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Given a linear recurrence integer sequence U ={uw,}, v, ., =u, . +u,n=1 u,=1, u,>u,,
we prove that the set of positive integers can be partiticned uniquely into two disjoint subsets
such that the sum of any two distinct members from any one set can never be in U. We give a
graph theoretic interpretation of this result, study rclated prozlems and discuss possible
generalizations.

1. Introduction

The aim of this paper is to prove that given a linear recurrence sequence
U={u,}, u,.2=Up1+u, n=1. u, =1, u,>u,, then the set of positive integers
can be partitioned uniquely into two disjoint subsets such that the sum of any two
distinct members from any one set can never be ia U and study related problems.

We prove our main result in Section 2. In Section 3 we give a graph theoretic
interpretaticn of this, and look at such recurrence sequences as extremal solutions
to certain problems relating to the partition of the set of integers. In Section 4 we
make a brief study of some special properties of partitions generated by such
recursive sequences. Finally in Section 5 we mention: related problems and
possible gereralizations of our results.

The theorem mentioned in the first paragraph has been proved simultaneously
and indeperdently, [2, 4, 6}, by Evans, Silverman and Nelson for the case u,= 2,
(Fibonacci Numbers). But we have learned that their methods are quite different.
Moreover in this paper we study the same problem in a more general sefting.

The explicit theorem originated by Silverman is {7]:

Theorem. The positive integers have a urique Jivisioa into two disjoint sels with th?
property 1 at a positive integer is a Fibonacci Nuriber if and only if it is not the sum
of two distinct members of the sume set
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positive integers a and b with a,be A, or a,be A, we have a+b& A.

It is the aim of this section to prove the following:

Theorem 2.2. If U={u,} is a linear recurrence sequence with u,,,= U, ., + U,
k=1, u;=1, u;>1, then U generates a unique additive partition of N.

Proof. (Existenc'c.) We shall give an explicit construction of two sets A, A,
which generate this additive partition. First observe that it is absolutely necessary
to have iy, Ui, Us, ... in the same set and u,, u,, U, . . . in the other set. So let

Al 2'|Au1, u3, u5, u7, o0y u;,ﬁ.,, . .}
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Let uy=h,so that U={1.b,b+1,2¢L+1,...}.
Casz 1. b=2¢ leven).
Consider two consecutive positive integers ¢, ¢ +1 where ¢ <a. Now ¢ and ¢+ 1
must ite in the same set, because otherwise the number d defined by ¢ +d =24 ==

uy and ¢+ 1+d=2a+1=u; cannot lic in either set because d# ¢ ard d# c+1.
So this forces 1,2,...,a~-1, a to liec in the same set. That is,
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we should have

A, 2{a+1,a+2,...,2a-1,2a,...} (3)
So far we have had no trouble and have consiructed the sets up to u, =2a. Now
let’s go to:

Case 2. b=2a+1 (odd).

As in Case 1, if c<a, then ¢ and c+1 must lie in the same set because
otherwise if d is defined by d+c=2a+1=u, and d+c+1=2a+2=u, ihen
d#c or d# c+1 and hence d does not get a place. So this forces

A ={1,2,3,...,a-1,.. .}

Where do we put a? If ae A, then a+1€ A, because 2a+1e U. But then
a+a+2=2a+2eU and a+2+a-1=2a+1€U and so a+2 has no position.
Thus we must have a€ A,. So

A, ={1,2,...,a-1,q,...}. 4)
This clearly forces
A,={a+1,a+2,...,2a-1,2a,2a+1,...}. 5

So again we have determined the two sets up to u, without trouble.
Choose an integer n > u,. We will explicitly say whether n € A, or n€ A, by the
following construction.

Construction. If n € U then the position of n has already been determined by (1).
If n& U then there exists a unique integer m such that u,, <n<wu, ;. Denote by
i =n—u,. Observe i <u,,,;— Uy, = Uy, < n. So now inductively assume that i has
Lsen assigned a position. Now if i is never half a member of U then we assigr n
to the same set. If i =3u,_, (then m =k —1), we assign n to the same set as i if
m# k and to the opposite set if m = k.

We claim that the two sets A;, A, constructed thus give an additive partition of
N.

We prove this by induction. That is, assume that no two distinct members
from {1,2,3,..., n—1} from the same set add up to a member of U. We show
this is true for {i,2,3,..., n}. We have shown it is true for n = u,. So now n > u..
Moreover by the induction assumption it suffices to consider sums a +n where
a <n. There exists a unique integer m such that

u Sn<um+l'

m

Clearly n=u,, does not cause any trouble because if + < n anl a rnecl then

a=u bat then by (1) a and n lic in opposite sets. So ve hove

mo 1

Up, <n< U+



n=u, i ihe in the same set So n and‘a he in opposite sets.
¥ ¢ =i=4u, , tien agam by our c.onstmcnon a=i and n=u,+i lie in
oppas-te sets. ' o -

Case 2.a+n=u,,5 L :
In Case 1 above we showed that n and u,, .1~ n lie in opposite sets. But then by
our construction u,.,~n and u,, +(u,.,— n) lie in the same set unless

Upg 11~ 1= Sl 1 = 5l 1~ Us) ©)
which mezms
2n .u,,H,2 atn.

This would force a=n whlch violates our assumptmn a <n. So (6) does not hold

" and consequently #y,,, = n and %, +(Upsy— 1) = Uy~ n'="a li¢ in the same set.
But then by Case 1 since n and u,,,,—n lie 'in opposite sets we conclude that n
and g lie in opposite sets.”

So we have shewn that if a <n, then a+ne U if a and n lie in the same set and
that proves existence.

(Uniqueness). We show that there is at most one partition possibie. We already
observe that (1) is necessary. Now if n¢ U then there exists a unique integer m
such that u, <n<up,,;. Set j=u,—n Observe j<iup, 41— Up = Uy <N, SO
that if j has been assigned a set then n must go to the opposite set. So if j has at
most one position, so does n. But then at the beginaing of the existence proof we
showed that the numbers j < u, occupied uniqﬁe positions, namely (2), (3), (4) and
(5). So by induction there is at most one partition possible. That completes the
proof of our main theorem.

We can combine the uniqueness and construction in Theorem 2.2 into the
following.

Theorem 2.3. The unique additive partition generated by U in Theorem 2.2 has the
following property: Given ng€ U, n>u,, pick m so that u,, <n<u,,,, Seti=

. . 1 . . . . - [y .
"= ln. Then if i#zu,_y, n and i lie in the same set. If i = ju,,_, then n and i lie in
cpposite sets.

We: shall use Theorem 2.2 quite often in later sections of this paper.
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3. Extremal solutions

In this section we show that the sequences U disci:ssed in Theoren: 2.2 are
extremal solutions to certain problems about additive partitions of N. We begin
by giving & greph theoretic interpretaticn of our result. For that we neod

Definition 3.1. Consider a set A cN. Define a graph on N as {ollows: Two
distinct points cf N are joined by a line if they sum up to a member of A. We call
such a graph the additive graph generated by A.

If the additive graph generated by A is two colorable then let A, be all points
of N of one color and A, the other set. Clearly A; and A, generate an additive
partition of N. Conversely if A generates an additive partition of N with sets A,
and A,, then coloring all points of A, with one color, and points of A, with the
other gives a two coloration of the additive graph of A.

It is well known that a graph is two colorable if and only if it is bipartite. (For
these definitions about graphs see {11) So let us record this analysis in the
following:

Proposition 3.2. A set A =N generates an additive pariition of N if and only if the
additive graph generated by A is two colorable, that if and only if the additive graph
generated by A is bipartite.

Consider A ={a,} a strictly increasing sequence of positive integers, and the
simultaneous equations

a+b=a,
b+c=a,,
cta=a.
We then get
a,—a,+aq a,—aq+a aq—-a,+a,,
=—n Zm T p=-m——1 = d—cn_Zm 7)
2 2 2 (

The necessary and sufficient condition for the three solutions in (7) to be positive
is that

max (@, ¢, a)<a;+q; (8)

where i#j and i, j=n,m,l. We may assume without loss of genc:relity that
a, <a, <a so that (8) is equivalent to

a,+ ¢, > a. (9)

If we want all the solutions in (7) to be integers then we need a,+a, +a,=
O(mode 2). So ir such a case the additive graph generated oy A contairs u triangie
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does ncvt work S mﬁaﬂy Uy —-Zp, U, -—-2 does not work also
The «ondition a, +am +a= 0(1mod 2) is absolutely essential because if all a,
were odd: then '

1 ={neN InE 1(mod 2)}
*{ne N|n=2(mod 2}}

is an additive partition for A.

Example. Let A:={n*|neN}. Then A satisfies the conditions of Theorem 3.3
and hence the additive graph gensrated by A is not two colorable. What is the
chromatic number of this graph? We feel it is infinite!

Jf a sequence grows faster than U discussed in Theorem 2.2, it generally
generates an additive partition and possibly more than oue. We can however show

Theorem 3.4. If A ={a,} is a strictly increasing sequence of positive integers wkich
srows faster than a power of 2, that is, a,.,>2a, then A generates infinitely many
additive partitions of N.

Proof. Fiist of all the elements of A can go in either of two sets. Because if
n<a, then 4, <n+a, <24, <a,,;. So we have infinitely many choices for the
positions of {a,}. If n¢.A, then pick m so that a,<n<a,,, Now iet j=
21— 1 I j<n, ¢ssign r to the set opposite to that of j which by inductior. is
assumed 10 have been assigned a position. If j=n then n can occupy any position
because if n’<n then n'+ n<2n<2a,,, <a,,, That proves Theoren 3.4,
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We will conclude this section by skowing that recursive sequences U in
Theorem 2.2 are an extremal solution to a certain additive partition problem.
First we need

Defininon 3.5. A set AcN is defined to saturated if A generates an additive
partition of N and no set B that properly contains A U {1, 2}, and B = N generates
an additive partition of n. In other words if any pe N— A then if A,, A, is an
additive partition fcr A, we can find distinct integers g, b€ A; or 2, be A, with
at+b=p (p>2).
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saturated. Moreover b—1 can be male a member of the sequence by setting
up,=b—1, and the recurrence relation is still satisfied

We require

Lemma 3.7. Consider the unique partition A,, A, of N as in Theorent 2.2,
generated by U. Then if i=3u,,_,, i and u,, lie in the same set.

Proof. Observe that by (1), (2), (3), (4) and (5) this clearly holds for the first such
value of i namely i=b/2 or i={b+1)/2. Our proof will be induction on the
subscript. If Lemma 3.7 is true for i =3u,,_;, then the next even member of the
sequence is U,,.,. So consider j = iu,,,,. Now observe u,, +i=j, because
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additive partition

If b is even then b—1 cannot be added because the three numbers b -1, b,
b+1 would satisfy the conditions of Theorem 3.6 and the additive graph would
contain a triangle. Or else vy writing b =24, we observe in (2) thai a, a — ¢ A,
and a+a-1=b-1.
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Case 3. i=1u,_,. ; |
Again by Lemma 3.7 i and u,,_, lie in the same set. So by (1) i and u,, lie in
the same setand p=u,, +i.

Cuse 4. i=u,,_a. ,

First note that u,, +u, _3=2u,_;. So we will show that numbers of the form
2u,, are representable additively. So write 2u,, = u,, +i+ u,, —i. lf this is never a
representation then that means u,, +i and u, —i lie in opposite sets always. We
will get a contradiction. ' ‘

(i) Let u, be even. Then if i =3u,, u, —i=1i and u, +1i lie in the same set by
Thecrem 2.3. So we get a representation. Also this is the only representation
because otherwiss i and u,, —i lie in oppos.te sets and by Theorem 2.3. i and
u,, +i jie in rhe same set.

ii) Let

h 4 . x s - L . A ) L 5.4 . . A
L€t W,, b€ 04aa, u,,_, ¢veil. In this Case ! and Y, —i he in OpposHe SCis
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always. So for an additive representation of Zu, we need u,, +i and i in opposite
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ub‘l 3% Ak L+ K 7 N l\‘rl‘ WIS LALES WA as A A AdWw "m * SARENG RAR ut)l/vwltw AT WP A
I=<u_ . then bv Theorem 2.3 thig does not hannen. So let u. . <i<u_. Then let

« -1 10€n DY lheorem 2£.0 tnis does not pappen. so let u,, <1<y, inen iet
i be defined by u,+i=uy, . ;+) so that y=i—-wu,_,. Since u,_, is odd by
i 4 ( T 4 m—i hatt § J

€ Up; I
Theorem 2.3, i and j lie in the same set always, unless j =3u,,_,, (¢ .- iS even).
Now j=i—ty_ <l »<3Up,.,. SO j and U, ., +j=u, +1i lic always in the same
set. Sv u,+1i and u, —~i lie in the same set it is necessary and sufficient .hat
j =3, o, that is, | = U,y +3U,_ .. SO we have actually proved that 2u,. has a
unique representation. That completes the proof of Theorem 3.6.
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4. Properties of the sets A, and A,

In this section we discuss some special properties of the sets A;, A, of the
additive partition generated by U in Theorem 2.2. For instance

Theorem 4.1. Let u,=b and a=[b/2] where [x] is the iargest integer <x. Then
neither sets A, or A, can coniain a +2 consecutive integers.

Proof. The proof will be by induction and contradiction. One notices from (2),
(3), (4) and (5) that this is true up to b+ 1. Now assume we have a +2 consecutive
integers in one set, say n, n+1,..., n+a+1.

Case 1. There exists an integer m such that
UpySn<n+l1<---<<n+a+i<u,,,.

Consider the integers i; = Uy —(n +j)<u,,_, <n. The j; are all less than n, and
hence would lie in the set opposite to these. This would be a contradiction by
induction.

Case 2. There exists an integer m so that
U,<n<n+l<---<n+a+l=su,,,.

If nta+1=u,,, then consider the differences u,, ., —(n+j) for 0=sj<a+1
which gives 1, 2, ..., a +1 in the same set contradicting (2) and (4). If n+ta+1<
U,.. then it is clcar by Case 1.

Case 3. There exists an integer m such that

n<n+l<---<ntj=u,<n+j+i<-.--<n+a+l.

Ir: this case by Theorem 2.3, n+j+1 and 1 lie in the same set while n+j—1 and
1 lie in opposite sets. Thus such a collection of a +2 numbers can never lie in the
same set. We are done.

We Lave a companion result to Theorem 4.1.

Theorem 4.2. If a, und B, denote the n'" members of A, and A, respectively we
have

|an—ﬁ,,!‘£a+2.

Proof. Consider a member u, € U which is odd. Without loss of generality
assume u,, € A;. Denote by

s = Z 1,

S Uy, X € Ay

Let these numbers b2 written in ascendiag order ay. @,,. .., &, SO a; = U,,. NOW



(11)

- (12)

If e is a* member of the _equence lmmedre tely after a, and if u,, is odd, then by
(12) we can conaect the diffcrence e, = B,] with |a,_, — B,-.| and s—n <n. So by
inductiopwe would mfer [a -Bul=a ~&~2 H o € A; then the above argument can
“be.modified easxly 2
So the only problem is when u,,, is even in this case the only trouble in the
‘above correspondence i8 caused by } Uy and so there can be a. dlscrepanry of at
most 2. In the beginning by observatmn of @), 3 (4) and (5), la, ~ 8| = a. So we
bave for the first suct occurence of u,, even, o= B,‘ls a+2. But then the even
u,, go in alternate sets by (1) and by Lemma 3.7 the }u,, also g0 in opposite sets
altemartely So» the errors cance out ThlS proves Theorem 4.2.

One of the standard ways to partmon mtegers is as follows: pick a real number
a>1 and denote by

N, ={[nal|ne A}.
Then (see [3] or [5]) :
N,UNz=N, N,NNy=9 (14)

if and only if @ and B are irrational and

1 1
__+._.=
a B 1

In our case by Theorem 4.2 we have
lim —=1. (15)

So (15) implies we cannot get a partition as in (14) because then a =8 =2.
One can ask several.interesting questions about the sets A, and A,. We
conclude this section by considering one. We showed in Theorem 3.6 that U or
U* was saturated. That is for p> b there always existed aa additive representa-
tios in one set. It is natural to ask the following questions. Which numbess p& U,

p>b, are represented in‘both sets, and which in only one? Theorem 4.3 below
gives & complete answer.,

Theorem 4.3. If pe U, p#b—1, then we can find distinct integers a, b with a,
be A, ora,be A, and a+b=p. The only integers p that are representable in such

a fashion in only one of these :ets are p=2u,,. In such cases the representation is
ur.ique.
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The proof of Theorem 4.3 has essentially been carried out in Thecrem 3.6. For
iustance in Case 4 there we proved the uniqueness of representation of 2u,. If
one goes through Cases 1, 2, and 3 more carefully, one can give a complete proof
of Theorem 4.3. We do not go through the details here.

5. Related problems and possible generalizations

How would we generalize Theorem 2.2? It is probably better to look at its
graph theoretic form, namely Proposition 3.2. This naturally leads to the follow-
ing general question: Under what conditions can we say that an additive graph
generated by A is k-colorable? When will this coloration be unique?

We can also ask for a partition of integers into two scts such that the sum of
k-distinct members from any one set is never in A. (We call this a k-additive
partition generated by A.) Throughout this paper we studied 2-additive pariitions.
Just as one can put additive partitions in the language of graphs (Proposition 3.2),
additive partitions will lead to k-hypergraphs. Will we get as extremal solutions to
certain problems of k-additive partitions the k-term recurrence sequences? These
questions are extremely difficult to answer.

In a subsequent paper, V.E. Hoggatt will discuss further interesting properties
of recursive sequences and additive partitions. We conclude this paper with the
following question:

If a set A is saturated, does it necessarily generate a unique additive partition

of N? If not, under what conditions does a saturated set generate a unique

additive partition of N?
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