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1. Introduction

The aim of this article is to classify all manifolds which admit a homogeneous cosymplectic G2-structure. More precisely,
we want to solve the following classification problem: Find all triples (M, G,ϕ) of a seven-dimensional compact manifold M ,
a Lie group G , and a group action ϕ : G × M → M such that ϕ is transitive and M admits a G-invariant cosymplectic G2-
structure.

We will identify two triples (M, G,ϕ) and (M ′, G ′,ϕ′) with each other if there exists a Lie group isomorphism φ : G → G ′
and a G-equivariant diffeomorphism f : M → M ′ , i.e. f (ϕ(g, p)) = ϕ′(φ(g), f (p)) for all g ∈ G and p ∈ M . If M admits a
G-invariant cosymplectic G2-structure, M ′ also admits such a structure. For reasons of simplicity, we will often identify
(M, G,ϕ) and (M ′, G ′,ϕ′), too, if there exists a third triple (M̃, G̃,ψ) such that G̃ covers G and G ′ and there are G̃-
equivariant covering maps π : M̃ → M and π ′ : M̃ → M ′ . In this situation, we will say that (M, G,ϕ) and (M ′, G ′,ϕ′) are
the same up to a covering.

The above identifications allow us to assume that M is a coset space G/H . For each G/H we calculate the dimension
nG2 of the space of all G-invariant G2-structures. By way of comparison, we also calculate the dimension nO (7) of the space
of all G-invariant metrics on G/H .

In the literature, many homogeneous cosymplectic G2-structures are known. Friedrich, Kath, Moroianu, and Semmelmann
[14] classify all simply connected, compact manifolds which admit a homogeneous nearly parallel G2-structure. The product
of a manifold with a homogeneous SU(3)-structure and a circle carries a canonical homogeneous G2-structure. The examples
from the article of Cleyton and Swann [7] which admit a homogeneous SU(3)-structure should therefore be mentioned in
this context, too.
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Table 1

G H G/H nO (7) nG2

U (1)7 {e} T 7 28 35

SU(2) × U (1)4 {e} S3 × T 4 28 35

SU(2)2 × U (1) {e} S3 × S3 × S1 28 35

SU(2)2 × U (1)2 U (1) S3 × S3 × S1 10 13

SO(4) × U (1)2 SO(2) V 4,2 × T 2 10 13

SU(2)3 × U (1) SU(2) S3 × S3 × S1 4 5

SU(3) × U (1)2 SU(2) S5 × T 2 7 10

SU(3) × U (1) U (1)2 SU(3)/U (1)2 × S1 4 5

Sp(2) × U (1) Sp(1) × U (1) CP
3 × S1 3 4

G2 × U (1) SU(3) S6 × S1 2 3

Table 2

G H G/H nO (7) nG2

SU(3) U (1) N1,1 10 13
SU(3) U (1) N1,0 6 7
SU(3) U (1) Nk,l with k, l ∈ Z, k � l � 0, k · l > 1 4 5
SO(5) SO(3) V 5,2 4 5
Sp(2) Sp(1) S7 7 10
SO(5) SO(3) B7 1 1
SU(2)3 U (1)2 Q 1,1,1 4 5
SU(3) × U (1) U (1)2 Nk,l with k, l ∈ Z arbitrary 4 5
SU(3) × SU(2) SU(2) × U (1) M1,1,0 3 4
SU(3) × SU(2) SU(2) × U (1) N1,1 2 2
Sp(2) × U (1) Sp(1) × U (1) S7 3 4
Sp(2) × Sp(1) Sp(1) × Sp(1) S7 2 2
SU(4) SU(3) S7 2 3
Spin(7) G2 S7 1 1

One reason for our interest in this kind of manifolds is that any principal orbit of a parallel Spin(7)-manifold of cohomo-
geneity one carries a homogeneous cosymplectic G2-structure. Conversely, any homogeneous cosymplectic G2-structure can
be extended to a parallel Spin(7)-manifold of cohomogeneity one. A discussion of these facts can be found in Hitchin [17].
The following theorem sums up the results of this article:

Theorem 1.

1. Let G/H be a seven-dimensional, compact, connected, homogeneous space which admits a G-invariant G2-structure. We assume
that G/H is a product of a circle and another homogeneous space and that G acts almost effectively on G/H. Furthermore, we
assume that G and H are both connected. In this situation, G, H, and G/H are up to a covering one of the spaces from Table 1 and
the dimensions nG2 (nO (7)) of the space of all G-invariant G2-structures (metrics) on G/H are shown in Table 1.

2. Let G, H, and G/H satisfy the same conditions as before with the single exception that G/H is not a product of a circle and another
homogeneous space. In this situation, G, H, and G/H are up to a covering one of the spaces from Table 2 and the dimensions nG2

(nO (7)) of the space of all G-invariant G2-structures (metrics) on G/H are shown in Table 2.
3. Any of the G/H from Table 1 or Table 2 admits a G-invariant cosymplectic G2-structure. If G/H is from Table 2, it even admits a

G-invariant nearly parallel G2-structure.

In Tables 1 and 2, Nk,l denotes an Aloff–Wallach space, V 4,2 (V 5,2) denotes the Stiefel manifold of all orthonormal
pairs in R4 (R5), and B7 is the seven-dimensional Berger space. Why it suffices to consider Aloff–Wallach spaces Nk,l with
k � l � 0 will be explained in Section 6. In the fourth, fifth, and sixth row of Table 1 and in the first, second, seventh and
ninth row of Table 2, the embedding of H into G has to be special in order to make G/H a homogeneous space which
admits a G-invariant G2-structure. The details of those embeddings are described in Sections 5 and 6. In the other cases,
the information in Tables 1 and 2 is sufficient to determine the embedding of H into G .

From the theorem it follows that either G/H is a product of a circle and a manifold which admits a homogeneous SU(3)-
structure or that it cannot be decomposed into factors of lower dimension. We remark that we not only prove the existence
of a homogeneous cosymplectic G2-structure on each of the manifolds but also the existence of cosymplectic G2-structures
which are invariant under any of the transitive group actions. The homogeneous space V 4,2 × T 2 admits a homogeneous
G2-structure but seems not to be mentioned in the literature before.

This article is organized as follows: After two introductory sections, we review the results of Dynkin [10,11] on the
connected Lie subgroups of G2. This is necessary, since in the situation of the theorem H can be embedded into G2.
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In Sections 5 and 6, we classify all G/H which admit a G-invariant, but not necessarily cosymplectic G2-structure. The
question how many G-invariant G2-structures and metrics exist on G/H is investigated in Section 7. In order to finish the
proof of Theorem 1, we have to prove the existence of a G-invariant cosymplectic G2-structure on all of the manifolds G/H .
This will be done in Section 8.

2. The group G2

Before we classify the connected subgroups of G2, we collect some facts on this group. For a more comprehensive
introduction into this issue, see Baez [2] or Bryant [3].

The group G2 can be defined with help of the octonions: We recall that a normed division algebra is a pair (A, 〈·,·〉) of a
real, not necessarily associative algebra with a unit element and a scalar product which satisfies 〈x · y, x · y〉 = 〈x, x〉 〈y, y〉
for all x, y ∈ A. There exists up to isomorphisms exactly one eight-dimensional normed division algebra, namely the octo-
nions O.

The quaternions H are a subalgebra of O. We fix an octonion ε in the orthogonal complement of H such that ‖ε‖ = 1.
We call (x0, . . . , x7) := (1, i, j,k, ε, iε, jε,kε) the standard basis of O. Let Im(O) := span(1)⊥ be the imaginary space of O. The
map

ω : Im(O) × Im(O) × Im(O) → R,

ω(x, y, z) := 〈x · y, z〉 (1)

is a three-form. From now on, we denote dxi1 ∧ · · · ∧ dxik shortly by dxi1...ik . With this notation, we have:

ω = dx123 + dx145 − dx167 + dx246 + dx257 + dx347 − dx356. (2)

Remark 2.1. The multiplication table of O is uniquely determined by the coefficients of ω. Let ε ′ be an octonion with
the same properties as ε . Since there exists an automorphism of O which is the identity on H and maps ε to ε ′ , ω is
independent of the choice of ε .

We are now able to define the Lie group G2:

Definition and Lemma 2.2.

1. Any automorphism ϕ of O satisfies ϕ(Im(O)) ⊆ Im(O) and thus can be identified with a map from Im(O) onto itself. G2 is defined
as the stabilizer group of ω or equivalently as the automorphism group of O.

2. The Lie algebra of G2 we denote by g2 .
3. The seven-dimensional representation which is induced by the action of G2 on Im(O) by automorphisms we call the standard

representation of G2 .

A proof of the fact that the stabilizer of ω is the same as the automorphism group of O can be found in Bryant [3]. The
Hodge dual ∗ω ∈ ∧4 Im(O)∗ of ω with respect to 〈·,·〉 and the orientation which makes (x1, . . . , x7) positive can be written
as:

∗ω = −dx1247 + dx1256 + dx1346 + dx1357 − dx2345 + dx2367 + dx4567. (3)

Finally, we fix a Cartan subalgebra t of g2, which we will need for our explicit calculations. With respect to the standard
basis of Im(O), let t be the following set of matrices:

t :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0 λ1

−λ1 0
0 λ2

−λ2 0
0 λ1 + λ2

−λ1 − λ2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λ1, λ2 ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4)

3. Some remarks on G2-structures

In this section, we define the notion of a G2-structure. We refer the reader to Bryant [3] or the books of Joyce [18] and
Salamon [21] for further reading. A G2-structure can be defined as a three-form which is at each point stabilized by G2:
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Definition 3.1. Let M be a seven-dimensional manifold and ω be a three-form on M with the following property: For any
p ∈ M there exists a neighborhood U of p and vector fields X1, . . . , X7 on U such that

ωq(Xi, X j, Xk) = ω(xi, x j, xk) ∀q ∈ U , i, j,k ∈ {1, . . . ,7}. (5)

The ω on the right-hand side of (5) is the three-form (2) and xi , x j , and xk are elements of the standard basis of O. In
this situation, ω is called a G2-structure on M and the pair (M,ω) is called a G2-manifold.

On any G2-manifold (M,ω) there exist a metric g and a volume form vol which are defined by:

g(X, Y )vol := −1

6
(X 
 ω) ∧ (Y 
 ω) ∧ ω. (6)

We call g the associated metric and vol the associated volume form. The Hodge dual ∗ω with respect to g and vol is a
four-form ∗ω, which is invariant under the stabilizer G2 of ω. On the flat G2-manifold (R7,ω) this four-form coincides with
(3). In this article, we consider the following types of G2-structures:

Definition 3.2. A G2-manifold (M,ω) is called

1. parallel if dω = 0 and d ∗ ω = 0,
2. nearly parallel if there exists a λ ∈ R \ {0} such that dω = λ ∗ ω and thus d ∗ ω = 0,
3. cosymplectic if d ∗ ω = 0.

Further information on the different types of G2-structures can be found in the article by Fernández and Gray [12]. We
will deal first of all with homogeneous G2-manifolds:

Definition 3.3. A G2-manifold (M,ω) is called homogeneous if there exists a transitive smooth action by a Lie group G which
leaves ω invariant.

In the above situation, M is G-equivariantly diffeomorphic to a quotient G/H . The group H acts on the tangent space of
G/H by its isotropy representation. Since G2 acts on the tangent space as the stabilizer of ω and ω is G-invariant, we have
proven the following lemma:

Lemma 3.4. Let G/H be a seven-dimensional homogeneous space which admits a G-invariant G2-structure. We assume that G acts
effectively on G/H. In this situation, there exists a vector space isomorphism ϕ : T p G/H → R7 such that ϕHϕ−1 ⊆ G2 , where H is
identified with its isotropy representation and G2 with its seven-dimensional irreducible representation.

The converse of the above lemma is also true:

Lemma 3.5. Let G/H be a seven-dimensional homogeneous space such that G acts effectively and there exists a vector space isomor-
phism ϕ : T p G/H → R7 with ϕHϕ−1 ⊆ G2 . In this situation, there exists a G-invariant G2-structure on G/H.

Proof. The action of G on the tangent bundle determines a G-invariant H-structure on G/H . Its extension to a principal
bundle with structure group G2 is a G-invariant G2-structure. �
4. Subgroups of G2

In this section, we describe all connected subgroups of G2. The semisimple subalgebras of all semisimple Lie algebras
including g2 have been classified by Dynkin [11]. Moreover, Dynkin [10] has proven that G2 contains exactly three maximal
subgroups which are isomorphic to SO(3), SO(4), and SU(3). These results yield the complete list of all connected subgroups
of G2. An explicit description of all nonabelian subalgebras of g2 can be found in Friedrich [15]. In Cacciatori et al. [5], there
is a nice description of the maximal subgroup SO(4). The results of the above papers can be summed up as follows:

Theorem 4.1. Let H be a connected Lie subgroup of G2 . We denote the Lie algebra of H by h. The standard representation of G2 induces
an action of H on Im(O). In this situation, h, H , and the splitting of Im(O) with respect to H are contained in Table 3. Moreover, any
two connected Lie subgroups of G2 whose action on Im(O) is equivalent are conjugate not only by an element of GL(7) but even by an
element of G2 .

The subscripts of the modules in Table 3 denote the weights of the H-action and the superscript indicates if the module is complex
or real.
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Table 3

h H Splitting of Im(O) into irreducible summands

{0} {e}
u(1) U (1) V

C
a ⊕ V

C

b ⊕ V
C

−a−b ⊕ V
R

0

2u(1) U (1)2
V

C

1,0 ⊕ V
C

0,1 ⊕ V
C

1,1 ⊕ V
R

0,0

su(2) SU(2) V
C

1 ⊕ 3V
R

0

su(2) SU(2) V
R

2 ⊕ V
C

1

su(2) SO(3) 2V
R

2 ⊕ V
R

0

su(2) SO(3) V
R

6

su(2) ⊕ u(1) U (2) V
C

1 ⊕ 3V
R

0 w.r.t. su(2)

su(2) ⊕ u(1) U (2) V
R

2 ⊕ V
C

1 w.r.t su(2)

2su(2) SO(4) V
R

2,0 ⊕ V
C

1,1

su(3) SU(3) V
C

1,0 ⊕ V
R

0,0

g2 G2 V
R

1,0

We describe some of the above subgroups more explicitly: In Cacciatori et al. [5], the authors introduce the following Lie
group homomorphism:

ϕ : Sp(1) × Sp(1) → G2,

ϕ(h,k)(x + yε) := hxh−1 + (
kyh−1)ε, (7)

where x, y ∈ H and Sp(1), which is isomorphic to SU(2), is identified with the unit quaternions. The kernel of ϕ is
{(1,1), (−1,−1)} and its image thus is isomorphic to SO(4). The first factor of Sp(1) × Sp(1) acts irreducibly on Im(H)

and Hε and the second factor acts irreducibly on Hε and trivially on its orthogonal complement. Im(O) therefore splits in
the same way into irreducible 2su(2)-modules as we have stated in the theorem. By a straightforward calculation, it follows
that the group Sp(1) which is diagonally embedded into Sp(1)×Sp(1) acts irreducibly on Im(H) and Im(H)ε and trivially on
span(ε). The two ideals and the diagonal subalgebra of 2su(2) therefore describe three out of four subalgebras of type su(2).
According to the nonzero weights of their action on Im(O), we denote the four subalgebras by su(2)1, su(2)1,2, su(2)2,2,
and su(2)6.

The two subalgebras of type su(2) ⊕ u(1) are the direct sum of an ideal of 2su(2) and a one-dimensional subalgebra of
the other ideal. We finally remark that the subgroup SU(3) is the stabilizer of i ∈ O.

5. The reducible case

We divide the manifolds which admit a homogeneous G2-structure into two classes:

Definition 5.1. Let G be a compact connected Lie group and H be a closed connected subgroup of G . We call G/H S1-
reducible if there exists a Lie group G ′ and a covering map π : G ′ × U (1) → G such that H ⊆ π(G ′). Otherwise, G/H is
called S1-irreducible.

In this section, we classify all S1-reducible spaces which admit a homogeneous G2-structure, and in the next section, we
classify the S1-irreducible ones. We will see that none of the S1-irreducible homogeneous spaces is covered by a product of
lower-dimensional homogeneous spaces. The S1-irreducible spaces which we will find are thus irreducible in the classical
sense, too.

Throughout this article we denote the Lie algebra of G by g and the Lie algebra of H by h. In order to simplify our
considerations, we assume that G/H is compact and that G is connected and acts almost effectively on G/H , i.e. the
subgroup of G which acts as the identity map is finite. Moreover, we classify the G/H and G only up to coverings. Before
we start our classification, we collect some helpful facts:

Lemma 5.2. Let G/H be a compact homogeneous space which admits a G-invariant G2-structure. Moreover, let G act almost effectively
on G/H. In this situation, the following statements are true:

1. dim g = dimh + 7.
2. G is compact and g is the direct sum of a semisimple and an abelian Lie algebra.
3. rankh ∈ {0,1,2} and rank g �≡ rank h (mod 2). If rank h = 1, the dimension of the center z(g) of g is less or equal 3. If rank h = 2,

dim z(g) � 1.
4. Let G = G ′ × U (1) and H = H ′ × U (1). If the second factor of H is transversely embedded into the product G ′ × U (1), G/H is

G ′-equivariantly covered by G ′/H ′ .
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5. Let m be the orthogonal complement of h in g with respect to an AdH -invariant metric on g. The restriction of the adjoint action
AdG to a map H → gl(m) is equivalent to the isotropy action of H on the tangent space.

Proof. Most of the lemma consists of well-known facts on Lie groups and homogeneous spaces. We therefore only prove
the nonobvious statements: Any compact Riemannian manifold has a compact isometry group. Since G/H is compact and
G leaves the metric on G/H invariant, G is compact, too.

h can be considered as a subalgebra of g2 and thus is trivial or of rank 1 or 2. Since the roots of a semisimple Lie algebra
are paired, we have dim k ≡ rank k (mod 2) for any Lie algebra k of a compact Lie group. It follows from dimg = dimh + 7
that rank g �≡ rank h (mod 2).

The Cartan subalgebra of h has to act on the tangent space in the same way as a one-dimensional subalgebra of t on
Im(O). The maximal trivial h-submodule of the tangent space therefore is at most three-dimensional. It follows that the
center z(g) of g is at most three-dimensional, too.

If rank h = 2, its Cartan subalgebra has to act as t on Im(O). The maximal trivial h-submodule therefore is at most
one-dimensional and we have dim z(g) � 1.

The covering map in Lemma 5.2(4) is given by π : G ′/H ′ → G/H with π(g H ′) := g H . The preimage π−1(eH) is the
discrete group G ′ ∩ U (1), where U (1) is the second factor of H ′ × U (1). �

If G/H is S1-reducible, it is covered by G ′/H × S1, where G ′ is a suitable Lie group. Conversely, any product G ′/H × S1

admits a transitive action by G ′ × U (1) which makes it S1-reducible. In this section, we therefore assume that G = G ′ × U (1)

and G/H = G ′/H × S1. G ′/H admits a G ′-invariant SU(3)-structure. We can prove by similar arguments as in Lemmas 3.4
and 3.5 that our task reduces to classifying all six-dimensional G ′-homogeneous spaces G ′/H with H ⊆ SU(3). The possibil-
ities for h are thus fewer than in the general situation.

We prove our classification result, by considering each h ⊆ su(3) separately. Lemma 5.2 reduces the number of g which
we have to consider. For reasons of brevity, we mostly mention only those g which cannot be excluded by the techniques
of the lemma.

h = {0}: In this case, G/H simply is a seven-dimensional, compact, connected Lie group. Up to coverings, the only groups

of this kind are U (1)7, SU(2) × U (1)4, and SU(2)2 × U (1).
h = u(1): Since dim g = 8 and coset spaces of type SU(3)/U (1) are irreducible, the only remaining possibilities for G are

SU(2) × U (1)5 and SU(2)2 × U (1)2. The first case can be excluded, since the center of G is too large. If G = SU(2)2 × U (1)2,
H is embedded into G by a map of type:

eiϕ �→
((

eik1ϕ 0
0 e−ik1ϕ

)
,

(
eik2ϕ 0

0 e−ik2ϕ

)
, eik3ϕ, eik4ϕ

)
, (8)

where k1, . . . ,k4 ∈ Z. We repeat the argument from Lemma 5.2(4) twice and see that G/H is covered by S3 × S3 × S1

or that H ⊆ SU(2)2. Depending on k1 and k2, the action of H on the tangent space has at most two nonzero weights.
We compare the weights of that action with the weights with which the one-dimensional subgroups of G2 act on Im(O).
After that, we see that we can assume |k1| = |k2| = 1. Since we obtain the same manifold for different choices of the
signs of k1 and k2, we can even assume that k1 = k2 = 1. If (k3,k4) = (1,0), G/H is diffeomorphic to S3 × S3 × S1, and
if (k3,k4) = (0,0), we obtain the only manifold which is not covered by S3 × S3 × S1. In that situation, G/H is of type
SU(2)2/U (1)× T 2. The five-dimensional manifold SU(2)2/U (1) coincides up to the double covering of SO(4) with the Stiefel
manifold V 4,2 = SO(4)/SO(2). The reason for this is that both manifolds are simply connected and the isotropy group U (1)

acts with the same weights on 2su(2) or so(4) respectively.
h = su(2): In this situation, G has to be a ten-dimensional compact Lie group. On the one hand, dim z(g) has to be pos-

itive, since G/H is S1-reducible. On the other hand, we have dim z(g) � 3. The only remaining possibilities for G therefore
are SU(2)3 × U (1) and SU(3) × U (1)2.

In the first case, we can embed H diagonally, i.e. by the map g �→ (g, g, g,1). The action of H on the tangent space is
the same as of su(2)2,2 on Im(O) and G/H is diffeomorphic to S3 × S3 × S1. If we had embedded H differently, it would
act as the identity on a four-dimensional subspace, which is impossible.

In the second case, there are two possible embeddings of H into SU(3): The first embedding is induced by he standard
representation of SO(3) on R3 ⊆ C3. The only elements of SU(3) which commute with all of SO(3) are the multiples of the
identity. Since those elements are a discrete set, the action of H splits the tangent space into a trivial and a five-dimensional
irreducible submodule. There is no connected subgroup of G2 which acts in this way on Im(O) and we thus can exclude
this case. The second embedding is given by the following map from SU(2) to SU(3):

A �→
(

A
1

)
. (9)

In this situation, H acts as VC

1 ⊕ 3VR

0 on the tangent space. Since su(2)1 acts in the same way, we have to put
SU(3)/SU(2) × U (1)2 = S5 × T 2 on our list.
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All connected subgroups of SU(3) are known from Theorem 4.1, since SU(3) ⊆ G2. There are only two subgroups of type
SU(2) or SO(3) which act trivially on a one-dimensional subspace of Im(O). Therefore, there are no further embeddings of
H into SU(3).

h = 2u(1): Since rank h = 2 and G/H is S1-reducible, we have dim z(g) = 1. The group G has to be nine-dimensional.
Therefore, we can assume that G = SU(3) × U (1). Since su(3) ⊆ g2 and rank su(3) = rank g2, any Cartan subalgebra of su(3)

acts on C3 in the same way as t on span( j,k, . . . ,kε). We thus have to put G/H = SU(3)/U (1)2 × U (1) on our list.
h = su(2) ⊕ u(1): As above, we have dim z(g) = 1. With help of the classification of the semisimple Lie algebras, we see

that g = sp(2) ⊕ u(1). We describe a possible G/H in detail. Sp(2) has a subgroup of type Sp(1) × U (1) which is given by:

H =
{(

h1 0
0 h2

)∣∣∣∣h1 ∈ H, h2 ∈ C, |h1| = |h2| = 1

}
. (10)

G/H is diffeomorphic to CP3 × S1. The Lie algebra of H acts in the same way on the tangent space of CP3 × S1, as
su(2)1 ⊕ u(1) on Im(O). The kernel of the isotropy representation of H is isomorphic to Z2. Therefore, we have an effective
action by (Sp(1) × U (1))/Z2 on the tangent space. Since that group is isomorphic to U (2), our example does not contradict
the fact that G2 contains no subgroup of type Sp(1) × U (1).

We exclude the existence of further manifolds of the above kind. If g = sp(2) ⊕ u(1) and h = sp(1) ⊕ u(1), either G/H
is covered by the sphere Sp(2)/Sp(1), which is not reducible, or h ⊆ sp(2). There are three embeddings of sp(1) into sp(2),
which is isomorphic to so(5). In the first case, sp(1) acts as so(3) on R3 ⊆ R5, in the second case, it acts as su(2) on C2 ∼=
R4 ⊆ R5, and in the last case, it acts irreducibly on R5. The second embedding yields the homogeneous space CP3 × S1,
which we have described above. If the semisimple part of h was embedded by the first map, it would act as su(2)2,2 on the
tangent space. Since g2 has no subalgebra of type su(2)2,2 ⊕ u(1), this is not possible. It follows from Schur’s lemma that
there is no nonzero element of so(5) which commutes with the third embedding of the semisimple part. The third case can
therefore be excluded, too.

h = su(3): As in the previous cases, G has to be a product of a 14-dimensional semisimple Lie group G ′ and U (1). With

help of the classification of the semisimple Lie algebras, we conclude that G ′ is SU(3)× SU(2)2 or G2. In the first case, SU(3)

acts trivially on G/H and in the second case we obtain G2/SU(3) × U (1), which is diffeomorphic to S6 × S1. We can verify
that H acts in the same way as the subgroup SU(3) of G2 on Im(O). Therefore, we have to put this manifold on our list
and have finally proven the first part of Theorem 1.

Remark 5.3. There is a one-to-one correspondence between the manifolds from Theorem 1(1) and the six-dimensional
manifolds which admit a homogeneous SU(3)-structure. These manifolds are considered by Cleyton and Swann [7], too.
They obtain a list of homogeneous spaces which coincides with our list with the single exception of V 4,2 × T 2, which seems
to be missing in [7].

6. The irreducible case

In this section, we classify the S1-irreducible manifolds which admit a homogeneous G2-structure. Analogously to the
previous section, we consider each subalgebra h of g2 separately.

h = {0}: Since any seven-dimensional compact Lie group is covered by a product of a semisimple Lie group and a torus

of positive dimension, G/H cannot be S1-irreducible.
h = u(1): In the previous section, we have already proven that if h = u(1) and G/H is S1-irreducible, we necessarily have

G = SU(3). Since any closed one-dimensional subgroup of SU(3) is conjugate to a

U (1)k,l :=
⎧⎨
⎩

⎛
⎝ eikt 0 0

0 eilt 0
0 0 e−i(k+l)t

⎞
⎠

∣∣∣∣∣∣ t ∈ R

⎫⎬
⎭ (11)

with k, l ∈ Z, G/H has to be an Aloff–Wallach space Nk,l := SU(3)/U (1)k,l . The manifolds Nk,l and N−k,−l obviously coincide.
Moreover, any permutation σ of (k, l,−(k + l)) induces an SU(3)-equivariant diffeomorphism of Nk,l and Nσ(k),σ (l) . For this
reason, we can assume that k � l � 0.

By an explicit calculation, we see that there exists a one-dimensional Lie subalgebra of t which acts in the same way on
Im(O) as the Lie algebra of U (1)k,l on the tangent space. Any Nk,l therefore satisfies the conditions of Theorem 1.

h = su(2): Since G/H is S1-irreducible, z(g) has to be trivial. The only remaining possibility for g therefore is so(5). As

we have mentioned before, there are three embeddings of su(2) into so(5), which are distinguished by the splitting of R5

with respect to su(2):

1. R5 = VR

2 ⊕ 2VR

0 : In this situation, G/H is the Stiefel manifold V 5,2 = SO(5)/SO(3) of all orthonormal pairs in R5. The

action of su(2) splits the tangent space into 2VR

2 ⊕ VR

0 . Since su(2)2,2 splits Im(O) in the same way, V 5,2 admits an
SO(5)-invariant G2-structure.
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2. R5 = VC

1 ⊕ VR

0 : If this is the case, G/H is covered by the seven-sphere Sp(2)/Sp(1). The action of Sp(1) splits the tangent

space into VC

1 ⊕ 3VR

0 . su(2)1 acts in the same way on Im(O) and S7 thus admits an Sp(2)-invariant G2-structure.
3. R5 = VR

4 : If su(2) acts irreducibly on R5, it also acts irreducibly on the tangent space of G/H . Since the action of su(2)6

on Im(O) is irreducible, too, we have found another manifold which admits a homogeneous G2-structure, namely the
seven-dimensional Berger space B7.

h = 2u(1): Since h is of rank 2, dim z(g) is either 0 or 1. If the center is one-dimensional, we have g = su(3) ⊕ u(1)

and h is transversely embedded into that direct sum. In this situation, G/H is covered by an Aloff–Wallach space Nk,l ,
on which SU(3) × U (1) acts transitively. The group SU(3) acts as usual by left multiplication on Nk, l. Moreover, a certain
one-dimensional subgroup of the normalizer NormSU(3) U (1)k,l acts on Nk,l by right multiplication. This subgroup can be
identified with the second factor of SU(3) × U (1).

If g is semisimple, we can assume that g = 3su(2). We describe the possible embeddings of 2u(1) into 3su(2). A Cartan
subalgebra of 3su(2) is given by:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

ix 0
0 −ix

iy 0
0 −iy

iz 0
0 −iz

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
x, y, z ∈ R

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (12)

We fix the biinvariant metric q(X, Y ) := − tr(XY ) on 3su(2). Let kk,l,m , where k, l,m ∈ Z, be the one-dimensional subalgebra
of 3su(2) which is generated by the matrix with x = k, y = l, and z = m. Furthermore, let 2u(1)k,l,m be the q-orthogonal
complement of kk,l,m in the Cartan subalgebra (12). Any connected two-dimensional Lie subgroup of SU(2)3 is conjugate
to a connected subgroup with a Lie algebra of type 2u(1)k,l,m . As Castellani [6], we denote the quotient of SU(2)3 by that
subgroup by Q k,l,m .

By the action of the group (Z2)
3 � S3 of outer automorphisms of 3su(2), we can change the signs and the order of

(k, l,m) arbitrarily. We may therefore assume without loss of generality that k � l � m � 0. The isotropy representation of
2u(1)k,l,m on the tangent space of Q k,l,m is with respect to a suitable basis given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x
−x 0

0 y
−y 0

0 z
−z 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xk + yl + zm = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

By comparing (13) with the Cartan subalgebra (4) of g2, we see that only Q 1,1,1 admits an SU(2)3-invariant G2-structure.
h = su(2) ⊕ u(1): Since rank su(2) ⊕ u(1) = 2, the center of g is at most one-dimensional. g has to be an eleven-

dimensional Lie algebra and therefore is either su(3) ⊕ su(2) or so(5) ⊕ u(1).
We start with the first of the two cases. The semisimple part of h we denote by su(2)′ . In order to classify the ho-

mogeneous spaces which we can obtain in this situation, we have to describe the possible embeddings of su(2)′ into
su(3) ⊕ su(2). su(2)′ ∩ su(3) has to be nontrivial. Otherwise, G would not act almost effectively on G/H . The projection of
su(2)′ onto su(3) therefore has to be one of the two maps which we have described on page 306. If su(2)′ acted irreducibly
on C3, the tangent space of G/H would contain a five-dimensional su(2)′-submodule. This follows by the same arguments
as on page 306. Since no subalgebra of g2 acts in this way on Im(O), su(2)′ has to split C3 into VC

1 ⊕ VC

0 . We consider the
projection of su(2)′ onto the second summand of su(3) ⊕ su(2). We first assume that su(2)′ ⊆ su(3). In this situation, the
center of h is without loss of generality generated by a matrix of type⎛

⎜⎜⎜⎜⎝
ki 0 0
0 ki 0
0 0 −2ki

li 0
0 −li

⎞
⎟⎟⎟⎟⎠ (14)

where k and l are integers. su(2)′ acts as su(2)1 on the tangent space of G/H . There exists up to conjugation a unique
one-dimensional subalgebra of g2 which commutes with su(2)1. Therefore, the weights with which the center of h acts on
the tangent space are uniquely determined. By computing the action of the above matrix on the tangent space, we see that
we necessarily have l = ±3k. The quotient G/H is in both cases up to an SU(3) × SU(2)-equivariant diffeomorphism the
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same and admits an SU(3) × SU(2)-invariant G2-structure. We again use the same notation as Castellani [6] and call our
manifold M1,1,0.

If the projection of su(2)′ onto the second summand of su(3) ⊕ su(2) is bijective, there exists up to conjugation a
unique one-dimensional subalgebra of su(3) ⊕ su(2) which commutes with su(2)′ . In this situation, G/H is diffeomorphic
to the exceptional Aloff–Wallach space N1,1. SU(3) acts on a gU (1)1,1 by matrix multiplication from the left. Since U (1)1,1
commutes with S(U (2) × U (1)) which is isomorphic to SU(2), gU (1)1,1 �→ gh−1U (1)1,1 defines a left action by SU(2)

on N1,1 which commutes with the action of SU(3). The isotropy group of the SU(3) × SU(2)-action is SU(2) × U (1). The
embedding of its Lie algebra into su(3) ⊕ su(2) is the same as we have described above. We thus have found another group
action on N1,1 which we have to include in our list.

In both of the above two cases, there exists an element of G which is of order two and acts trivially on G/H . For the
same reasons as on page 307, the fact that G2 contains no subgroup of type SU(2) × U (1) therefore does not contradict the
statement of our theorem.

Next, we assume that g = so(5) ⊕ u(1). The embedding of su(2)′ into so(5) has to be one of the three subalgebras
which we have described on page 307. Furthermore, the projection of z(h) onto so(5) should not be trivial. If su(2)′ was
embedded by its five-dimensional representation into so(5), there would be no element of so(5) left which commutes
with su(2)′ . Since this contradicts our statement on z(h), we can exclude this case. If su(2)′ was embedded by its three-
dimensional representation, it would decompose its complement in so(5) into 2VR

2 ⊕ VR

0 . g2 has no subalgebra of type
su(2)2,2 ⊕ u(1) and we thus can exclude this case, too. The only remaining case is where su(2)′ is embedded by its two-
dimensional complex representation. Since z(h) has to commute with su(2)′ , its projection onto so(5) has to be an element
of the second summand of the Lie subalgebra so(4), which splits into su(2)′ and another su(2). If h ⊆ so(5), we obtain
CP3 × S1, which we already have considered in the previous section. If this is not the case, G/H is covered by S7, which is
equipped with an action of Sp(2) × U (1).

h = 2su(2): Since dimh = 6, the dimension of g has to be 13. There is no nonzero element of Im(O) on which the
subalgebra 2su(2) of g2 acts trivially. Therefore, z(g) has to be trivial. The only remaining possibility for g is so(5) ⊕ su(2).

It follows from Lemma 3.4 and Theorem 4.1 that h has to decompose the tangent space into VR

2,0 ⊕VC

1,1. Let ı : 2su(2) →
so(5) ⊕ su(2) be the embedding of h into g, π1 : so(5) ⊕ su(2) → so(5) be the projection on the first summand, and
π2 : so(5) ⊕ su(2) → su(2) be the projection on the second one. The tangent space contains a submodule of type VC

1,1 only
if (π1 ◦ ı)(2su(2)) is the standard embedding of so(4) into so(5). The first summand of 2su(2) has to act irreducibly on a
three-dimensional submodule of the tangent space and we therefore can assume that

(π2 ◦ ı)(x, y) = x ∀x, y ∈ su(2). (15)

We are now able to describe G/H explicitly. Let S7 ⊆ H2 be the seven-sphere. Sp(2) acts on S7 from the left by matrix
multiplication. We identify Sp(1) with the group of all unit quaternions. Since the scalar multiplication on a quaternionic
vector space acts from the right, scalar multiplication with h−1 where h ∈ Sp(1) defines a left action of Sp(1) on S7. We
thus have constructed a transitive Sp(2) × Sp(1)-action on S7. The isotropy group of this action is Sp(1) × Sp(1) and the
isotropy action has the properties which we have demanded above. Analogously to the case where H = SU(2) × U (1), the
kernel of the isotropy representation of Sp(1) × Sp(1) is Z2 and the group which acts effectively on the tangent space is in
fact (Sp(1) × Sp(1))/Z2, which is isomorphic to SO(4).

h = su(3): G has to be a Lie group of dimension 15 which contains SU(3). With help of the classification of the compact
Lie groups, we see that G is covered either by a product of SU(3) and a seven-dimensional Lie group or by SU(4). In the
first case, G would not act almost effectively on G/H . In the second case, G/H is covered by S7.

h = g2: For similar reasons as above, we have g = so(7). Therefore, G/H is covered by the seven-dimensional sphere
Spin(7)/G2 and we have completed the proof of Theorem 1(2).

Remark 6.1. Friedrich, Kath, Moroianu, and Semmelmann [14] have classified all manifolds which admit a homogeneous
nearly parallel G2-structure. In particular, the authors prove that all manifolds from Theorem 1(2) admit such a G2-structure.

7. The space of invariant G2-structures

Until now, we have only proven that on each of the G/H there exists at least one G-invariant G2-structure. It is natural
to ask how many of such structures exist on G/H . This question can be answered with help of the following lemma:

Lemma 7.1. Let G be a compact Lie group and H be a closed subgroup of G such that G/H admits a G-invariant G2-structure. As usual,
let g be the Lie algebra of G, h be the Lie algebra of H, and m be the orthogonal complement of h in g with respect to an AdH -invariant
scalar product on g. We denote the set of all H-invariant elements of an H-module V by V H . The set of all G-invariant G2-structures
on G/H can be bijectively identified with a subset of (

∧3
m∗)H . Moreover, this subset is open.

Proof. The first statement of the lemma follows from the fact that the tangent space of G/H can be identified with m. The
GL(7,R)-orbit of ω ∈ ∧3 Im(O)∗ is an open subset of

∧3 Im(O)∗ . Therefore, the second statement follows, too. �
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Table 4

h nO (7) nG2

{0} 28 35
u(1) 4, 6, 10 5, 7, 13
2u(1) 4 5
su(2)1 7 10
su(2)1,2 2 2
su(2)2,2 4 5
su(2)6 1 1
su(2)1 ⊕ u(1) 3 4
su(2)1,2 ⊕ u(1) 2 2
2su(2) 2 2
su(3) 2 3
g2 1 1

Because of the above lemma, it makes sense to speak of the dimension of the space of all G-invariant G2-structures on
G/H . We denote this dimension by nG2 . For the same reasons as above, we can identify the set of all G-invariant metrics on
G/H with an open subset of (S2m∗)H . We denote its dimension by nO (7) , since a metric on a seven-dimensional manifold
is an O (7)-structure. The values of nO (7) we calculate, too, and compare them with nG2 . Any element of (S2m∗)H can be
identified with help of a background metric q with an H-equivariant q-symmetric endomorphism of m. We can therefore
use Schur’s lemma to calculate nO (7) . nG2 can be calculated by means of representation theory, too. nO (7) and nG2 depend
only on the action of H on m. Moreover, that action is equivalent to the action of a subgroup of G2 on Im(O). Our next
step is therefore to calculate the dimension of (S2 Im(O)∗)H and (

∧3 Im(O)∗)H for each H ⊆ G2:

Theorem 7.2. Let H be a connected Lie subgroup of G2 and h be its Lie algebra. The action of g2 on Im(O) makes S2 Im(O)∗
(
∧3 Im(O)∗) an h-module. The dimension of (S2 Im(O)∗)H ((

∧3 Im(O)∗)H ), which we also denote by nO (7) (nG2 ), can be found
in Table 4. The meaning of the numbers in the second row is as follows: There are infinitely many nonconjugate embeddings of U (1)

into G2 . More precisely, for any a,b ∈ Z there exists an embedding such that u(1) splits Im(O) into VC
a ⊕ VC

b ⊕ VC

−a−b ⊕ VR

0 . If one
of the numbers a, b, or −a − b is zero, we have nO (7) = 10 and nG2 = 13. If they are all nonzero but two of the numbers coincide up to
a sign, we have nO (7) = 6 and nG2 = 7. In all other cases, we have nO (7) = 4 and nG2 = 5.

We omit the proof of the above theorem, since it merely consists of the decomposition of various H-modules. Since
we have described the isotropy action of h on the tangent space of the manifolds G/H in Sections 5 and 6, we can use
Theorem 7.2 to verify the numbers from Tables 1 and 2 described in Theorem 1. In Theorems 1 and 7.2 we always have
nO (7) � nG2 . There is in fact a deeper reason behind this:

Lemma 7.3. In the situation of Lemma 7.1, the map

φ :
(∧3

m∗
)H

→ (
S2m∗)H

(16)

which maps a G2-structure to its associated metric is surjective.

Proof. Let ω be a fixed G-invariant G2-structure on G/H and let g be its associated metric. Furthermore, let (e1, . . . , e7) be
a basis of m such that the coefficients of ω with respect to that basis are the same as of (2). Finally, let h be an arbitrary

G-invariant metric on G/H and A : m → m be defined by g(Ax, y) := h(x, y). Since A is self-adjoint and positive definite A
1
2

exists. Moreover, A is invertible and H-equivariant. (A− 1
2 e1, . . . , A− 1

2 e7) is orthonormal with respect to h. The three-form
ω′ which is defined by

ω′(u, v, w) := ω
(

A
1
2 u, A

1
2 v, A

1
2 w

)
(17)

is an H-invariant G2-structure and satisfies φ(ω′) = h. �
The statement of the above lemma can be understood as follows: For any G-invariant metric g on G/H there exists a

G-invariant G2-structure such that its associated metric is g . Moreover, the space of all such G2-structures is of dimension
nG2 − nO (7) .

Many of the manifolds from Theorem 1 are diffeomorphic to each other. For example, some of the Aloff–Wallach spaces
are diffeomorphic or homeomorphic to each other. This phenomenon is discussed by Kreck and Stolz [19] in detail. Since
none of the Nk,l with gcd x(k, l) = 1 and k � l � 0 are SU(3)-equivariantly diffeomorphic to each other, they should be
treated as different in our context.

Some of the manifolds appear twice as G/H and G ′/H ′ with G � G ′ in our list. We want to know if there exists a G-
invariant G2-structure on G/H which is not G ′-invariant. The answer to this question can be found with help of Theorem 1:
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Corollary 7.4. Let G/H satisfy the conditions of Theorem 1. Moreover, let G ′ � G act transitively on G/H. We denote the isotropy
group of the G ′-action by H ′ . For reasons of clarity, we assign to nG2 the homogeneous space it belongs to. In this situation, we have

nG2(G/H) > nG2

(
G ′/H ′), (18)

except if G = SU(3), H = U (1)k,l , Nk,l is generic, and G ′ = SU(3) × U (1).

As a consequence, all triples (G, H, G/H) from Theorem 1 should be considered as different geometric objects, except
for the case from the above corollary.

8. Existence of the cosymplectic G2-structures

In Sections 5 and 6, we have classified all manifolds which admit a homogeneous G2-structure. The aim of this section
is to prove that a transitive group action which leaves at least one G2-structure invariant also leaves a cosymplectic G2-
structure invariant. In the irreducible case, we even establish the existence of an invariant nearly parallel G2-structure. We
prove these facts by a case-by-case analysis. Although most of this work has already been done by other authors, there are
still some cases left open.

The article of Friedrich et al. [14] answers our question for many subcases of the irreducible case. More precisely, we
only have to consider those irreducible spaces on which we have more than one transitive group action. It is known (cf.
Bär [1]) that the sphere Spin(7)/G2 admits a Spin(7)-invariant nearly parallel G2-structure ω. The associated metric on S7

has constant sectional curvature. Since we have Sp(2) ⊆ SU(4) ⊆ Spin(7), ω is invariant with respect to the action of the
three groups. In [14], the authors describe a homogeneous nearly parallel G2-structure on S7. The associated metric on S7

is the squashed one and its isometry group is Sp(2) × Sp(1). Since the G2-structure is homogeneous, it has to be at least
Sp(2)-invariant. We assume that the second factor of Sp(2) × Sp(1) does not preserve the G2-structure. In that situation,
there exists a one-dimensional subgroup of Sp(1) which generates a continuous family of nearly parallel G2-structures but
preserves the associated metric. Any nearly parallel G2-structure induces a Killing spinor and the dimension of the space
of all Killing spinors thus is at least two. Since it is known (cf. [14]) that this dimension is in fact one, the G2-structure is
Sp(2)× Sp(1)- and in particular Sp(2)× U (1)-invariant. All in all, we have found for each transitive action on S7 an invariant
nearly parallel G2-structure.

Next, we consider the Aloff–Wallach spaces. Page and Pope [20] have proven that any Aloff–Wallach space admits two
SU(3)-invariant nearly parallel G2-structures, which coincide on N1,0. It is known (cf. [14]) that the isometry group of the
associated metric is SU(3) × U (1) if (k, l) �= (1,1). Since in this situation the space of all Killing spinors is one-dimensional
(cf. [14,20]), we can conclude by the same arguments as above that both G2-structures are not only SU(3)- but also SU(3)×
U (1)-invariant. The nearly parallel G2-structure on N1,1 which is considered in [14] is preserved by SU(3) × SU(2). Since
SU(3) ⊆ SU(3) × U (1) ⊆ SU(3) × SU(2), that G2-structure is invariant with respect to all of the three group actions from
Theorem 1(2) and we have proven our statement for the irreducible case.

We proceed to the reducible case. Butruille [4] has proven that the only six-dimensional manifolds which admit a ho-
mogeneous nearly Kähler structure are S6, CP3, SU(3)/U (1)2, and S3 × S3. These four manifolds have also been considered
by Grunewald [16] and Bär [1], since they carry a real Killing spinor. The groups which preserve the nearly Kähler structure
on the first three homogeneous spaces are G2, Sp(2), and SU(3). Bär [1] has also proven that the nearly Kähler structure
on S3 × S3 (or equivalently on SU(2) × SU(2)) is not only left-invariant but is preserved by an SU(2)3-action. The isotropy
group of this action is SU(2), which is embedded as the diagonal subgroup by

g �→ (g, g, g). (19)

We denote the metric, the real two-form, and the complex (3,0)-form which determine the SU(3)-structure by g , α,
and θ . Furthermore, we denote the real (imaginary) part of θ by θRe (θ Im). We have dα = 3λθRe and dθ Im = −2λα ∧ α for
a λ ∈ R \ {0}, since the four manifolds are nearly Kähler. These equations are discussed in more detail by Hitchin [17]. On a
product of a circle and a nearly Kähler manifold of real dimension six, we can define a G2-structure by ω := α ∧ dt + θ Im .
Here, “t” denotes the coordinate of the circle. By a straightforward calculation, it follows that d ∗ ω = 0. All in all, we have
proven our statement for the last three manifolds from Theorem 1(1) and for all three actions on S3 × S3 × S1.

On the torus T 7, we have the flat G2-structure, which is of course cosymplectic. On C2 × T 4 (C3 × T 2), there exists
a flat Spin(7)-structure Ω . It is preserved by the action of SU(2) × U (1)4 (SU(3) × U (1)2), where the first factor acts on
C2 (C3) and the second one by translations on the torus. The principal orbits of this action, which is of cohomogeneity
one, are S3 × T 4 (S5 × T 2). Ω induces an SU(2) × U (1)4 (SU(3) × U (1)2)-invariant G2-structure on any principal orbit. This
G2-structure is cosymplectic, since dΩ = 0 and the principal orbits are hypersurfaces.

The only remaining manifold is V 4,2 × T 2. The issue of homogeneous G2-structures on this manifold is not yet dis-
cussed in the literature. In the following, we construct an explicit SO(4) × U (1)2-invariant cosymplectic G2-structure on
V 4,2 × T 2. On V 4,2, there exists an SO(4)-invariant Einstein–Sasaki structure (cf. [13]). An Einstein–Sasaki structure on a
five-dimensional manifold M can be defined as an SU(2)-structure with a special intrinsic torsion. As a G2- or Spin(7)-
structure, an SU(2)-structure is determined by certain differential forms. More precisely, there exists a one-form α and
two-forms ω1, ω2, and ω3 such that for each T ∗

p M with p ∈ M there exists a basis (e1, . . . , e5) with
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α = e5, ω1 = e12 + e34,

ω2 = e13 − e24, ω3 = e14 + e23. (20)

Analogously to Section 2, ei1...ik is an abbreviation of ei1 ∧ · · · ∧ eik . The Einstein–Sasaki condition is equivalent to

dα = −2ω1, dω2 = 3α ∧ ω3, dω3 = −3α ∧ ω2. (21)

We remark that (α,ω1,ω2,ω3) determines all other geometric structures, e.g. the metric, on M by which one usually
defines an Einstein–Sasaki structure. The above facts on Einstein–Sasaki structures are proven in the articles of Conti and
Salamon [8,9]. Since G2 contains a subgroup of type SU(2) which acts irreducibly on a four-dimensional subspace of Im(O)

and trivially on its orthogonal complement, the Einstein–Sasaki structure (α,ω1,ω2,ω3) on V 4,2 can be extended to a
G2-structure on V 4,2 × T 2. Let (e6, e7) be a basis of the cotangent space of T 2. We define the following four-form:

∗ω := −1

2
ω1 ∧ ω1 + e6 ∧ α ∧ ω3 − e7 ∧ α ∧ ω2 + e67 ∧ ω1. (22)

Let (ei)1�i�7 be defined by e j(ei) := δ
j
i . If we identify the basis (e6, e7, e5, e1, e3, e4,−e2) by a linear map with the

standard basis of Im(O), ∗ω turns into the four-form (3). ∗ω therefore is a four-form which is induced by a G2-structure.
In fact, ∗ω determines a G2-structure up to the sign of the three-form. It follows with help of (21) that we have d ∗ ω = 0.
This calculation finishes the proof of Theorem 1.

Remark 8.1.

1. In general, the space of all G-invariant nearly parallel G2-structures on G/H is much smaller than the space of all G-
invariant G2-structures. As an illustration of this fact, we consider the generic Aloff–Wallach spaces: It follows from the
results of Page and Pope [20] that there are up to homotheties only two SU(3)-invariant nearly parallel G2-structures
on Nk,l . The space of all SU(3)-invariant G2-structures on Nk,l is five-dimensional. If we identify homothetic metrics
with each other, it is still four-dimensional and thus much larger than the discrete set of nearly parallel G2-structures.

2. Our proof of Theorem 1(3) is done by a case-by-case analysis. The author suspects that it is possible to prove these
facts more directly.
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