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Given a linear recurrence integer sequence U = (u,}, f1,+2 = u, + , + u, , n 2 1, II, = 1, LQ‘) u 1, 
we prove that the set of positive integers can be partitioned uniquely into two disjoint subsets 
such that the sum of any two distinct members from an) one set cm never be in U. We give a 
graph theoretic interpretation of this result, study xlated pro?lems and discuss ptissible 
generalizations. 

I. Introduction 

The aim of this paper is to prove that given a linear recurrence sequence 
U={un}, Un+2=Un+1+UKI, n31. z.Q=l, z.QU~, then the set of positive integers 
can be partitioned uniquely into two disjoint subsets such that the sum of any two 
distinct members from any one set can never be i*a U and study related problems. 

We prove our main result in Section 2. In Section 3 we give a graph theoretic 
interpretation of this, and look at such recurrence sequences as extremal solutions 
to certain problems relating to the partition of the set of integers. In Section 4 we 
make a brief study of some special properties of partitions generated by such 
recursive sequences. Finally in Section 5 we mention related problems and 
possible gerCeralizations of our results. 

The theorem mentioned in the first paragraph has been proved simultaneously 
and indeperldently, [2,4,6 I, by Evans, Silverman and Nelson for the case u2 == 2, 
(Fibonacci Numbers). But we have learned that their methods are quite different. 
Moreover in this paper we study the Same protkm in a more gerkal setting. 

The explicit theorem originakd by Silver 



Al U AZ = N [the set of positive integers), 

AI U AZ = 9 @he empty set), I 

then 

AI = {1,3,6,8,9,ll,M, 16,17,19, . . .) 

AZ = {~,4,5,7,18,12,13,15,18,. . .} 

itse exarnnples tsf the first few terms of sucki sets. No two distinct elements from the 
GKW set sum to a Fibonacci Number but &ety non-Fibonacci Numb& is the sum 
of two distinci. elements from the same set. Bvery na = 2Fs is uniquely rep,resenta - 
ble in Phis way. 

PMki@r~ 2.11. Considr:f a set of positive integers A. Denote 31 N= 

I, 2,3, $? . . .}, So A G N. We say that A generates an a&We pati&& of N if 

Jwre exists A LV AZ G Bl with N = Al U AZ, AI n A2 = 9, such that for any distinct 
positive integers Q and b with a, b E AI or a, b E A2 we have a + b& A. 

It is the aim of this section to prove the following: 

2Peerenr. XL If U = (1.4,) is a linear recurrence sequence witk u,,+~ - u,+ 1 + u,, 

01, z.41= 1, ZQ > 1, #hen U generates a unique additive partition of N. 

$roof. (Existence.) We shall give an explicit construction of two sets A 1, A2 
*jvhich generate this additive partition. First observe that it is absolutely necessary 
to have ZQ, u3, us, . . _ in the same set and u2, u4, c(6, . . . in the other set. So let 

Al s,I’ul, I+, u5, u7, . . . ., u~~+~, . . .} 

-42 1 .I it+, l&J, 1116, . . . ) u2*, . . .}. 
m 

&:f IQ2 = tb, so that k!={l, b, b+1,2t +l,... 3. 

G._~c;ickr twr:) con<z%:utive positive integers c, c + 1 where c < a. Now c and c -t 1 
rnnsi iie SII the sa_me set, because otherwise the numbl,:r d defined by c -I- d = 20. == 
tj2 and c +- I-+ d = 2ci + 1 = u3 cannot lie in either set because d# c and dir: c -I- I. 
so this forces 1, 2, . . . , a -- 1, a to lie in the same set. That is, 

u = (.:, 212, lb! -! 1,3u -I- I,. . .} 



we should hav; 

A22(a+ 1,a+2 ,..., 2a-1,2a ,... >* (3) 

So far we have had no trouble and have constructed the sets up to u2 = 2a. NOW 
let’s go to: 

Case 2. b = 2a + 1 (odd). 
As in Case 1, if c < a, then c and c + 1 must lie in she same set because: 

otherwise if d is defined by d+c=2a+l=u, and d+c+l=2a+2=u3 i‘hyn\ 
df c or d # c + 1 and hence d does not get a place. So this forces 

A,=(l,2,3 ,..., a-l ,... ). 

Where do we put a ? If a E A2 then a + 1 E A, because 2u + 4 E U. But then 
a+a+2=2a+2E U and a+2+a-1=2a-+lE U and so a+2 has no position. 
Thus we must have a E A,. So 

Al = {1,2, . . . , a - 1, c;, . . .}. 

This clearly forces 

(4) 

A,=(a+l,a+2 ,..., 2a-1,2a,2a+l,... >. (5.1 

So again we have determined the two sets up to u2 without: trouble. 
Choose an integer II > u2. We will explicitly say whether rt E AI or II E A, by thcz 

following construction. 

Construction. If n E U then the position of n has already been determi;led by (, 1). 

If n & C, then there exists a unique integer m such that u, < n < EC,+~. Denote by 
i=n- u,.Observe i<~,l-y,= u,,,_~ < n. So now inductively assume that i has 

ken assigned a position. Now if i is never half a member of U then we assigl? 14 
to the same set. If i = $z+_~ (then m> k - l), we assign n to the same set as i if 

m # k and to the opposite set if m = k. 

We claim that the two sets A,, A2 constructed thus give an additive partition of 
PT. 

We prove this by induction. That is, assume that no two cjlstinct members 

from {1,2,3,.. . ,tv- 1) from the same set add up to a member of U. We show 

this is true for {I, 2,3, . . . , n}. We have shown it is true for n = a_. So stow it 3 LB~. 
Moreover by ttrli= induction assumption it suffices to consider ,,ums cnl + n where 

a < PI. There exists a unique integer m such that 

u, G n < u,n+ls 



or a + n = u~+~. We show both these are nut 

. . 

U 9+1-n = ilA&; =&urn,, -‘&) (6) 

which M$&IS 

-2n = t.bm+.z = a_-k n. I 

T&is wodd hx a = PC ,&hkh violates our assumption cd <:k. Sa (6) does not hold . . 
amj consequentiy k+I-L n and ~+(%+~-n)=: ~in+~- n’=--u Ii9 in the same set. 
But then by Case 1 since n and k+l- n lie in opposite sets we conclude that n 
and a lie, la: op@site sets.’ ~ 

§a we Eave sk*n @at if a < ra, then Q + nL U if a and n lie in the same set and 
that proves exist&& 

(Uniqueness). We show that there is at most one partition possible. We already 
ohs~ve that (1) is riecesszry. Now if R 6 U then there exists a unique integer m 
such that u, c= n c &&+I* S-et j=u,+l-& Observe jC&+s-~==&_i<n, so 
that if j has been. assigned a set then n must go to the opposite set. So if i has at 
most one position, 60 does n. But then at tb& begina& of‘ the existent proof we 
showed that the numbers j s u2 occupied unique pos\itions, namely (2), (3), (4) and 
(5). !50 by induction there is at most one partition possible. That completes the 
proof of our main theorem. 

Wig can combine the uniqueness and construction in Theorem 2.2 into the 
fe~ln~wing. 

VA, shall use Thcmrem 2.2 quite often in later sections of this p;aper. 
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3. Extremal solutions 

Iri this section we show that the sequences U discllssed in Theoren ! 2.2 are: 

extremal solutions to certain problems about additive partitions of N. We begin 
b~*,$kkg % S%Ik -SxH&c i~&x$3rc~%G3~ G-f -3-x -res-&. R3-r -t-h%< We -x-c<4 

Ebafinftton 3.1. Consider a set A G N. Define a graph on N as follows: TWO 

distinct points of N are joined by a line if they sum up to a member of A. We call1 

such a graph the additive graph generated by A. 

If the additive graph generated by A is two colorable then let AI be all points 
of N of one color and AZ the other set. Clearly Al and A2 generate an additive 
partition of N. Conversely if A generates an additive partition of N with sets A, 

and AS, then coloring all points of Al with one color, and points of A2 with the 
other gives a two coloration of the additive graph of A. 

It is well known that a graph is two colorable if and only if it is bipartite. (Fol 
these d&Gtic.~~ ak~~t graphs see 113,) So let us cccard this analysis in the 
following: 

Proposition 3.2. A set A G N 
additive graph generated by A 
generated by A is bipartite. 

generates an additive partition of N if and only if the 
is two colorable, that if and only if the additive graph 

Consider A = {u,,} a strictly increasing sequence of positive integers, and the 
simultaneous equations 

a+b=a, 

b+c=a,,, 

c+a=al. 

We then get 

a* -a,+a, 
b am 

- a1 + a, a1 -- a, -I- Q~ 
a = 2 ) = 2 ) c=---- 2 . (7) 

The necessary and sufficient condition for the three soluions in (7) to bs pot;it’ve 
is that 

max (a,, cl:,n, a,) -C ai + ai (8,) 

where i# j and i, j- n, m, 1. WC may assume without loss of genzrality that 

a, < a,,, < aI so that (8) is equivalent to 

a,, + G, > aI. (9 

If we want all the solutions in U) to be integers then we need cd!, -I G,,: + al ZL 
O(mode 21. So ir. such ;I case ths a3:iiti\rc graph gcncrated .?y Jl contair s ;n triangle 



is an additive partition for A. 

lEiwnp&. Let A = {n2 1 n cz N}. Then ,4 satisfies the conditions of Theorem 3.3 
:tnd hence the a>d&tive graph genzated by A is not two coiorable. What is the 
chromati.c number of this graph? We feel it is infinite! 

, If a sequence POWS faster than U discussed in Theorem 2.2, it generaily 
generates an additive partition and possibly more than OG%:. We can however show 

Fji~~t of all the elements of ,A can go in either of two sets. Recausc: if 
nca, then .u,Ot+a,<2a,,~a,,,. So we have infirricely ,mamy choices for xhe 
positions or” (a,}. If n g&4., then pick WC so that am < l2 < CIJ~.+.~. Now iet .,i = 

< n, 2 ssign Y;’ to the set opposite to that of j mhich by inmductior-, is 
ve bC en assigned a position. Hf j x y 

ec3G:e if PI’<: 8 t pi <2g,+, < @ipe+2. 7‘ 
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We wiii conclude this section by showing that recursive sequences U in 
Theorem 2.2 are an extremal solution to a certain additive partition problem. 
First we need 

un 35. A set A EN is defined to saturated if A generates an additive 
partition of N and no set B that properly contains A U [l, 2}, and B !: N generates 
an aclditive partitio:rl of n. In other words if any p EN - A then if A$,. A, is an 

add&e partition fc_br A, we can G_nd distinct integers a, h E AZ_ or &a, B E& x&h 
a+b=p (p>2). 

The reason why we consider A U { 1,2} izl Definition 3.5 is because I and 2 are 

never the sum of distinct positive integers. 
We are now in a position to prove: 

Theorem 3.6. Let U = {u,,} be a recursive sequence as in Theorem 2.2. Let 
uz = b > 1. Then if b is even, U is saturated. Ij b is odd then U* = U U {fj -- 1) is 
saturated. Moreover b- 1 can be malIe a member of the sequence by setting 
uO = b - 1, and the recurrence relation ii; still satisfied. 

We require 

Lempnlpl 3.7. Consider the unique partition AI, A2 of N as in Theorem 2.2, 
generated by U. Then if i = $h_I, i and u, lie in the same set. 

Proof. Observe that by (l), (2), (3), (4) and (5) this clearly holds for the first such 
value of i namely i = b/2 or i = (b + 1)/2. Our proof will be induction on the 
subscript. If Lemma 3.7 is true for i = $u, _ l, then the next even member of the 
sequence is u,,,+~. So consider j = 3~,,,+~. Now observe u, + i = j, because 

U ?Tl+2 

j=T-= 
um+l+U, = 

2 
2u,+u,-l=u t_i 

2 m- * 

Now by Theorem 2.3, and (lo), j and i lie in opposite sees. So j and u,, lie in 
opposite sets. But then since by (1), u, and u,_+~ lie in opposite sets, we infer that 
j and u,,,+* lie in the same set and that proves the lemma by induction. 

PVOOE of Theorem 3.6. Since the additive partition generated by U i>, unique, one 
need only look at sets A,, A2 defined by (1) through (5) in Theorem 2.2. One 

deduces immediately that one cannot add any p c b - 1 to L7 and stiil get an 
additive partition. 

If b is even then b - 1 cannot be added because the three numbers 6 -- 1, b: 

b + 1 woulc~ satisfy the conditions ~=f eorem 3.6 and the additive grzph would 

Or else Ly writing 20, we observe in (2 I thal 0, n -- 1 E /j, 



GMt? 3. i = &4*_3. 

A@n by Lknma 3.7 i and h&2 lie in the Same set. So by 11) i and u, lie iin 
the ;;ame set and p = U, -t i. 

Cus$ 4. i = d4.m-3. 
Fist note that U, + k _3 = 2~~,._+ So we will show that numben of the form 

2rs, age representable additively. So w&e 2~4~ = u, + i + u, - i. if this ii!; never a 
representation then that means k + i and u, - i lie in opposite sets always. We 
will get a coatiadicticln. 

(i) M uru be even. Then’ if i = $h+ u, - i = i and U, + i lie in the same set by 
Tl~earem 2,3, SO we get a representation. Atso this is the on)jt representation 
becatrse orherwkr! i and u, - i lie in oppos;ts sets and by Theorem 2.3. i and 
U, + j: lie in the same set. 

(ii) L& rc, be odd, u,__~ even. In this case i and u, - i lie in oppozsite sets 
aIa~+ys. So for an additive representation of Zu,,, we need u, + i and i in opposite 
C&S arld by Theorem 2,. 3 this happens if ancl only if i = &+. 

(Fsr) Let u, be odd, u,,+l even. Here also i and u, - i lit: in opposite sets. So 
again lolr an additi*,e representation we ntx:d u, + i and i in opposite sets. If 
is16 ‘rn -I then by Theorem 2.3 this does not hippen. So let u,,,+ c i< u,. Then let 
i be &fined by u, + i:= u,,+l+~ so that j = i- u,+ Since u,_? is odd by 
?‘Ixorc:m 2.3, i and j lie in the same set always, unless j = $L_+ (r m_-2 is even). 
Noocr j = i- u,_2 < u,_2<*um+l. So j and um.+l + j = u, t i lie always in the sc7me 
set. Scl q,, + i and u, -- i lie in the same set it is necessary and suticient Aat 
j r=$, _:, !fia: Es, i = u,,_ 1 -+u,,+. So we have actually proved &at 2~4,. has a 
urkpz rq~~cientatkxk Thst completes !fie proof of Theore 3.6. 
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in this section we discuss some special properties of the sets AI, A2 of the 

additive partition generated by ?J in Theorem 2.2. For instance 

TtrtoHBn 4.1. L&t U2 = b and a = [b/2] where [x] is the rargest integer SX. Then 
neitkr se& A, or A2 can conrain a + 2 consecutive integers. 

kf. The proof will be by induction and contradiction. One notices from (2), 

(3), (4) and (5) that this is true up to 6 + 1. Now assume WC have a + 2 consecutive 

integers in one set, say n, O-1 ,..., n+a+f. 

Case 1. There exists an integer M wch that 

u,Sn<n+l<~~ Xn+a+fCu,+,. 

Consider the integers ij = um+l -(n + j) s u,,,_~ < n. The ij are all less than n, anld 
hence would lie in the set opposite to these. This would be a contradiction by 
induction. 

Case 2. There exists an integer m so that 

If n+a+l=u,,,+, then consider the differences k+l-(~+j) for Ocj<a+l 
which gives 1, 2, . . . , a + 1 in the same set contradicting (2) and (4). If n + u + 1 < 

u, 1+1 then it is clear by Case 1. 

Case 3. There exists an integer m sucIl that 

n<n+l <*a l <n+j=u,<n+jfl<=‘.<n+a+1. 

1~ this case by Theorem 2.3, II+ i + 1 and 1 lie in the same set while n + j - 1 and 

1 lie in opposite sets. Thus such a collection of a + 2 numbers can never lie in the 
s-e set. We are Ijone. 

We Lave a companion result to Theorem 4.1. 

Tbesrer~1 4.2. If QI, and & denote the nth members of Al aud A2 respectively we 
haoe 

jn,-&~~a+2. 

&oo%. Consider a member u, E U which is odd. Without loss of generalit> 

assume U, E AI. Denote by 

Let these numbers bz written in ascendiq order q, a2, . . . , a,. So a, = u,,%. how 



is odd. SO by (11) 

Then (9ee [3] or [S]) I 

N,,UN, =N, N, f7N, = f4 

if and only if CY and /3 are irrational and 

En our case by Theorem 4.2 we have 

SCJ (15) implies we cannot get a partition as in (14) because then o = /3 = 2. 
One can ask sevr:ral interesting questions about the sets A, and AZ. ‘We 

conclude this section by considering one. We showed in Theorem 3.6 that U or 
* 

U” %pplas riaturated. That is for p > b there always existed a.1 additive representa- 
tioa Ir, me set. It is natural to a-,k the following questions. Which numbers p& U, 
p 2 b, are, repre:sentt:cl fr?both sets, and which in only one! Theorem 4.3 below 
gives a c0nplete ansF)yrer. 

T~MWBSI 4.3. I’f p E U, p Z b - 1, then we can find distinct integers Q, b with a!, 
b E Al or ,a, b f .A2 and a + b = p. The ody integers p thclt are regresentobk in such 
c1 fashion irz C&J me of these : ets are p = 2u,,. In such cnse~ the reprr:smtn~iio~~ is 
UK: ique. 
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The proof of Theorem 4.3 has essentially been carried out in Theorem 3.6. For 
Llstance in Case 4 there we proved the uniqueness of representation of 2u,. If 
one goes through Cases 1, 2, and 3 more carefully, one can give a complete proof 
of 

5. 

Theorem 4.3. We do not go through the details here. 

Related problems and possible generalizations 

HOW would we generalize Theorem 2.2? It is probably better to look at its 
graph theoretic form, namely Proposition 3.2. This naturally leads to the follow- . 
ing general question: Under what conditions can we say that an additive graph 
generated by H is k-colorable? When will this coloration be unique? 

We can also ask for a partition of integers into two sets such that the SUM of 

k-distinct members from any one set is never in A. (We call this a k-a.dditivc 
partition generated by A.) Throughout this paper we studied 2-additive pariitions. 
Just as one can put additive partitions in the language of graphs (P:oposition :3.2), 
additive partitions will lead to k-hypergraphs. Will we get as extremal solutions to 
certain problems of k-additive partitions the k-term recurrence sequences? These 
questions are extremely difficult to answer. 

In a subsequent paper, V.E. Hoggatt will discuss further interesting properties 
of recursive sequences and additive partitions. We conclude this paper with the 
following question: 

If a set A is saturated, does it necessarily generate a unique additive p’artition 
of N? If not, under what conditions does a saturated set generate a unique 
additive partition of N? 
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