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Abstract The tried and tested multianvil apparatus has been widely used for high-pressure and high-

temperature experimental studies in Earth science. As a result, many important results have been obtained

for a better understanding of the components, structure and evolution of the Earth. Due to the strength limi-

tation of materials, the attainable multianvil pressure is generally limited to about 30 GPa (corresponding to

about 900 km of the depth in the Earth) when tungsten carbide cubes are adopted as second-stage anvils.

Compared with tungsten carbide, the sintered diamond is a much harder material. The sintered diamond

cubes were introduced as second-stage anvils in a 6e8 typemultianvil apparatus in the 1980s, which largely

enhanced the capacity of pressure generation in a large volume press. With the development of material

synthesis and processing techniques, a large sintered diamond cube (14 mm) is now available. Recently,

maximum attainable pressures reaching higher than 90 GPa (corresponding to about 2700 km of the depth

in the Earth) have been generated at room temperature by adopting 14-mm sintered diamond anvils. Using

this technique, a few researches have been carried out by the quenched method or combined with synchro-

tron radiation in situ observation. In this paper we review the properties of sintered diamond and the evolu-

tion of pressure generation using sintered diamond anvils. As-yet unsolved problems and perspectives for

uses in Earth Science are also discussed.
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1. Introduction

High-pressure experimental techniques have been widely used in
such fields as mineralogy, petrology, geophysics, and material
science. Discerning the properties and behavior of the Earth and
planetary minerals and rocks under high pressures provides indis-
pensable information for the understanding of the chemical compo-
sition, structure, dynamics, and origin of the Earth and planets.

Generally, there are three major high-pressure devices used in
high-pressure experimental studies for the Earth and planets,
including the piston-cylinder apparatus, the multianvil apparatus
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(MAA), and the diamond-anvil cell (DAC). Each apparatus has its
own advantages and unique applications. The piston-cylinder
apparatus can provide accurate pressure measurements on a force-
per-area basis. By adopting a 1/2-inch piston, pressure can be
generated up to 4 GPa, corresponding to about 130 km depth of
the Earth. Therefore, the piston-cylinder apparatus has been
widely used for high-pressure and high-temperature experimental
study under crustal and upper mantle conditions, as well as for
synthesizing some starting materials for further experiments. The
DAC can generate high pressures between two gem-quality single
crystal diamonds (SCD), with the maximum reported pressure
around 550 GPa (Xu et al., 1986), corresponding to the pressure of
Jupiter’s mantle. The DAC is widely used for investigating phase
transitions and physical properties of materials at high pressures,
combined with external or laser heating systems and optical and
spectroscopic methods. The disadvantages of DAC include small
sample size (on the order of mm) and the inevitable presence of
large pressure and temperature gradients through the sample. The
MAA can routinely reach about 28 GPa by adopting tungsten
carbide (WC) anvils, corresponding to about 750 km depth of the
Earth; Katsura et al. (2004) once generated 31 GPa using WC
anvils. The MAA has been widely employed for high-pressure and
high-temperature experimental studies during the last several
decades under upper mantle and uppermost lower mantle condi-
tions. Its advantages include large sample size (on the order of
mm), a quasi-hydrostatic pressure environment, uniform temper-
ature field, and precise control of pressureetemperature (PeT)
conditions, but the pressure is limited due to the hardness of WC.
The pressure limitation in MAA makes it impossible to study the
phase relations, physical and chemical properties of minerals and
rocks in the deeper mantle, so that the advantages of MAA
compared with DAC are not fully displayed.

With the development of material science and technology, sin-
tered diamond (SD), which is much harder than WC, became
available for use as an anvil material for the MAA (Endo et al.,
1985, 1987; Utsumi et al., 1986). In the late 1980s, small cubic
SD anvils were used for high-pressure generation to 41 GPa (Ohtani
et al., 1989). The size of the SD anvil has been extended in the
1990s from a 5e10-mm to 14-mm edge length and this high-
pressure technique has been developed and applied to studymineral
properties and phase transitions in theMAA by using the traditional
quenched method (Ito et al., 1998), or by combining with the
synchrotron X-ray diffraction technique (Kato et al., 1992; Kondo
et al., 1993; Funamori et al., 1996a, 1996b). High-pressure gener-
ation using SD anvils has been extended significantly, especially in
Figure 1 Photographs of a sintered diamond anvil (14 mm) and tung
the last decade, including the Earth Science research field with
many studies carried out (Ito, 2000; Ono et al., 2000, 2001; Irifune,
2002; Irifune et al., 2002; Ito and Kubo, 2002; Kubo et al., 2003;
Yamazaki and Irifune, 2003; Ito et al., 2004; Ohtani, 2004; Sueda
et al., 2004; Ito et al., 2005; Ito, 2006; Yamazaki et al., 2006; Ito,
2007; Stewart et al., 2007; Kubo et al., 2008; Shinmei et al.,
2008; Tange et al., 2008; Ito et al., 2009, 2010; Katsura et al.,
2009; Sueda et al., 2009; Yamazaki et al., 2011). In this paper we
review the advances of high-pressure generation in the MAA by
adopting the SD cubic anvil and we also discuss the problems and
perspectives of this technique.

2. Properties of the sintered diamond anvil

We have used a 14-mm SD cubic anvil together with WC anvils of
various sizes (Fig. 1). The basic procedure for the synthesis of SD,
which is usually made of fine diamond powder with cobalt as
a binder, was reported by Pope et al. (1972). Some properties of SD
have been tested by Horton (1979). The density of SD is larger than
pure diamond due to the presence of cobalt. Kondo et al. (1993)
reported that the calculated bulk modulus of SD is 410 GPa,
which is almost the same as that of an SCD (420 GPa), and the
estimated compressive strength of SD is more than 12 GPa, twice
that of the strongest WC grades. Sung and Sung (1996) reported
that the Knoop hardness for SD is 5000 kg/mm2, whereas that for
WC is 2400 kg/mm2.

The effect of cobalt binder content on the elastic properties of
SD has been investigated by Kono et al. (2010). The results
showed that a lower cobalt content implied higher elastic stiffness,
which corresponds to a higher efficiency of pressure generation in
the MAA as reported by Tange et al. (2008). The surface rough-
ness of the SD anvil also has an effect on the efficiency of pressure
generation in the MAA (Goto et al., 2002). A smaller surface
roughness displays a higher efficiency, with the effect being large
at low pressures and diminishing gradually at higher pressures.

3. Pressure generation

The pressure capability of a Kawai-cell assembly (including 8
truncated anvils, an octahedral pressure medium and pyrophyllite
gaskets) depends first on the truncation size of the anvil;
the smaller the truncation, the higher the potential pressure. The
simplest measure of the theoretically attainable pressure is equal
to the ram force divided by the area of 4 truncations. However, the
attainable pressure is much lower (�50 percent) than the
sten carbide anvils (from left to right: 46 mm, 32 mm and 26 mm).



Figure 3 Relationship between Knoop hardness and maximum

pressure (data points of hardness from Sung and Sung (1996)). WC:

tungsten carbide; SD: sintered diamond; SCD: single crystal diamond.
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theoretical value because of the gasketing. Putting all the force on
the truncations alone would break the anvils, so a pyrophyllite
gasket seal is created between anvils. Additionally, the grade or
quality of anvil and the design of the assembly and gasket are
other factors that affect the attainable pressure.

Since the hardness of an SD anvil is much higher than common
WC anvils, the generated pressure in the MAA has largely been
extended by its adoption. The first trial to use cubic SD anvils was
performed by Ohtani et al. (1989) in the DIA-type cubic-anvil press
(Inoue and Asada, 1973) at the High Energy Accelerator Research
Organization (KEK), Japan. Ohtani et al. (1989) used 4.85-mm SD
cubes with 0.5- and 1.0-mm truncations, and the maximum
generated pressure reached 41 GPa based on the Au scale of
Jamieson et al. (1982). Adopting 10-mm SD cubes with 2-mm
truncation, Kondo et al. (1993) generated a pressure up to 30GPa by
using FeeV alloys as calibrants. Funamori et al. (1996a,b) used
9.5-mm SD cubes with 2-mm and 1.5-mm truncation to generate
pressure up to 30 GPa based on the Au scale of Jamieson et al.
(1982) by means of a synchrotron in situ X-ray diffraction method.

Since the late 1990s, a large-sized SD cubic anvil of 14-mm
edge length has been available. So far the 14-mm SD cube has
commonly been used as second-stage anvils in the MAA. Using
this type of SD anvil with 3-mm truncations, Ito et al. (1998)
generated pressure reaching 37 GPa. In addition, by means of
the quenching method, some phase equilibrium and melting
experimental studies have been done (Ito et al., 1998, 2004; Ono
et al., 2001). It is the best way to determine the generated pressure
based on some equations of state for selected pressure calibrants,
e.g., Au, Pt, MgO, combined with synchrotron in situ X-ray
diffraction. These studies were carried out using the
DIA-type MAA, SPEED-1500 (Utsumi et al., 1998) and SPEED-
MkII (Katsura et al., 2004), installed at a bending magnet beam-
line BL04B1 of the Spring-8 synchrotron radiation facility in
Japan. The generated pressures reached 63 GPa and 72 GPa in
2004 and 2006, respectively. Tange et al. (2008) reported
a generated pressure up to 80 GPa based on the Au scale of
Tsuchiya (2003). Details of the experimental procedure are
described elsewhere (Ito et al., 2005; Ito, 2007). Quite recently, Ito
et al. (2010) reported a new record up to 90.4 GPa, which was
Figure 2 Pressure generation using 14-mm sintered diamond cubes

in the multianvil apparatus (modified from Ito et al., 2010).
reached in 2008, based on the Au scale of Anderson et al. (1989)
as shown in Fig. 2. It should be noted that the generated pressure is
read as 95.5 GPa based on the Au scale of Tsuchiya (2003), just
short of 100 GPa. Ideally, based on the Knoop hardness of SD
(Sung and Sung, 1996), it is theoretically possible to reach
150 GPa (Fig. 3).

4. Problems and prospects

By measuring the volumes of pressure markers, the generated
pressure is precisely determined through the equations of state.
Many pressure markers can be used. However, it should be pointed
out that one pressure marker can give different pressure values
according to different scales. As described by Ito et al. (2010),
adopting the pressure scales of Au reported by Anderson et al.
Figure 4 Phase boundary between perovskite (Pv) and post-

perovskite (PPv) in MgGeO3 determined by using different pressure

scales of Au. The solid, dot and dashed lines represent the boundaries

determined by Au scales of Anderson et al. (1989), Shim et al. (2002)

and Tsuchiya (2003).



Figure 5 Photos of subsidence that occurred close to the truncation of the sintered diamond anvils.
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(1989), Shim et al. (2002) and Tsuchiya (2003), the generated
highest pressure can vary within 5% over pressures of 60e70 GPa.
This is clearly shown in the determination of the perovskite to
post-perovskite phase boundary of MgGeO3, as shown in Fig. 4.
Therefore, one urgent task is to establish reliable pressure scales.

During compression of the cell assembly of the SD anvils,
blowout can sometimes happen and the experiment is immediately
terminated. Compared with the WC assembly, the SD assembly
blows out much more frequently. The blowout may be caused by
a large pressure gradient through the pressure medium and
gaskets. Thus, preheating on compression might be an efficient
way to prevent blowout.

The quality of the SD anvil is another issue in high-pressure
generation. In some experiments, such as M492 mentioned by Ito
et al. (2010), pressure drastically dropped and suddenly blew out
during a further increased load. Then two recovered anvils showed
that serious subsidence occurred at the top portion close to the
truncation, as illustrated in Fig. 5. In this case, the subsidence
caused the pressure drop and the blowout. Therefore, it is
important to improve the quality of the SD anvil to generate higher
pressure. Also, a larger high-quality SD cube is necessary for
a larger sample volume.

Compared with the WC anvil, the SD anvil is expensive (about
$2000 per cube for a 14-mm cube). This cost is therefore an
obstacle to the widespread usage of SD anvils in the MAA, and
necessitates looking for a cheaper way to produce SD anvils.

By adopting SD as the second-stage anvils, many studies in
Earth Science can be carried out d as follows:
(1) Phase relation is a traditional topic in Earth science. A few
minerals have been investigated, but many minerals have not
been examined in the deep mantle by using SD anvils in
MAA, and the information is essential for constitution of deep
mantle. The quenching method and in situ X-ray diffraction
experiments can yield detailed phase relations of single-
mineral and many-mineral systems;

(2) Physical and chemical properties of minerals are important
for understanding the evolution and dynamics of Earth. There
still a significant lack of knowledge of some physical and
chemical properties of mantle minerals, which limits precise
modeling of the deep mantle;

(3) Melting experiments of mantle minerals are fundamental for
magma ocean differentiation. Liquidus phase relations and
element partitioning of mantle minerals have not been well
examined, but can be done by using SD in MAA.
5. Conclusions

Pressures generated in a multianvil apparatus (MAA) have been
significantly improved by using the SD anvil in the last decade.
This technical development makes it possible to investigate the
deeper regions of the Earth’s interior much more quantitatively
than before. Studies have been done on phase transitions, physical
properties, and melting experiments of a few important minerals,
but many experimental issues are still unresolved. An improved
knowledge of minerals under deeper mantle conditions is essential
to an understanding of the structure, dynamics and evolution of
the Earth. Therefore, use of the SD anvil for high-pressure
experimental studies will be widely increased in the future.
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