
which ensures continuous and enhanced signaling [182].
EGFRVIII is not restricted to gliomas and has been reported
in malignancies of the breast, lung, ovary and prostate
[183,184]. Further, cancer-associated gene amplification is
shared by the closest kin of EGFR, namely ErbB-2/HER2.
Overexpression of ErbB-2 has been reported in breast, lung,
pancreas, colon, endometrium and ovarian cancer (reviewed
in [185,186]). Moreover, in breast and lung cancer over-
expression of ErbB-2 predicts poor prognosis and resistance
to chemotherapy. ErbB-2 is a ligand-less RTK that forms
heterodimers not only with EGFR, but also with ErbB-3 and
ErbB-4. ErbB-2-containing heterodimers are characterized by
enhanced signaling and they evade negative regulation [83].
Hence, stimulation of tumors overexpressing ErbB-2 with
EGF and related growth factors is thought to elicit formation
of the more potent, ErbB-2-containing receptor complexes.

6.2. Autocrine activation of RTKs

Co-expression of RTKs and their respective ligands might
result in the activation of an autocrine loop, leading to
deregulated receptor activation and uncontrolled cell growth.
Examples include synthesis and secretion of HGF, the vascular
endothelial growth factor and isoforms of PDGF. Autocrine
loops involving EGFR and possibly also ErbB-2, are shared by
all carcinomas expressing an active mutant of Ras. In several
other types of carcinomas, self-production of TGF-alpha or
EGF leads to transformation by continuous receptor activation,
in a manner associated with reduced patient survival [187,188].
In accordance, parallel analysis of both EGFR and its cognate
ligands provides a strong predictive tool for survival in several
types of human cancer (reviewed in [189]).

6.3. Mutations of RAS family members

Although Raf is the most studied target of the GTP-bound
form of Ras, many additional direct effectors have been
identified, including the enzymatic subunit of PI3K, a
phospholipase and three exchange factors for the Ras-related
Ral protein. Apparently, most effectors are aberrantly activated
in tumors, primarily as a result of R4S mutations, although
additional mechanisms, such as loss of GTPase activating
proteins (GAPs) and RTK activation, also account for the
unleashed Ras activity in cancer (reviewed in [190]). Approxi-
mately 25% of human tumors contain mutations in one of the
three RAS genes. The most frequent mutations occur in KRAS
(about 70-90% of all). Approximately 90% of pancreas
adenocarcinomas carry such mutations, whereas tumors of the
thyroid are the second most frequent targets of mutant RAS (all
three genes display aberrations). The KRAS missense mutations
affect codons 12, 13 and 61. These mutations reduce the
GTPase activity of Ras, thereby enhance the accumulation of
Ras-GTP and increase recruitment of Ras effector proteins.

6.4. RAF mutations

Early studies established the ability of viral Raf genes to
transform murine and chicken cells, while another line of
research has shown that B-Raf has a higher kinase activity,
relative to the other two Raf proteins, towards Mek [191]. In
addition, B-Raf has higher basal activity and is easier to
activate, because it needs phosphorylation on a single site,
unlike the double sites necessary for Rafl activation [47].
Consistent with these lines of evidence, a survey of 923 cancer
samples identified missense mutations of the BRAF gene in
approximately 70% of human malignant melanoma and 15% of
colorectal cancers [192]. Mutations were also detected at lower
frequency in gliomas, lung cancers, sarcomas, ovarian carcino-
mas, breast and liver cancers. In addition, a survey of colorectal
tumors identified BRAF mutations in 10% of tumors [193]. The
major mutation identified in tumors is VS99E, a replacement of
a valine of the kinase activation segment for a glutamic acid. In
addition to other mutations within the activation segment, the
glycine-rich stretch within the nucleotide-binding cleft of B-Raf
is also mutated at high frequency. Interestingly, although the
profile of tumors harboring RAS and BRAF mutations are
similar, fewer than 1% of cancer samples display both BRAF'
and RAS mutations. These observations suggest functional
equivalence of the two types of mutations in respect to
tumorigenicity, in line with the linear arrangement of the Ras-
MAPK cascade. MAPK linearity explains another interesting
observation, namely differential sensitivity of various tumor cell
lines harboring BRAF mutations to Mek inhibitors [194].
Unexpectedly, this survey of tumor cell lines has shown that
cells expressing a mutant RAS (G12V) are less sensitive to Mek
inhibition than cells carrying an active BRAF mutant, which
uncovers yet unknown aspects of the MAPK circuitry and
possible pathway switching.

In summary, MAPKs emerge as a highway of signal trans-
mission utilized by an enormously large variety of stimulants,
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including growth factors. The cellular outcomes of MAPK
activation are as divergent and complex. The challenges ahead
include systems level understanding of how growth factor
signaling makes use of MAPK circuitry to store memory crucial
for cell fate determination, and for metabolic decisions. Along
with better description of the MAPK road map, future
experiments will resolve the molecular mechanisms, which
translate graded MAPK inputs into many binary outcomes in
mammalian model systems. Information gained in such
endeavors will likely help deciphering ways to pharmacologi-
cally manipulate GF-to-MAPK signaling in a selective way, that
evades the rich wiring of the pathway and effectively combat
cancer and other diseases.
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