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Let u be a classical solution to the wave equation in an odd number n of space 
dimensions, with compact spatial support at each fixed time. Duffin (J. Math. Anal. 
Appl. 32 (1970) 386-391) uses the Paley-Wiener theorem of Fourier analysis to 
show that, after a finite time, the (conserved) energy of u is partitioned into equal 
kinetic and potential parts. The wave equation actually has (n + 2)(n + 3)/2 
independent conserved quantities, one for each of the standard generators of the 
conformal group of (n + I)-dimensional Minkowski space. Of concern in this paper 
is the “zeroth inversional quantity” I,, which is commonly used to improve decay 
cstimatcs which are obtained using conservation of energy. We use Duffin’s method 
to partition I, into seven terms, each of which, after a finite time, is explicitly given 
as a constant-coefficient quadratic function of the time. Zachmanoglou has shown 
that under the above assumptions if n > 3. the spatial L2 norm of u is eventually 
constant. A consequence of the analysis here is a bound on this constant in terms of 
the energy and the radius of the support of the Cauchy data of u at a fixed time. 

1. INTRODUCTION AND STATEMENT OF THE RESULTS 

Let n > 1 and let M be the (n + 1).dimensional Minkowski space, with 
coordinates t E R (time) and x E R” (position). The waue equation on a 
function u = U(X, t) : M--f IF? is B = du, where a dot denotes time differen 
tiation and d is the space Laplacian C a;, ~5)~ = &‘/ax,. As a consequence of 
its conformal covariance properties, solutions of the wave equation with 
suitable spatial decay conditions (and certainly solutions with compact 
spatial support) admit (n + 2)(n + 3)/2 conserved quantities, which were 
first written down in 141. These are the integrals over R” of the densities 

B-~ti2+~~VU~2 (energy), 

pj= (3,U)li (linear momenta), 

Ajk = XjPk - XkPj (angular momenta). 
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b,i = XjE + tpj, 

55 

n-l . 
h=tc+x*p+7uu, 

n-l 
i, = (r2 + t2) E + 2tx . p - ___ 

2 
u2+(n- I)tuti, 

ij = -2txje - 2xjx . p + (r2 - t2)p,i - (n - 1) ~,~uz.i. 

Here and below, p is the n-vector (p, ,..., p,), x is the n-vector (x, ,..., xn), 
r2 =x . x, and j and k run from 1 to n. The integrals are conserved because 
the time derivative of each density is an exact divergence: 

E’=v .p, 

ii = v * (x/.p + fn,), 

h’==vr, 
n- 1 

r=tp+x. 71+ -up), 2 

& = V . ((r’ - t’)p + 2ts), 

n-l 
i;-= V . ((r’ - t’) 7ti - 2xj7) + 2 a,(~‘). 

For our result concerning liRn i,, we need the following machinery. 

DEFINITION 1.1. (See, e.g., [2 I.) A function f(z) of one complex 
variable is of exponential type a > 0 if for each E > 0, there exists a constant 
A, with If(z)] <A,eCutE)“‘. 

Remark 1.2. If f(z) has exponential type cx and g(z) has polynomial 
growth in z, g(z)f(z) still has exponential type u. 

THEOREM 1.3 (Paley-Wiener). (See [2j.) Let f(z) be an entire 
function of exponential type a, of class L’ on the real axis. Then the Fourier 
transform of the restriction off(z) to the real axis is zero outside I-a, a]. 

THEOREM 1.4. (See [2], or the reference to [3] in 151). Suppose n is 
odd and that the Cauchy data u(., 0), ti(., 0) of a solution u lo the waue 
equation have support contained in the closed ball of radius b about the 
origin. Then for t > b, the kinetic energy f ilti(., t)ll’ and the potential energy 
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f IJ(Vu)(., t)ll* are both equal to half of the total energy llRn E. (Here /I )I is the 
L*(w) norm.) 

From now on, /I 11 and ( , ) will denote L*(R”) norm and inner product, 
respectively, and we write v = zi. The dependence of, for example, the kinetic 
energy on time will not be mentioned explicitly: we write IIuIj2 for 11 ri(., t)il’. 

THEOREM 1.5 (Zachmanoglou 151). Under the assumptions of Theorem 
1.4 with n > 3, Ilull 2 is constant for t > b. 

Let C be the eventual constant value of II ull* guaranteed by Theorem 1.5, 
and let E, H, and I, be the conserved quantities jRn E, In. h, JR” i,, respec- 
tively. Our theorem states that each of the seven terms in 

is given by a constant-coeffkient quadratic function of t for t > 6. 

THEOREM 1.6. Under the assumptions of Theorem 1.4 with n > 3, t > b 
implies that 

+t* Ilull =+Et*, 

(1.1) 

(1.2) 

(1.3) 

it2 l)Vuj12 =;Et’, (1.4) 

Zt(vx, Vu) = -2Et* + 2Ht, (1.5) 

(1.6) 

(n- l)t(u,o)=O. (I-7) 

Equations (1.3)-( 1.7) are consequences of Theorems 1.4 and 1.5. Indeed, 
(1.6) is Theorem 1.5, (1.7) follows from (d/dt) IJul(‘= 2(u, v), (1.5) is essen- 
tially the definition of H, and (1.3) and (1.4) are Theorem 1.4. Equation 
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(1.1) requires an imitation of Duffin’s proof of Theorem 1.4, which we carry 
out in Section 2. Equation (1.2) then follows. 

An interesting application of Theorem 1.6 is a bound on C. The Cauchy 
data of u at time b are supported in the ball of radius 26; thus $ lIrvII* and 
4 IlrVull* lie between 0 and 2b*E at time b. Their difference satisfies 

n-l 
i-C=~~~rVu~~z-~~lrv~12~2b2E, 

and we have 

COROLLARY 1.7. Under the assumptions of Theorem 1.4 with n > 3, 

C< -& b*E. 

2. PROOF OF THEOREM 1.6 

Let  ̂ denote Fourier transformation in the x variables: if f is a CXx’ 
function of x and t, say Schwartz class in x for fixed t, 

.f(r, t) = (27r)“‘* \ e’“‘y(x, t) dx, 
. w  

where dx is Lebesgue measure. (In what follows, we will sometimes suppress 
the dependence on t.) We have the identities 

af * 
C-1 axj =f<jJ 

(Xjf)^ = f ~. 
J 

(2.1) 

(2.2) 

Taking the Fourier transform of the wave equation, we have 

P(<, t) = - I(1 2 u”((, t). (2.3) 

(The compact support assumption permits us to interchange  ̂ and ‘.) The 
explicit solution of (2.3) is (setting p = l(l) 

u^(t, t) = F(t) cos pt + G(t) y, (2.4) 

where F(r) = z?(r, 0), G(r) = v^(<, 0). The second kinetic moment is 

Kc*) = 4 lIrvl12 = 4 IIvxI/~ = 4 IIVu /̂l*, 
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by (2.2) and the Plancherel theorem, where the gradient is in the < variables. 
Differentiating (2.4) with respect to t and taking the gradient, we have 

I?(<, t) = -pF(<) sin pt + G(l) cos pt, 

W)(h f> = -WXcos P[) t - Asin pt)(VF)(t) 

- F(l)(sin pt) 6 - tG(r)(sin pt) f 

+ (~0s pf)(VG)(t), 

so that 

2K”’ = I cos*ptlt*p’ lFl* - 2r Re(FQ . (VG) + ]VG]*] dr 
R” 

sin’ pt(p* I VF]’ + 2Re(VF) . (Fr) + 2t Re(VF) e (Gr) 

+]F]2+2tReFG+t2~G]2]d~ 

+ .i,. (sin pt>( cos pt) 2Re 
[ 
tp(Fl) e (VF) + fp lFj* 

+ t*pFG - p(VF) . (VG) - + (VG) 

-t (G$). (lic,]dr 

Es 2!p~(co~*pf)XL(~)dC+2 [ (sin*pt)X,(t)dt ” Q” 

+ 2 i’ (sin ~l)(cos pf) X,(r) d<, 
R” 

where the dot product is conjugate linear in the second argument. 
Using the trigonometric identities 

cos* e = 
1 + cos 28 

2 ’ 

sin’ 19 = 
1 - cos 28 

2 ’ 

(2.5 1 

(sin B)(cos 19) = + sin 28, 
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the above becomes 
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2K’*’ = it* llF(ll* -t Re(F& VG) + f llVGll* 

+ f (p2VF, VF) + Re(VF, F() 

+ t Re(VF, G{) + f IJFII* + t Re(F, G) 

+ft2/lG/12+-/F:,(~o~2p~)(X,-~2)dr 

+ JR (sin 2pt) X, 4 (2.6) ” 

Claim 2.1. The two integral terms in (2.6) vanish for t > 6. 

Proof. We express the integrals in spherical coordinates p and 0, where 
0 = r/p is the coordinate on the unit sphere S”-‘. Denote by d@ the 
measure on S”-‘: in this notation 

where f (p, 0) =f (<) =f @O). 
Now let zq, = u(.. 0) and u,, = v(., 0). F = Q, may be expressed as 

(2.7) 

For fixed 0, (2.7) converges for all complex values of p, and in fact is an 
entire function of p of exponential type b: 

(The depeyence of th_e entire extension of F on 0 is suppressed here.) 
Similarly F, G, and G extend, for fixed 0, to entire functions of p of 
exponential type b. Note that the extension of F is not the conjugate of the 
extension of F; in the integral representation corresponding to (2.7), the i is 
changed to -i but the p is not conjugated. In addition, VF, VF, VG, VG, Fl, 
F<, G<, @, and (t/p). (VG) = 0. G h ave entire extensions of the same 
exponential type, since, for example, 

g @, 0) = (27~-“‘~ !jrChl eipx”ixjuO(x) dx. 
J 

All these entire functions are Schwartz class in r and thus in real p for fixed 
0. 
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By Remark 1.2, pF and pVF also have all these properties. Thus the 
functions X, , X,, X, of (2.5) are entire, of exponential type 26, and 
Schwartz class on the real axis. If 

yrn@) = P”-’ jsne, X,@, 0) d@, m = 1, 2, 3, 

Y,,, is entire, of exponential type 2b, and Schwartz class (thus L ‘) on the real 
axis. By (2.7), Q---p, 0) = F@, -O), and similarly for F, G, G, VF, VF, VG, 
VG, Ft, Ft, G<, and GI$ so that X,(-p, 0) =X,&I, -0) for m = 1,2. On the 
other hand, 0 . VG, pF, and pVF behave in the opposite way: X,(-p, 0) = 
-x&p, -0). 

This means that Y, and Y, are even functions of p, and-Y, is odd. For 
example, since the antipodal map is measure preserving and n - 1 is even, 

Y,(-p) = p”-’ f X,(-p, 0) dO 
‘,y” I 

=P 
n-l 

r X,@, -0) d(4) 
.S” -I 

= Y,@). 

Thus the Fourier transform of Y, - Y, is a cosine transform, and that of Y, 
a sine transform. We have, 

q(Y, - YJ (2t)= 
I m (~0s 2~r)(Y, - Y,)@)~P, 

0 

f B,(2t) = JoW ( sin 2pt) Y,(p) dp. 

By Theorem 1.3 (Paley-Wiener), these vanish for f > b, and, by continuity, 
for t = b also. This establishes the claim. 

By the claim, the Plancherel theorem, (2.1), and (2.2), we may reduce 
(2.6) for t > b to 

2K’*‘= it* I[Vu,l/* - t(Vu,, u,,x) + 4 ~luoxl12 

- 4 (d(u,x), uox) + (uox, Vu,) 

+ t(u0.G Vu,) + 4 ll~ol12 + Go, uo> 
+ ft’ JluoI/*. (2.8) 
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Now if 4 and w are Cp functions on R”, integration by parts gives 

(Vh vx> = -0, v * (vx>) = -($x, VW> - 44 w>, 

and in particular (V#, 4x) = -(n/2) 11#11’. In addition, if e,i is thejth standard 
basis vector in IR”, 

@(u,x), uox> = C (d(uOxj), uOxj) 

= - 1 (v(Uoxj), v("Ox,j)) 

= - x (xjVu, + uOej, x,~VU, + u,ei) 

= - IlrVu# ~ 2(VU,, uox) - n IIug~lZ 

= - )I rvu, I/? 

Equation (2.8) thus simplifies, for t > b, to 

It is remarkable that this expression for 2K’*’ = 11 rv(., t)ll* duplicates the 
formal appearance of the conserved quantity I,, except for the sign of the 
terms mixing u0 and vO. 

Evaluating the constants H and I,, at time 0, we find 

n-l H = (Vu,, u,x) + 2 (u,, v,>, 

z,=~JJrv,l/* +~llrvu,l/‘-J+#. 

This means 

2K’*’ = 2K’*‘(t) = I, - 2tH + t*E, t > b. 

This, along with the discussion in Section 1, establishes the theorem. 
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3. REMARKS 

(1) A good check on (1.1) can be made by translating the time 
scale: let t = s + 6. The constants H and I, are different in the s scale: 

H’ = H” + 6E, (3.1) 

I; = I.; + 2dE + d2E + 26(Vu, LX) + (n - 1) 6(u, v). (3.2) 

The eventual value of 11 TU I/’ should be equal to both Es2 - 2H”s + Zk and 
Et* - 2H’ + 16. Equations (3.1) and (3.2) imply that these expressions are 
equal. 

(2) When n = 1, the proof of Theorem 1.6 shows that in 

I, = f IIxuI12 + 4 llxu’I/* + $2 I~u/12 + it* ~Ixu’l)* + 2t(xu, u’), 

where U’ = &/ax, each of the first two terms eventually becomes $Et2 - 
Ht + fl,,, and the rest obey (1.3~(1.5). Thus we have an eventual partition 
theorem for n = 1 also. 

Though the eventual behavior of llulj2 is not an issue here, 
Zachmanoglou’s proof of Theorem 1.5 shows that IIu 11’ is a linear function 
of t for t 3 b. 

(3) Application of Duffin’s method to the conserved quantity Bi = 
.(‘,a” bj shows that eventually, under the assumptions of Theorem 1.4, 
(xju, u) = (xi V U, VU) = Bj - Pjt, where P,j = .)‘Rfl pi. This partitions B, into 
three linear functions of t. 

(4) A similar result holds for the Maxwell equations, for which 
Dassios 11 1 has proved the energy equipartition theorem. These calculations 
will appear separately. 

(5) Of course, an asymptotic partition theorem corresponding to 
Theorem 1.6 holds if the compact support assumption is replaced by suitable 
spatial decay assumptions. 
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