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1. Introduction

Let C be a nonempty subset of a Banach space X . It is well known that a mapping T : C → X is said to be nonexpansive
whenever ‖T x − T y‖ � ‖x − y‖ for all x, y ∈ C .

Among the most important features of nonexpansive mappings are the following facts.

i) If C is closed convex and bounded and T : C → C is nonexpansive, then there exists a sequence (xn) in C such that
‖xn − T xn‖ → 0. Such a sequence is called almost fixed point sequence for T (a.f.p.s. in short).

ii) Even when C is a weakly compact convex subset of X , a nonexpansive self-mapping of C need not have fixed points.
Nevertheless, if the norm of X has suitable geometric properties (as for instance uniform convexity, among many
others), every nonexpansive self-mapping of every weakly compact convex subset of X has a fixed point. In this case
X is said to have the weak fixed point property (WFPP in short).

In a recent paper [1], Suzuki defined a class of generalized nonexpansive mappings as follows.

Definition 1. Let C be a nonempty subset of a Banach space X . We say that a mapping T : C → X satisfy condition (C) on C
if for all x, y ∈ C ,

1

2
‖x − T x‖ � ‖x − y‖ implies ‖T x − T y‖ � ‖x − y‖. (1)

Of course, every nonexpansive mapping T : C → X satisfies condition (C) on C , but in [1] some examples of non contin-
uous mappings satisfying condition (C) are given.

In spite that the class of mapping satisfying condition (C) is broader than the class of nonexpansive mappings, when
C is a convex bounded subset of X , every mapping T : C → C which satisfies condition (C) on C has a.f.p. sequences, that
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is, it shares (i) with nonexpansive mappings (see [1, Lemma 6]), as well as (ii), because for some Banach spaces (see [1,
Theorems 4, 5]) mappings satisfying (C) leaving invariant weakly compact convex subsets have fixed points. (See also [4].)

In this paper we define two kind of generalizations of condition (C). This will lead us to some classes of mappings which
are wider than those which satisfy condition (C) but preserving their fixed point properties.

2. Notations and preliminaries

Throughout this note we assume that (X,‖ · ‖) is a real Banach space whose zero vector is 0X . As it is usual, we will
denote by B[x, r] and S[x, r] the closed ball and the sphere of the Banach space (X,‖ · ‖) with radius r and center x ∈ X ,
respectively. In particular we will write B X := B[0X ,1] and S X := S[0X ,1].

We will use xn ⇀ x to denote that the sequence (xn) in X is weakly convergent to x ∈ X .
Let C be a nonempty closed and convex subset of X , and let (xn) be a bounded sequence in X . For x ∈ X the asymptotic

radius of (xn) at x is the number

r
(
x, (xn)

) := lim sup
n→∞

‖x − xn‖.
The real number

r
(
C, (xn)

) := inf
{

r
(
x, (xn)

): x ∈ C
}

is called the asymptotic radius of (xn) relative to C and finally the set

A
(
C, (xn)

) = {
x ∈ C : r

(
x, (xn)

) = r
(
C, (xn)

)}
,

is called the asymptotic center of (xn) relative to C .
It is well known that A(C, (xn)) consists of exactly one point whenever the space X is uniformly convex in every direction

(UCED), and that A(C, (xn)) is nonempty and convex when C is weakly compact and convex.

3. A class more general than type (C) mappings

We generalize condition (C) as follows.

Definition 2. Let C be a nonempty subset of a Banach space X . For μ � 1 we say that a mapping T : C → X satisfy
condition (Eμ) on C if there exists μ � 1 such that for all x, y ∈ C ,

‖x − T y‖ � μ‖x − T x‖ + ‖x − y‖. (2)

We say that T satisfies condition (E) on C whenever T satisfies (Eμ) for some μ � 1.

3.1. It is obvious that if T : C → X is nonexpansive, then it satisfies condition (E1).
The converse is not true, as we will see below (see, for instance Example 1).

3.2. From Lemma 7 in [1] we know that if T : C → C satisfies condition (C) on C , then is satisfies condition (E3).
There are continuous mappings satisfying condition (E) but failing condition (C), as the following example shows.

Example 1. (See [2, Example 6.3].) In the space C([0,1]) consider the set

C := {
x ∈ C

([0,1]): 0 = x(0) � x(t) � x(1) = 1
}
.

Take any function g ∈ C and generate the mapping F g : C → C

F g x(t) := (g ◦ x)(t) = g
(
x(t)

)
.

Since each function x ∈ C takes all the values between zero and one, we have

‖x − F g x‖∞ = max
{∣∣x(t) − g

(
x(t)

)∣∣: t ∈ [0,1]}
= max

{∣∣Id(s) − g(s)
∣∣: 0 � s � 1

}
= ‖Id − g‖∞, (3)

where Id is the identity function on [0,1]. Thus, except for g = Id, any mapping F g moves each point x ∈ C to the same
distance ‖Id − g‖ > 0. For x, y ∈ C we have

‖x − F g y‖∞ � ‖x − y‖ + ‖y − F g y‖ = ‖x − y‖ + ‖x − F g x‖.
Thus, F g satisfies condition (E1) on C .

On the other hand, F g cannot satisfy condition (C) on C : Otherwise, since C is convex and bounded, from [1, Lemma 6],
one has inf{‖x − F g x‖: x ∈ C} = 0, and this contradicts (3).
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3.3. Recall that a mapping T : C → X is said to be quasi-nonexpansive provided that it has some fixed point in C and for
each fixed point x0 ∈ C and for every y ∈ C ,

‖x0 − T y‖ � ‖x0 − y‖. (4)

Then, the following result is also obvious.

Proposition 1. Let T : C → X be a mapping which satisfies condition (E) on C. If T has some fixed point, then T is quasi-nonexpansive.

The converse is not true.

Example 2. Let T : [−1,1] → [−1,1] given by

T (x) =
{

x
1+|x| sin( 1

x ) x �= 0,

0 x = 0.

It is easy to check that 0 is the only fixed point of T . Since for all x ∈ [−1,1] one has that |T (x)| � |x|, it is obvious that
T is quasi-nonexpansive on [−1,1].

On the other hand, if we take for each positive integer xn := 1
2πn+π/2 and yn := 1

2πn , then we have

|xn − T (yn)| − |xn − yn|
|xn − T (xn)| = xn − (yn − xn)

|xn − T (xn)|
= xn − (yn − xn)

x2
n

1+xn

= (1 + xn)(2 − yn
xn

)

xn
→ +∞.

Consequently, the mapping T does not satisfy condition (E) on [−1,1].

The following example deals with the converse of Lemma 7 in [1].

Example 3. Let T : [−2,1] → [−2,1] defined as

T (x) :=
{ |x|

2 x ∈ [−2,1),

−1/2 x = 1.

In order to see that T satisfies (E) on [−2,1] we consider the following (non-trivial) cases.

a) x ∈ [−2,0], y ∈ [−2,1]. Then |x − T (x)| = 3
2 |x| and we have

∣∣x − T (y)
∣∣ � |x| + 1

2
|y| � 3

2
|x| + 1

2
|x − y| � ∣∣x − T (x)

∣∣ + |x − y|.

b) x ∈ [0,1), y ∈ [−2,1]. Then |x − T (x)| = |x|
2 , and we have

∣∣x − T (y)
∣∣ � |x| + 1

2
|y| � 3

2
|x| + 1

2
|x − y| � 3

∣∣x − T (x)
∣∣ + |x − y|.

c) x = 1, y ∈ [−2,1). Then |x − T x| = 3
2 , and we have

∣∣1 − T (y)
∣∣ = 1

2
+ 1 − |y|

2
� 1

3

∣∣1 − T (1)
∣∣ + 1

2
|1 − y| � ∣∣1 − T (1)

∣∣ + |1 − y|.

In summary, for all x, y ∈ [−2,1],∣∣x − T (y)
∣∣ � 3

∣∣x − T (x)
∣∣ + |x − y|,

that is, T satisfy condition (E3) on [−2,1]. Notice that every mapping which satisfies condition (C) it satisfies also this
last inequality. But this example shows that the converse is not true, because this mapping fails to satisfy condition (C) on
[−2,1]. Indeed,

1
∣∣∣∣4 − T

(
4
)∣∣∣∣ = 1 �

∣∣∣∣4 − 1

∣∣∣∣,
2 5 5 5 5
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while ∣∣∣∣T
(

4

5

)
− T (1)

∣∣∣∣ = 2

5
+ 1

2
>

∣∣∣∣4

5
− 1

∣∣∣∣.
Finally, since T (0) = 0, from Proposition 1, we have that T is quasi-nonexpansive on [−2,1].

Next we summarize some elementary properties of the mappings which satisfy condition (E).

Proposition 2. Let T : C → X be a mapping which satisfies condition (Eα ) on C. Then the following statements hold.

a) If T C ⊂ C then for all x ∈ C,∥∥x − T 2x
∥∥ � (α + 1)‖x − T x‖.

b) If T C ⊂ C then for all x, y ∈ C,

‖T x − T y‖ � α
∥∥T x − T 2x

∥∥ + ‖T x − y‖.
c) If r ∈ (0,1) then the mappings Tr : C → X defined as Tr = rT + (1 − r)I (where I is the identity mapping), satisfy the condi-

tion (Eα) on C.

Proof. Taking y = T x in (2), we have that for all x ∈ C ,∥∥x − T 2x
∥∥ � α‖x − T x‖ + ‖x − T x‖ = (α + 1)‖x − T x‖.

Replacing x by T x in (2), we have that for all y ∈ C ,

‖T x − T y‖ � α
∥∥T x − T 2x

∥∥ + ‖T x − y‖.
Let Tr = rT + (1 − r)I . Since for every x ∈ C , x − Tr(x) = r(x − T x) we have, if x, y ∈ C that∥∥x − Tr(y)

∥∥ � (1 − r)‖x − y‖ + r‖x − T y‖
� ‖x − y‖ + rα‖x − T x‖
= α

∥∥x − Tr(x)
∥∥ + ‖x − y‖.

Thus, Tr satisfies condition (Eα). �
Remark 1. A mapping T : C → C such that there exists a constant a ∈ [0,2) such that for every x ∈ C , ‖x − T 2x‖ � a‖x − T x‖
is called 2-rotative. (See [2].) Thus, from (a) and (b) of the above proposition, mappings satisfying condition (E1) can be
regarded as somewhat a limiting case of 2-rotative mappings.

Proposition 3 (Alternative principle). Let C be a bounded subset of X . Let T : C → C be an arbitrary mapping. Then one at least of the
following statements hold.

a) There exists an a.f.p.s. for T in C .
b) T satisfies condition (E) on C.

Proof. Suppose that (b) fails, that is that T does not satisfy condition (E) on C for any α � 1. Then, for every positive
integer n there exist xn, yn ∈ C such that

‖xn − T yn‖ > n‖xn − T xn‖ + ‖xn − yn‖.
Then, for every positive integer n

diam(C)

n
� ‖xn − T yn‖

n
> ‖xn − T xn‖ + ‖xn − yn‖

n
.

Letting n → ∞ we obtain that ‖xn − T xn‖ → 0, that is that (a) holds. �
Thus, when C is a bounded subset of X , all the mappings T : C → C with positive minimal displacement, that is with

inf{‖x − T x‖: x ∈ C} > 0, trivially satisfy condition (E) on C , in order to get fixed point results for this class of mappings
some additional requirement is necessary.

Recall that a Banach space (X,‖ · ‖) is said to satisfy the Opial condition whenever for every sequence (xn) with xn ⇀ z
one has that

lim inf
n→∞ ‖xn − z‖ < lim inf

n→∞ ‖xn − y‖
whenever y �= z. For instance the spaces �p for 1 < p < ∞ satisfy this condition.
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Theorem 1. Let C be a nonempty subset of a Banach space X. Let T : C → X be a mapping. If

a) There exists an a.f.p.s. (xn) for T in C such that xn ⇀ z ∈ C,
b) T satisfies condition (E) on C, and
c) (X,‖ · ‖) satisfies the Opial condition.

Then, T z = z.

Proof. From (b), there exists α � 1 such that for every positive integer n one has that

‖xn − T z‖ � α‖xn − T xn‖ + ‖xn − z‖.
Since (xn) is an a.f.p.s. for T ,

lim inf
n→∞ ‖xn − T z‖ � lim inf

n→∞
[
α‖xn − T xn‖ + ‖xn − z‖] = lim inf

n→∞ ‖xn − z‖.
Since xn ⇀ z, if z �= T z, from the Opial condition we obtain

lim inf
n→∞ ‖xn − z‖ < lim inf

n→∞ ‖xn − T z‖,
a contradiction. �

Notice that, in this last result, the set C do not need to be bounded nor convex.
On the other hand assumption (b) cannot be removed. To see this, consider the following example.

Example 4. For 0 < r � 1, let Tr be the Kakutani mapping Tr : B�2 → B�2 defined as Tr(x) = r(1 − ‖x‖)e1 + S(x), where
S(x) = ∑∞

i=1 xiei+1 and (en) is the standard Schauder basis in �2. It is straightforward to check that vn − Tr(vn) → 0�2 for

vn :=
n2∑

i=1

1

n
ei,

and hence Tr fulfills assumption (a). Moreover, every Hilbert space enjoys the Opial condition, that is (c) is also fulfilled.
But Tr is fixed point free, as it is well known, thus it is clear that Tr fails condition (E).

Corollary 1. Let C be a nonempty weakly compact subset of a Banach space X. Suppose that (X,‖ · ‖) satisfies the Opial condition. Let
T : C → X be a mapping which satisfies condition (E) on C. Then T has a fixed point in C if and only if T admits an a.f.p.s.

Proof. If (xn) is an a.f.p.s. for T in C , since C is weakly compact, for a subsequence (xnk ) of (xn) one has that xnk ⇀ z ∈ C .
From the above theorem, T z = z, that is T has a fixed point. Conversely, if T has a fixed point, say z ∈ C , then the sequence
(xn) with xn ≡ z is an a.f.p.s. for T . �

Notice again that in this last result, as well as in the following one, the set C do not need to be convex.

Theorem 2. Let C be a nonempty compact subset of a Banach space X. Let T : C → X be a mapping which satisfies condition (E) on C.
Then T has a fixed point in C if and only if T admits an a.f.p.s.

Proof. If (xn) is an a.f.p.s. for T , since C is compact, for a subsequence (xnk ) of (xn) one has that xnk → z ∈ C . Since T
satisfies condition (E) on C , there exists α � 1 such that for every positive integer k one has that

‖xnk − T z‖ � α‖xnk − T xnk ‖ + ‖xnk − z‖.
Since (xnk ) is an a.f.p.s. for T ,

lim sup
k→∞

‖xnk − T z‖ � lim sup
k→∞

[
α‖xnk − T xnk ‖ + ‖xnk − z‖] = 0.

Then, limk ‖xnk − T z‖ = 0 = limk ‖xnk − z‖, and hence z = T z, that is T has a fixed point. �
Remark 2. Let C be a weakly compact convex subset of X , and T : C → X be a mapping which satisfies condition (E) on C .
If (xn) is an a.f.p.s. for T , then the function f : C → [0,diam(C)] given by

f (x) := lim sup ‖x − xn‖

n→∞
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attains its minimum on C . This is because f is convex, bounded from below and lower semicontinuous on the weakly
compact set C . From the above proofs we derive that, in fact, the nonempty set

M := {
z ∈ C : f (z) � f (x) ∀x ∈ C

}
is T invariant. Indeed if z ∈ M then, from condition (E), for some α � 1 and every positive integer n,

‖xn − T z‖ � α‖xn − T xn‖ + ‖xn − z‖.
Since (xn) is an a.f.p.s. for T , we obtain

f (T z) � f (z),

that is, T z ∈ M . It is also well known that M is closed and convex. Thus, if T satisfy condition (E) over C and it admits an
a.f.p.s. (xn), then the asymptotic center A(C, (xn)) is T -invariant. Then any geometric property of Banach spaces implying
that the asymptotic centers of the bounded sequences are singletons yields a fixed point theorem for such a mapping. Thus
we have.

Theorem 3. Let C be a nonempty weakly compact convex subset of a (UCED) Banach space X. Let T : C → X be a mapping. If

a) T satisfies condition (E) on C, and
b) inf{‖x − T x‖: x ∈ C} = 0.

Then, T has a fixed point.

4. A direct generalization of condition (C)

Definition 2. For λ ∈ (0,1) we say that a mapping T : C → X satisfy condition (Cλ) on C if for all x, y ∈ C with λ‖x − T x‖ �
‖x − y‖ one has that ‖T x − T y‖ � ‖x − y‖.

Of course, if λ = 1
2 we recapture the class of mappings satisfying condition (C).

Notice that if 0 < λ1 < λ2 < 1 then the condition (Cλ1 ) implies condition (Cλ2 ).
The following example shows that the converse fails.

Example 5. For a given λ ∈ (0,1), let T : [0,1] → [0,1] defined by

T (x) =
{ x

2 x �= 1,

1+λ
2+λ

x = 1.

Then the mapping T satisfies condition (Cλ) but it fails condition (Cλ′ ) whenever 0 < λ′ < λ. Moreover T satisfies condi-
tion (Eμ) for μ = (2 + λ)/2.

Indeed, if 0 � x � 2
2+λ

, then

∣∣T (x) − T (1)
∣∣ = 1 + λ

2 + λ
− x

2
= 1 + λ

2 + λ
+ x

2
− x � 1 − x = |x − 1|.

If 2
2+λ

< x < 1 then,

λ
∣∣x − T (x)

∣∣ = 2 + λ

2
x − x > 1 − x = |x − 1|

and

λ
∣∣1 − T (1)

∣∣ = 1 − 2

2 + λ
> 1 − x = |x − 1|.

Thus, the mapping T satisfies condition (Cλ) on [0,1].
On the other hand, since the real function ϕ(t) = 1+t

2+t is increasing on (−2,∞), we have that ϕ(λ′) < ϕ(λ), and therefore

1

2 + λ′ <
1 + λ′

2 + λ′ <
1 + λ

2 + λ
. (5)

Put x = 2
2+λ′ . Then

λ′∣∣x − T (x)
∣∣ = λ′

∣∣∣∣ 2
′ − 1

′

∣∣∣∣ = λ′
′ = 1 − x = |x − 1|,
2 + λ 2 + λ 2 + λ
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while, bearing in mind (5),

∣∣T (x) − T (1)
∣∣ =

∣∣∣∣ 1

2 + λ′ − 1 + λ

2 + λ

∣∣∣∣ = 1 + λ

2 + λ
− 1

2 + λ′ >
1 + λ′

2 + λ′ − 1

2 + λ′ = |x − 1|,

which implies that T does not satisfy condition (Cλ′ ).
If μ = (2 + λ)/2, for x ∈ [0,1) we have∣∣x − T (1)

∣∣ � μ
∣∣x − T (x)

∣∣ + |x − 1|
and ∣∣1 − T (x)

∣∣ � 1 − x

2
<

1

2
+ 1 − x = μ

∣∣1 − T (1)
∣∣ + |1 − x|.

Therefore T satisfies (Eμ).

Proposition 4. Let C be a subset of a Banach space X. If T : C → X satisfies the condition (Cλ) for some λ ∈ (0,1), then for every
r ∈ (λ,1) the mapping Tr : C → X defined by Tr(x) = rT x + (1 − r)x satisfy the condition (Cλ/r ).

Proof. Suppose that for x, y ∈ C , λ
r ‖x − Tr(x)‖ � ‖x − y‖. Since x − Tr(x) = r(x − T x) it follows that

λ‖x − T x‖ � ‖x − y‖.
Since T satisfies the condition (Cλ) on C we derive that ‖T x − T y‖ � ‖x − y‖. Therefore∥∥Tr(x) − Tr(y)

∥∥ � r‖T x − T y‖ + (1 − r)‖x − y‖ � ‖x − y‖. �
The class of mappings satisfying condition (Cλ) on a convex bounded subset C of X shares with the class of nonexpansive

mappings the existence of almost fixed point sequences. The proof is closely modeled on Lemma 6 of [1].

Theorem 4. Let C be a bounded convex subset of a Banach space X. Assume that T : C → C satisfies condition (Cλ) on C for some
λ ∈ (0,1). For r ∈ [λ,1) define a sequence (xn) in C by tacking x1 ∈ C and

xn+1 = rT (xn) + (1 − r)xn

for n � 1.
Then (xn) is an a.f.p.s. for T , that is, the mappings Tr are asymptotically regular.

Proof. For n � 1 one has

λ‖xn − T xn‖ � r‖xn − T xn‖ = ‖xn − xn+1‖.
From the condition (Cλ) we derive that ‖T xn − T xn+1‖ � ‖xn − xn+1‖, and we can apply Lemma 3 in [1] (see also Proposi-
tions 1 and 2 of [3]), to conclude that ‖xn − T xn‖ → 0. �
Lemma 1. Let C be a subset of a Banach space X. Let T : C → X be a mapping satisfying condition (Cλ) for some λ ∈ (0,1). Let (xn)

be a bounded a.f.p.s. for T . Then

lim sup
n→∞

‖xn − T y‖ � lim sup
n→∞

‖xn − y‖ (6)

holds for all y ∈ C with lim infn ‖xn − y‖ > 0.

Remark 3. It is obvious that we can replace lim sup with lim inf in (6).

Proof of Lemma 1. Fix y ∈ C and put ε := (1/2) lim infn ‖xn − y‖ > 0. We note

λ‖xn − T xn‖ � ‖xn − T xn‖ < ε < ‖xn − y‖
for sufficiently large n ∈ N. Since T satisfies (Cλ), we have ‖T xn − T y‖ � ‖xn − y‖. So

‖xn − T y‖ � ‖xn − T xn‖ + ‖T xn − T y‖
� ‖xn − T xn‖ + ‖xn − y‖.

Taking n → ∞, we obtain (6). �
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Remark 4. In Proposition 1 we have seen that every mapping satisfying condition (E) is quasi-nonexpansive provided that
it has a fixed point. This result holds also for type (Cλ) mappings with 0 < λ < 1. (See Proposition 2 in [1].)

On the other hand, notice that if C is a bounded convex subset of X and T : C → C has positive minimal displacement
then, from Proposition 3, it satisfies condition (E) on C , but from the above theorem it cannot satisfy condition (Cλ) for
every λ ∈ (0,1). On the other hand, from Lemma 7 in [1], if a mapping T : C → C satisfies the condition (C) (that is (C1/2))
on C then it satisfies condition (E) on C with α = 3.

A property of the nonexpansive mappings which is shared with (Cλ)-type mappings concerns to the structure of the
fixed points set. Namely, we have the following statement which can be proved adapting the proof of Lemma 4 in [1]: Let T
be a mapping on a closed subset C of a Banach space X . Assume that T satisfies condition (Cλ) for some λ ∈ (0,1). Then F (T ) is
closed. Moreover, if X is strictly convex and C is convex, then F (T )is also convex.

Finally, we do not know if condition (Cλ) for λ �= 1
2 implies condition (E). Nevertheless this fact holds for Lipschitzian

mappings.

Proposition 5. Let T : C → X be a Lipschitzian mapping with Lipschitz constant Lip(T ) satisfying condition (Cλ) for some λ ∈ (0,1).
Then, T satisfies condition (Eμ) for μ = max{1,1 + λ(Lip(T ) − 1)}.

Proof. If Lip(T ) � 1 then T satisfies (E1) obviously. If Lip(T ) > 1 we have that μ > 1. Suppose that T fails to satisfy (Eμ).
Then there exists x, y ∈ C such that

‖x − T y‖ > μ‖x − T x‖ + ‖x − y‖. (7)

Consequently we have

μ‖x − T x‖ + ‖x − y‖ < ‖x − T x‖ + Lip(T )‖x − y‖,
that is

(μ − 1)‖x − T x‖ <
(
Lip(T ) − 1

)‖x − y‖.
Since μ − 1 = λ(Lip(T ) − 1) we obtain

λ‖x − T x‖ < ‖x − y‖,
and therefore, by using that T satisfies condition (Cλ) one has that ‖T x − T y‖ � ‖x − y‖. Thus, we derive that

‖x − T y‖ � ‖x − T x‖ + ‖T x − T y‖ � ‖x − T x‖ + ‖x − y‖
which contradicts (7). �
Remark 5. The Kakutani mappings Tr considered in Example 4 are Lipschitzian with Lip(Tr) = √

1 + r2. Since in this example
we showed that Tr does not have condition (E), by the above proposition we know that Tr fails to satisfy condition (Cλ) for
every λ ∈ (0,1), in spite of the fact that Lip(Tr) is as close to 1 as we wish.

Definition 4. Given a mapping T : C → X , we say that I − T is strongly demiclosed at 0X if for every sequence (xn) in C
strongly convergent to z ∈ C and such that xn − T xn → 0X we have that z = T z.

This is a weaker version of the well-known demiclosedness principle, in which the weak convergence has been re-
placed by the strong convergence. Notice that for every continuous mapping (in particular for every Lipschitzian mapping)
T : C → X , I − T is strongly demiclosed at 0X . On the other hand, Example 5 shows that there are not continuous mappings
satisfying the above property.

Proposition 6. Let C be a nonempty subset of a Banach space X. If T : C → X satisfies condition (E) on C, then I − T is strongly
demiclosed at 0X .

Proof. Suppose that (xn) is an a.f.p.s. for T in C such that xn → z ∈ C . From condition (E),

‖xn − T z‖ � α‖xn − T xn‖ + ‖xn − z‖
and taking limits as n goes to infinity we derive that xn → T z. Hence T z = z. �

The converse is not true; see Example 2.

Lemma 2. Let T be a mapping on a convex subset C of a Banach space X. Assume that T satisfies condition (Cλ) for some λ ∈ (0,1).
Assume also that there exist x, y ∈ C and sequences (xn) and (yn) in C such that x �= y, limn xn = x, limn yn = y, limn ‖T xn − xn‖ = 0
and limn ‖T yn − yn‖ = 0. Then x and y are fixed points of T .
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Proof. Let ε ∈ (0,1) be arbitrary. Put a convex subset D of C by

D = {
u ∈ C : ‖u − x‖ = ε‖x − y‖, ‖u − y‖ = (1 − ε)‖x − y‖}.

By Lemma 1, D is invariant under T . Define a sequence (un) in D by u1 ∈ D and un+1 = λT un + (1 − λ)un . By Theorem 4,
(un) is an a.f.p.s. for T . Using Lemma 1 again, we have

‖x − T x‖ � lim sup
n→∞

(‖x − un‖ + ‖un − T x‖)
� ε‖x − y‖ + lim sup

n→∞
‖un − x‖

= 2ε‖x − y‖.
Since ε > 0 is arbitrary, we obtain ‖x − T x‖ = 0. Thus x is a fixed point of T . Similarly we can prove that y is a fixed point
of T . �

The following lemma is deduced by Lemma 2.

Lemma 3. Let T be a mapping on a convex subset C of a Banach space X. Assume that T satisfies condition (Cλ) for some λ ∈
(0,1). Assume also that T has a fixed point. Then x is a fixed point of T provided (xn) is a sequence satisfying limn xn = x and
limn ‖xn − T xn‖ = 0.

Theorem 5. Let C be a nonempty weakly compact convex subset of a Banach space X. Let T : C → C be a mapping. If

a) T satisfies condition (Cλ) on C,
b) (X,‖ · ‖) satisfies the Opial condition, and
c) I − T is strongly demiclosed at 0X .

Then, T z = z.

Proof. From Theorem 4 there exists an a.f.p.s. (xn) for T . Without loss of generality, we may suppose that xn ⇀ z ∈ C . If
(xn) admits any subsequence strongly converging to z, then from (c), T z = z. Otherwise, by Lemma 1

lim inf
n→∞ ‖xn − T z‖ � lim inf

n→∞ ‖xn − z‖,
and from the Opial condition this implies that T z = z. �
Theorem 6. Let T be a mapping on a locally weakly compact convex subset C of a Banach space X. Assume that X satisfies the Opial
condition, T satisfies condition (Cλ) for some λ ∈ (0,1) and T has a fixed point. Define a sequence (xn) in C by x1 ∈ C and

xn+1 = μT xn + (1 − μ)xn (8)

for n ∈ N, where μ is a real number belonging to [λ,1). Then (xn) converges weakly to a fixed point of T .

Proof. Since T is quasi-nonexpansive,{
x ∈ C : ‖x − z‖ � r

}
is weakly compact, convex and T -invariant, where z is a fixed point of T and r > 0. So, without loss of generality, we may
assume C is weakly compact. By Theorem 4, (xn) is an a.f.p.s. for T . We consider the following two cases:

• (xn) has a cluster point.
• (xn) has no cluster points.

In the first case, let y ∈ C be a cluster point of (xn). Then there exists a subsequence (xn j ) of (xn) such that (xn j ) converges
strongly to y. By Lemma 3, y is a fixed point of T . Since T is quasi-nonexpansive, (‖xn − y‖) is a nonincreasing sequence.
So (xn) itself converges strongly to y. In the second case, arguing by contradiction, we assume that (xn) does not converge
weakly. Since C is weakly compact, we can choose subsequences (xn j ) and (xnk ) of (xn) converging weakly to distinct points
y, z ∈ C , respectively. Since X satisfies the Opial condition, by Lemma 1 y and z are fixed points of T . Also, (‖xn − y‖) and
(‖xn − z‖) are nonincreasing. Using the Opial condition again, we have

lim
n→∞‖xn − y‖ = lim

j→∞‖xn j − y‖ < lim
j→∞‖xn j − z‖ = lim

n→∞‖xn − z‖
= lim

k→∞
‖xnk − z‖ < lim

k→∞
‖xnk − y‖ = lim

n→∞‖xn − y‖.
This is a contradiction. Therefore we obtain the desired result. �
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Theorem 7. Let C be a nonempty weakly compact convex subset of a (UCED) Banach space X. Let T : C → C be a mapping. If

a) T satisfies condition (Cλ) on C, and
b) I − T is strongly demiclosed at 0X .

Then, T has a fixed point.

Proof. From Theorem 4 there exists an a.f.p.s. (xn) for T . Define a continuous convex function f : C → [0,+∞) by f (x) =
lim supn ‖x − xn‖ for all x ∈ C . Since C is weakly compact and convex, and f is weakly lower semicontinuous there exists
x0 ∈ C such that f (x0) = min{ f (x): x ∈ C} in other words, the sequence (xn) admits an asymptotic center x0 ∈ C . Let
K := {x ∈ C : f (x) � f (x0)}. Since X is (UCED) then it is well known that K = {x0}. Finally let us see that T (x0) ∈ K , and
hence x0 = T x0. Indeed, if (xn) admits any subsequence strongly converging to x0, then from (b), T x0 = x0. Otherwise, by
Lemma 1

f (T x0) = lim sup
n→∞

‖xn − T x0‖ � lim sup
n→∞

‖xn − x0‖ = f (x0).

Consequently, T x0 ∈ K . �
Remark 6. If T satisfies condition (C1/2) on C , then from Lemma 7 in [1] along with Proposition 6, I − T is strongly
demiclosed at 0X . Therefore, Theorems 5 and 7 allow us to recapture Theorems 4 and 5 in [1] respectively.

By Corollary 1 and Theorems 2, 3 and 4 (or by Proposition 6 and Theorems 5 and 7), we obtain the following theorem.
We note that this theorem is a real generalization of Theorems 4 and 5 in [1] because of Example 5.

Theorem 8. Let C be a convex subset of a Banach space X. Let T : C → C be a mapping satisfying (E) and (Cλ) for some λ ∈ (0,1).
Assume either of the following holds.

a) C is weakly compact and (X,‖ · ‖) satisfies the Opial condition.
b) C is compact.
c) C is weakly compact and X is (UCED).

Then, T has a fixed point.

The following theorem tells that if C is a closed interval of R and T satisfies (Cλ) for some λ ∈ [0,3/4], then T has a
fixed point.

Theorem 9. Let C be a closed interval of R. Let T be a mapping on C satisfying condition (C3/4). Then T has a fixed point.

Proof. Define a sequence (xn) in C by x1 ∈ C and (8), where μ ∈ [3/4,1). We consider the following two cases:

• (xn) has at least two cluster points.
• (xn) has only one cluster point.

In the first case, by Lemma 2, cluster points are fixed points of T . So, by the proof of Theorem 6, (xn) converges to their
cluster points. Since R is Hausdorff, this is a contradiction. Therefore the first case cannot be possible. In the second case,
we note that (xn) converges to some y ∈ C . Arguing by contradiction, we assume that T has no fixed points. In particular,
T y �= y. Put ya = (1 − a)y + aT y and define a mapping S on some subset of R by

T ya = ySa

for all a ∈ R with ya ∈ C . Put � := |y − T y| > 0. Then we note

|ya − yb| = |a − b|�.
We also note if a �= 0, then |y − T ya| � |y − ya| holds by Lemma 1. Thus

|Sa| � |a| (9)

holds for every a ∈ R with a �= 0 and ya ∈ C . Put

A = {
a ∈ R: ya ∈ C, |T y − T ya| � |y − ya|

}
.

Since (3/4)|y − T y| = |y − y3/4|, we have 3/4 ∈ A. It follows from 3/4 ∈ A and (9) that −3/4 � S(3/4) � 3/4 and |1 −
S(3/4)| � 3/4. So 1/4 � S(3/4) � 3/4 holds. We have
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(3/4)|y3/4 − T y3/4| = (3/4)
∣∣3/4 − S(3/4)

∣∣�
� (3/4)(3/4 − 1/4)� = (3/8)�

= |y3/4 − y3/8|
and hence |T y3/4 − T y3/8| � |y3/4 − y3/8|. So

−1/8 = −|3/4 − 3/8| + 1/4 � −|3/4 − 3/8| + S(3/4) � S(3/8) � 3/8.

If 3/8 ∈ A, then

|y − T y| � |y − T y3/8| + |T y3/8 − T y|
� 2|y − y3/8| = (3/4)|y − T y| < |y − T y|,

which is a contradiction. So 3/8 /∈ A. From the assumption, (3/4)|y3/8 − T y3/8| > |y3/8 − y|. We have

(3/8)� = (3/4)
(
3/8 − (−1/8)

)
� � (3/4)|y3/8 − T y3/8| > |y3/8 − y| = (3/8)�,

which is a contradiction. Therefore we obtain the desired result. �
The constant 3/4 is best possible to assure the existence of fixed points.

Example 6. Put X = R and C = [−1/4,1]. Define a mapping T on C by

T x =
⎧⎨
⎩

1 x = 0,

−(1/3)x x ∈ [−1/4,0) ∪ (0,3/4),

1 − x x ∈ [3/4,1].
Then T satisfies

(3/4)|x − T x| < |x − y| �⇒ |T x − T y| � |x − y|.
However, T does not have a fixed point.

Proof. Put C1 = [−1/4,0), C2 = {0}, C3 = (0,3/4) and C4 = [3/4,1]. It is easy to check |T x− T y| � |x− y| in the case where

(x, y) ∈ (C1 ∪ C3)
2 ∪ (C2 ∪ C4)

2 ∪ (C1 ∪ C4)
2.

In the case where (x, y) ∈ (C1 ∪ C3) × C2, we have

(3/4)min
{|x − T x|, |y − T y|} � |x − y|. (10)

Finally we consider the case where (x, y) ∈ C3 × C4. If 2x < y, we have

|T x − T y| = 1 − y + (1/3)x = (
1 − (4/3)y

) + (2/3)(2x − y) + y − x < |x − y|.
If 2x � y, we have

(3/4)|x − T x| = x � x + (y − 2x) = |x − y|
and

(3/4)|y − T y| = (y − 3/4) + (1/2)y � (1/2)y + (1/2)(y − 2x) = |x − y|.
Hence we obtain (10). It is obvious that T does not have a fixed point. �
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