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Stochastic Cardiac Pacing Increases Ventricular Electrical Stability—A
Computational Study
Hila Dvir and Sharon Zlochiver*
Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
ABSTRACT The ventricular tissue is activated in a stochastic rather than in a deterministic rhythm due to the inherent heart
rate variability (HRV). Low HRV is a known predictor for arrhythmia events and traditionally is attributed to autonomic nervous
system tone damage. Yet, there is no model that directly assesses the antiarrhythmic effect of pacing stochasticity per se. One-
dimensional (1D) and two-dimensional (2D) human ventricular tissues were modeled, and both deterministic and stochastic pac-
ing protocols were applied. Action potential duration restitution (APDR) and conduction velocity restitution (CVR) curves were
generated and analyzed, and the propensity and characteristics of action potential duration (APD) alternans were investigated.
In the 1D model, pacing stochasticity was found to sustain a moderating effect on the APDR curve by reducing its slope,
rendering the tissue less arrhythmogenic. Moreover, stochasticity was found to be a significant antagonist to the development
of concordant APD alternans. These effects were generally amplified with increased variability in the pacing cycle intervals. In
addition, in the 2D tissue configuration, stochastic pacing exerted a protective antiarrhythmic effect by reducing the spatial APD
heterogeneity and converting discordant APD alternans to concordant ones. These results suggest that high cardiac pacing
stochasticity is likely to reduce the risk of cardiac arrhythmias in patients.
INTRODUCTION
The physiological activation rate of the cardiac ventricular
tissue varies stochastically even under constant environ-
mental conditions. These variations are a consequence of
the heart rate variability (HRV), which relates to the phys-
iologically normal rate variations in the sinoatrial node im-
pulse formation. A low HRV standard deviation (SD) was
found to be a predictor for pathological cardiac conditions,
such as lethal arrhythmic events in postmyocardial infarc-
tion patients (1–6). More recently, it was reported that a
reduction in heart-rate complexity characterizes patients
with heart failure who are prone to develop malignant ven-
tricular arrhythmia (7,8). Traditionally, the ability of HRV
to predict arrhythmia events has been attributed to the
fact that during arrhythmias the balance between sympa-
thetic and parasympathetic tones is impaired, and a low
HRV merely reflects this autonomic tone damage (1–5,9).
This explanation is supported by the fact that HRV is a
product of both sympathetic and parasympathetic inputs
to the heart (6,9,10). However, in the ventricles, autonomic
nervous system innervation is less dominant than in the at-
ria, and tissue remodeling due to impaired sympathetic and
parasympathetic tones does not seem to provide a full
mechanism for increased arrhythmogeneity. Currently,
there is no concrete model that directly relates activation
rate stochasticity per se to abnormal electrical conduction
properties in the cardiac ventricular tissue and to arrhyth-
mogenic dynamic properties.

It is well known that the potentially fatal transition from
cardiac tachycardia to cardiac arrhythmias and fibrillation is
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attributed to wavebreaks and the formation of reentrant
waves (11). In many scenarios, wavebreaks are correlated
with the appearance of preceding action potential duration
(APD) alternans at high activation rates, which render the
cardiac substrate functionally heterogeneous (12–14). There
are two types of APD alternans: spatially concordant and
spatially discordant. In spatially concordant alternans, the
APD sequentially alternates between long and short in a
similar pattern throughout the tissue, so that for a specific
activation wave the APD is either short or long in all loca-
tions. Spatially discordant alternans indicate a condition in
which spatial synchronization does not exist, so in some tis-
sue regions the APD alternates between long and short,
whereas in other regions the alterations are inverted between
short and long for the same activation wave. Although both
types of alternans indicate tissue instability, spatially discor-
dant alternans are considered more arrhythmogenic (15) due
to the increased heterogeneity of the spatial APD distribu-
tion. When a premature or ectopic beat is initiated in the
presence of a sufficiently large spatial APD heterogeneity,
a wavebreak can be elicited, resulting in a reentry that
may lead to fibrillatory activity (15). A common method
to assess the likelihood of the appearance of APD alternans
and wavebreaks is to construct APD restitution (APDR)
curves, which plot the dependency of the APD on its preced-
ing diastolic interval (DI) (16–18). In particular, an APDR
slope >1 is considered to be a risk factor for alternans and
wavebreaks (16). In the presence of small DI perturbations,
the APD value changes according to the APDR curve. If the
APDR slope is<1 this difference will eventually decay with
iterations, but if the slope is >1 this difference will produce
large changes of the APD that will be amplified in the next
iteration, a process that may end in a conduction block and
http://dx.doi.org/10.1016/j.bpj.2013.06.012

https://core.ac.uk/display/82042656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sharonz@eng.tau.ac.il
http://dx.doi.org/10.1016/j.bpj.2013.06.012
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.bpj.2013.06.012&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2013.06.012
http://dx.doi.org/10.1016/j.bpj.2013.06.012
http://dx.doi.org/10.1016/j.bpj.2013.06.012
http://dx.doi.org/10.1016/j.bpj.2013.06.012


534 Dvir and Zlochiver
wavebreak (19). One way to establish the APDR curve is to
employ a dynamic pacing protocol, which was previously
found to be more reliable than the standard S1-S2 pacing
protocol for predicting arrhythmia risk factors (20,21). In
addition to the APDR, conduction velocity restitution
(CVR) curves, which plot the dependency of
a pulse’s conduction velocity on its preceding DI, are
commonly established to assess arrhythmogeneity. Steeper
CVR slopes usually indicate on increased propensity to
develop wavebreaks.

Stochastic pacing was employed in previous studies
mainly as a new method to investigate cardiac memory;
however, its effect on stability was not explored (22,23).
To the best of our knowledge, thus far only deterministic
changes of the cardiac activation rate have been investigated
in the context of tissue stability and arrhythmogeneity. Ban-
ville et al. (24) showed in isolated pig hearts that an abrupt
shortening of the cycle length acted to damp down alternans
by accordingly changing the APDR curve, and hence had an
antiarrhythmic effect explained by short-term memory.
Weinberg and Tung (25) applied repetitive cycle length
oscillations (CLOs) and studied the occurrences and pattern
of alternans. They concluded that, depending on the specific
conditions, CLO pacing can either initiate ventricular fibril-
lation (VF) due to the induction of spatially discordant alter-
nans or have an antiarrhythmic effect. However, they did not
apply pacing stochasticity in their study, and did not discuss
possible mechanisms. In a preliminary study from our labo-
ratory, we demonstrated that the addition of stochasticity to
the pacing sequence in a one-dimensional (1D) atrial cable
model decreased the APD for a similar preceding DI, effec-
tively lowering the APDR curve (26), in agreement with the
work of Chernyak et al. (27). A theoretical explanation
derived from control and switched systems theory was
proposed (26).

In this work, we studied the influence of pacing stochas-
ticity on cardiac tissue arrhythmogeneity in 1D and two-
dimensional (2D) ventricular models. We show that
increased stochastic variations in the pacing sequence are
antiarrhythmic in terms of reduced APDR slope and the
elimination of discordant APD alternans. These effects
render the tissue more electrophysiologically uniform,
thereby preventing wavebreak and potential arrhythmogene-
sis. These results may offer a novel strategy for arrhythmia
management, for example, by adding stochasticity to pacing
schemes in patients carrying implanted pacemakers.
MATERIALS AND METHODS

Geometrical and biophysical model

We simulated ventricular electrical propagation using two geometrical

configurations: a 10-mm-long cable and a 10 �10 mm 2D tissue. Trans-

membrane voltages were calculated by solving the following reaction-

diffusion partial differential equation for myocytes, assuming the

monodomain formalism and tissue isotropy:
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vV

vt
¼ �ðIion þ IstimÞ

Cm

þ V , ðDVVÞ; (1)

where V [mV] is the transmembrane voltage; Cm ¼ 2 mF/cm2 is the

membrane capacitance per unit area; Istim and Iion [mA/cm
2] are the external

stimulation and membrane ionic currents, respectively; and D [mm2/ms]

is the diffusion coefficient originating from the electrotonic coupling

among myocytes. We set D ¼ 0.04 mm2/ms so that a mean planar

wave conduction velocity of 0.4 m/s was achieved. The ten Tusscher and

Panfilov (17) kinetic model for human ventricular myocytes was employed

for the calculation of Iion. A spatial resolution of Dx ¼ 0.1 mm was

employed, resulting in 100 computational cells along the cable and

100 � 100 cells in the 2D tissue. Equation 1 was numerically solved using

Euler integration with a temporal resolution of Dt ¼ 7.5 ms, and a standard

three-point central finite-difference approximation for the diffusion term.

Resting membrane conditions were set as initial conditions for all simula-

tions. Kinetic model parameters were set to fit APD restitution with a

maximum slope of 1.8 along with standard sodium current dynamics, by

using the following values as in ten Tusscher and Panfilov (17): GKr ¼
0.172 nS/pF, GKs ¼ 0.441 nS/pF, GpCa ¼ 0.8666 nS/pF, GpK ¼
0.00219 nS/pF, tf,inact ¼ � 2, and tj fast, where Gkr, GKs, GpCa, and GpK

are the maximal IKr, IKs, IpCa, and IpK conductances, respectively, tf,inact
is the calcium f-gate time constant for positive voltages, and tj fast

(standard) is the j-gate time constant.
Stochastic pacing

In this work, we focused on the significance of stochasticity in cardiac

pacing. We therefore performed a comparison between deterministic and

stochastic pacings. Stochastic pacing sequences were constructed by setting

the cycle length (CL) between two stimulation pulses as

CL ¼ BCLþ Gð0;sÞ; (2)

where BCL (ms) is the mean (deterministic) basic cycle length, and G(0, s)

is a Gaussian distribution with zero mean and an SD of s (ms), so that
increased pacing stochastic variability could be modeled by increasing s.

Deterministic pacing (i.e., without pacing stochastic variability) was simply

modeled by setting s ¼ 0 in Eq. 2.
Construction of APDR and CVR curves

We constructed restitution curves by using the cable model and applying

the following dynamic restitution pacing protocol: A series of 50 stimuli

were initially applied with a BCL of 800 ms, after which sequential sets

of 50 stimuli were applied with gradually decreasing BCL between sets.

The gradual decrease was done in steps of 50 ms for BCL > 400 ms, in

steps of 10 ms for 400 R BCL > 330 ms, and in steps of 2 ms for

BCL % 330 ms (16,17,28). APDR curves were generated by plotting

the APD of the last pulse in each set with a certain BCL against its preced-

ing DI. For this purpose, APDs were measured at 90% repolarization

(APD90), and the rest of the cycle length was defined as the DI. Measure-

ments were taken from the 80th cell along the cable to avoid boundary

artifacts (29). CVR curves were obtained by plotting the conduction veloc-

ity of the last pulse in each set with a certain BCL against the same DI

values used for constructing the APDR curves (29). Conduction velocities

were measured from the difference in activation times (taken at

maxðvV=vtÞ) between the 80th and 20th cells. Pacing stochasticity was

modeled as described above. Thirty random pacing sequences were gener-

ated using Eq. 2 for each value of s to account for statistical variability, and

the restitution curves were established from the pooled measurements.

APDR and CVR slopes were estimated by employing linear regression

within a relatively narrow range of BCLs so that the curves could be

approximated as linear.



Stochastic Cardiac Pacing Increases Stability 535
Simulating discordant APD alternans

One way to induce spatially discordant APD alternans in a simulation envi-

ronment is to apply spatial ionic heterogeneity (15). In the 2D simulations,

we employed heterogeneity in the potassium-channels conductance in a

manner similar to the model of Qu et al. (13):

GKðx; yÞ ¼ GK ,ðaþ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðx � LxÞ2 þ
�
y� Ly

�2�
�
L2
x þ L2

y

�
vuuut Þ (3)

where (x,y) are the planar coordinates, (Lx,Ly) are the tissue dimensions, GK

is the maximal potassium-channels conductance (of either the rapid or slow

Kþ channel), a ¼ 1.2, and b ¼ 0.8. This specific heterogeneity pattern

yields an ionic heterogeneity similar to that seen in guinea pig ventricles

(30). Pacing stimulations were applied at (x,y) ¼ (0,0). Since discordant

alternans appear only at high pacing rates, the tissue was first paced at a

BCL ¼ 300 ms for 40 beats to allow for accommodation, and then the

pacing rate was increased to a BCL ¼ 245 ms for an additional 65 beats.

Without added stochasticity, this pacing protocol resulted in the appearance

of discordant APD alternans during the high-rate pacing phase with

BCL ¼ 245 ms.
Quantifying APD spatial heterogeneity

The effect of stochastic pacing on the spatial APD heterogeneity was

measured as the maximal APD SD for all beats during the high-rate pacing,

S (13):
FIGURE 1 (a–f) Dynamic APD (a–c) and CV (d–f) restitution curves. (a) De

regression for the APDR curves using data points included within a narrow mean

by dashed and solid lines, respectively. Stochastic data points were pooled from N

pacing SD s. s¼ 0 marks deterministic pacing. *p < 0.05 compared with the de

Linear regression for the CV restitution curves using data points included within

with s ¼ 5 ms are marked by dashed and solid lines, respectively. Stochastic da

tution slope as a function of stochastic pacing SD s.
S ¼ max1%beat%65

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼ 1

�
APDi � APD

�2
vuut

9=
; (4)

where N ¼ 10,000 is the total cell number in the tissue, APDi is the

APD of the ith cell, and APD is the average APD of the cells within the

tissue. Greater values of S indicate a higher degree of APD spatial hetero-

geneity, which is known to correlate with a higher risk of arrhythmias

(13,15). In contrast, lower S values indicate a reduced vulnerability to

arrhythmia.
Statistical analysis

Differences in APDR and CVR slopes between deterministic and random

pacing were evaluated by analysis of covariance (ANCOVA). One-sample

Student’s t-tests were used to compare 2D APD heterogeneity between

stochastic and deterministic pacings. Statistical significance was defined

as p < 0.05.
RESULTS

Effect of stochastic pacing on the APDR curve

We investigated the ventricular restitution properties by us-
ing the cable model and applying both deterministic and
random pacing protocols. The deterministic APDR curve
is shown in Fig. 1 a, demonstrating a typical APD restitution
curve. The APDR slope (Fig. 1 a, inset) was equal to one at
terministic APDR curve. Inset: APDR slope as a function of DI. (b) Linear

BCL range. Deterministic and stochastic pacings with s¼ 5 ms are marked

¼ 30 random pacing sequences. (c) APDR slope as a function of stochastic

terministic case using ANCOVA. (d) Deterministic CV restitution curve. (e)

the same narrow range as in panel b. Deterministic and stochastic pacings

ta points were pooled from N ¼ 30 random pacing sequences. (f) CV resti-

Biophysical Journal 105(2) 533–542



536 Dvir and Zlochiver
DI ~ 100 ms, which corresponded to a BCL ~ 330 ms. For
stochastic pacing, the SD s in Eq. 2 was set between 1 and
6 ms in steps of 1 ms, yielding a physiological range of cycle
length variability for a target BCL of ~330 ms (31). For each
value of s, N ¼ 30 random pacing sequences were gener-
ated, and the corresponding APDR was established from
the pooled results. The slope of the stochastic APDR at DI
~ 100 ms was then estimated by performing a linear regres-
sion analysis for all data points residing within a narrow DI
range from 80 to 110 ms, for which the APDR curve was
approximately linear. As an example, Fig. 1 b shows the
results obtained for s ¼ 0 (deterministic) and s ¼ 5 ms.
The deterministic APDR curve had a slope of ~1.2, whereas
the curve corresponding to random pacing exhibited a statis-
tically significant lower slope of ~0.94 (R2 > 0.98). The re-
sults obtained for all values of s are summarized in Fig. 1 c,
demonstrating a monotonic exponential decrease in the
APDR slope as a function of s. For all cases of random pac-
ing, the obtained APDR slopes were significantly lower than
when deterministic pacing was applied (p < 0.05), and for
random pacing with sR 2, the slopes were <1. The results
suggest that by adding randomness to the pacing sequence,
the slope of the APDR curve is reduced, effectively moder-
ating (or flattening) the APDR curve. This effect potentially
can contribute to the heart’s immunity against arrhythmo-
genic factors, e.g., wavebreaks and the appearance of alter-
nans that commonly occur with steep restitution properties.
Both will be demonstrated in the following sections.
FIGURE 2 Effect of stochastic pacing on concordant alternans. (a) APD as a

correspond to deterministic and stochastic (with s¼ 1.5 ms) pacings, respectively

marked by the green box. (b) Membrane voltage during deterministic (top) and

alternans appeared during deterministic pacing and were significantly diminish

stochastic pacing exhibited amplitude similar to that observed during determini
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Effect of stochastic pacing on the CVR curve

Fig. 1 d shows the deterministic CVR curve obtained using
the same pacing protocol employed for the APDR curve.
Fig. 1 e shows narrow segments of both deterministic
(s ¼ 0) and stochastic (s ¼ 5 ms) CVR curves for the
same DI range as in Fig. 1 b. In this case, the added pacing
stochasticity resulted in a small reduction of the CVR slope
from 0.90 to 0.85 m/s2. In general, increased stochasticity
standard variation tended to monotonically reduce the
CVR slope (Fig. 1 f); however, this effect was minor and
was not found to be statistically significant for any value
of s (p > 0.2).
Manifestation of APD alternans in the cable model

In addition to large APDR slopes, the appearance of APD
alternans at high pacing rhythms is a known arrhythmogenic
factor. With deterministic pacing, significant and persistent
APD alternans appeared at a pacing BCL < 295.5 ms.
Consequently, we employed a modified dynamic pacing
protocol in which pacing up to a BCL ¼ 330 ms was per-
formed as described in the previous section, followed by
the target BCL of 295 ms. A typical example of alternans
appearance is shown in Fig. 2 a. The APD is plotted as a
function of the beat number for both deterministic pacing
(in black) and for one sequence of random pacing with the
same mean BCL and s ¼ 1.5 ms (in red). The significant
function of beat number for a mean BCL ¼ 295 ms. Black and red graphs

. The bottom panel shows a short segment corresponding to the time interval

stochastic (bottom) pacings for the last 10 beats from panel a. Significant

ed with pacing stochasticity. (c) One case in which APD alternans during

stic pacing. Panel organization as in panel a.



FIGURE 3 Percentage of simulations in which stochastic pacing signifi-

cantly diminished the appearance of concordant alternans as a function of

pacing variability s (N ¼ 30); mean BCL ¼ 295 ms.
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suppression of large APD alternans with stochastic pacing
in this case is clearly demonstrated. Short segments of elec-
trical activity are shown in Fig. 2 b, demonstrating the exis-
tence of APD alternans during the deterministic pacing (top)
and their suppression during the corresponding time frame
of stochastic pacing (bottom). For s ¼ 1.5 ms, such a signif-
icant suppression of APD alternans amplitude (defined as a
decrease of >50% in alternans magnitude in comparison
with the deterministic case) occurred in ~25% of stochastic
pacing sequences (8 cases out of N ¼ 30), suggesting
increased immunity against arrhythmogenic events. In the
rest of the cases, however, the SD of the APD amplitude
was similar to that observed with deterministic pacing (as
shown in the example in Fig. 2 c). The percentages of
sequences in which pacing stochasticity significantly sup-
pressed the magnitude of the APD alternans are summarized
in Fig. 3 for s¼ 0–1.8ms. From Fig. 3 it is apparent that with
increasing s, the likelihood that stochasticity would suppress
APD alternans increased. This monotonous pattern was
consistent up to s ¼ 2 ms, above which 2:1 conduction
blocks started to occur. It should be noted that the physio-
logical activation rate variability range for a similar mean
BCL, as in this case, agrees with s ~ 1–2 ms (32), suggesting
that the antiarrhythmic effect of stochasticity in suppressing
APD alternans is within the physiological range.
Manifestation of spatially discordant APD
alternans

Although the appearance of concordant alternans as demon-
strated in the previous 1D cable model marks the initiation
of conduction irregularity and potential deterioration into
arrhythmia, a stronger predictor for wavebreaks and
arrhythmogenic conduction is the appearance of spatially
discordant alternans. Discordant alternans appeared in the
2D simulations using the deterministic pacing protocol
with a target BCL ¼ 245 ms as described in Materials and
Methods. Fig. 4 a depicts the APD as a function of the
beat number during the 65 beats deterministic pacing phase
with a BCL of 245 ms. The gray and black graphs corre-
spond to the two locations at (0,0) and (10,10) mm, respec-
tively. A transition from concordant to discordant APD
alternans phase was observed at beat 33. The
FIGURE 4 (a–d) Discordant APD alternans in

2D simulations during deterministic (a and b)

and stochastic (c and d) pacings. (a) APD as a

function of the beat number during the determin-

istic pacing phase with the target BCL ¼ 245 ms.

Traces at two locations, (x,y) ¼ (0,0) and (10,10)

mm, are shown in gray and black, respectively. A

transition from concordant to discordant alternans

can be seen at beat 33. (b) Short segments of mem-

brane voltage during deterministic pacing after

beat 33 clearly illustrate the appearance of discor-

dant alternans. (c and d) A typical case in which

stochastic pacing (with s ¼ 3.5 ms) diminished

the transition from concordant to discordant alter-

nans in 2D simulations. Panels are organized as

in a and b.
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transmembrane voltage recordings at the same locations are
presented in Fig. 4 b and clearly show the discordant alter-
nans pattern during this final pacing phase. When stochastic
pacing was applied to the same tissue model and with the
same pacing protocol, the propensity for discordant alter-
nans was significantly diminished. A representative
example is given in Fig. 4, c and d, in which the results of
one typical sequence of stochastic pacing with s ¼ 3.5 ms
are given. In comparison with Fig. 4, a and b, the results
in Fig. 4, c and d, demonstrate that pacing stochasticity re-
sulted in a generally reduced magnitude of concordant alter-
nans and, more importantly, succeeded in completely
a b

c d
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avoiding the transition from concordant to discordant alter-
nans. This is further illustrated in Fig. 5, where the spatial
profiles of the APD relating to two sequential beats (45
(gray) and 46 (black)) along the main diagonal of the tissue
(from (0,0) to (10,10) mm) are shown. For deterministic
pacing (solid lines), the two profiles intersect at ~7 mm
along the diagonal, indicating a spatial inversion from a
long-short-long to a short-long-short alternans pattern, i.e.,
the existence of discordant alternans. On the other hand,
the two profiles corresponding to the stochastic pacing
(dotted lines) are parallel along the diagonal, indicating
the sole existence of concordant alternans. The spatial
APD distributions for beats 45 and 46 are shown in Fig. 6.
Deterministic pacing (Fig. 6, a and b) yielded a highly het-
erogenic APD distribution. Whereas for beat 45 the gradient
was generally oriented from (0,0) to (10,10) mm, for beat 46
it was oriented oppositely from (10,10) mm to (0,0), again
indicating the occurrence of discordant alternans. The nodal
line, indicating all locations where the pattern of alternans is
inverted from long-short-long to short-long-short (i.e.,
where the APD values for beats 45 and 46 match) is marked
in white. In contrast, stochastic pacing yielded a signifi-
cantly more uniform APD distribution, as shown in Fig. 6,
c and d, and concordant alternans pattern with similar
gradient orientation for the two beats. We finally quantified
the degree of APD heterogeneity for deterministic pacing
and for stochastic pacing with added standard variation s

between 0.5 and 3.5 ms (N¼ 30 for each value of s). Exam-
ination of the spatial APD histograms for each beat consis-
tently showed Gaussian distributions (a typical example is
shown in Fig. 7 a), validating our choice of the APD spatial
SD, S (defined in Eq. 4), as a single measure of
8 9 10
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pacings, for the two successive beats 45 (a and c)

and 46 (b and d). In the deterministic case, the

nodal line was found and is marked in white. In

the stochastic case, the nodal line was not found.



FIGURE 7 APD heterogeneity. (a) Typical examples of spatial APD his-

tograms for deterministic and stochastic pacings (s ¼ 3.5 ms), each for the

beat with the highest SD (out of 65 beats). Both histograms exhibit

Gaussian-like distribution. The mean correlation coefficient of the best

Gaussian fits for all values of s was R2 ¼ 0.88 5 0.02. (b) Quantification

of the APD spatial heterogeneity,
P

, as defined in Eq. 4 as a function of the

stochastic pacing SD s (N ¼ 30). Target pacing BCL is 245 ms. The graph

marks the median, 25th, and 75th percentiles (box) and the total range

(dashed bar) of the
P

values. The line corresponding to the best-fit curve

for the median values is also shown. *p< 0.05 compared with the determin-

istic case.
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heterogeneity. The results for the APD spatial SD, S, are
summarized in Fig. 7 b in the form of a box plot, where
the median, 25th, and 75th percentile (box) and the total
range (dotted bar) are shown. Increasing stochasticity de-
gree s resulted in a statistically significant decrease in the
median S, as well as in a decrease in the 25 and 75 percen-
tile values. On the other hand, the maximal S value changed
only slightly. These effects suggest an improved uniformity
in the spatial APD distribution as stochasticity increases,
which in turn predicts improved immunity against
arrhythmogenesis.
Manifestation of wavebreaks

The appearance of spatially discordant alternans and high
levels of APD spatial heterogeneity are considered proar-
rhythmic due to their ability to induce a wavebreak in the
presence of premature stimulation (15). In the previous
section, the positive effect of stochastic pacing on both the
propensity for discordant alternans and the APD spatial het-
erogeneity was demonstrated. Here we show how this posi-
tive effect translates into a diminished likelihood of
wavebreak initiation. The 2D tissue was paced using a
protocol similar to that described in the previous section,
with the exception that during the last pacing phase (with
BCL ¼ 245 ms), a premature stimulation was given
with a fixed coupling interval of 165 ms after beat 39.
During deterministic pacing, this protocol resulted in a
wavebreak of the premature beat and initiation of a figure-
of-eight reentry, as shown in the transmembrane voltage
map in Fig. 8 a. When stochastic pacing was applied with
s ¼ 3.5 ms, the same pacing protocol resulted in a wave-
break of the premature beat and figure-of-eight reentry in
only eight (~27%) of the cases (N ¼ 30). In the rest of the
22 cases, the premature beat either managed to pass without
breaking (n ¼ 4 cases, an example is shown in Fig. 8 b) or
was completely blocked without the initiation of an activa-
tion wave at all (n¼ 18 cases, an example is shown in Fig. 8,
c and d).

Fig. 9 summarizes the effect of stochastic pacing on the
conduction pattern of the premature beat as a function of
stochastic pacing SD, s. For each value of s, N ¼ 30
random pacing sequences were applied. As s increased,
the premature beat was less likely to undergo a wavebreak.
This result is in line with Fig. 7 b, as the reduced APD
spatial heterogeneity suggests a reduced likelihood for
wavebreaks. In addition, when s increased, the premature
beat was more likely to be fully blocked. This is also a
positive outcome since premature beats (e.g., arising from
ectopic activity) are arrhythmogenic at very high activation
rates.
DISCUSSION

Low variability in cardiac activation rate was clinically
found to be a major predictor for cardiac arrhythmogenic
events. In this work, we aimed to characterize the effects
of stochastic cardiac pacing on the ventricular tissue
arrhythmogenic predictors of restitution slopes and APD
alternans. Our major findings are as follows: 1), Pacing sto-
chasticity sustains a significant moderating effect on the
dynamic APDR curve by reducing its slope. This effect is
stronger with larger pacing variability (s in Eq. 2). Simi-
larly, pacing stochasticity tends to moderate the CVR curve
by reducing its slope, although this effect was minor and
was not found to be statistically significant. 2), Random pac-
ing suppresses the occurrence of concordant APD alternans.
The higher the s, the stronger is the suppression that is
achieved. 3), Stochastic pacing reduces APD spatial hetero-
geneity and tends to reduce the propensity for spatially
discordant alternans. 4), Stochastic pacing reduces the pro-
pensity for wavebreak initiation. The higher the variance of
Biophysical Journal 105(2) 533–542
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FIGURE 8 Transmembrane voltage distribution

after a premature stimulation. (a) Deterministic

pacing: the premature beat wave breaks and a

figure-eight reentry pattern is initiated. (b) Stochas-

tic pacing (s ¼ 3.5 ms): an example in which the

premature beat is conducted without a wavebreak.
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which the premature beat is fully blocked. (d)
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tion site (x,y) ¼ (0,0) demonstrating the block of

the premature beat at the origin.
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the stochastic pacing, the lower is the likelihood that wave-
break will occur.

Our results are in line with clinical evidence regarding
the importance of HRV for protection against arrhythmo-
genesis. We have shown in both 1D cable and 2D tissue
configurations that when stochasticity per se is added to
the ventricular pacing protocol, tissue arrhythmogeneity
indicators improve, suggesting that cardiac immunity
against arrhythmias increases. This was shown on three sta-
bility markers: the slope of the APD restitution curve, the
propensity for concordant and discordant APD alternans,
and the spatial heterogeneity of the APD. Our results did
not show a significant effect of pacing stochasticity on the
slope of the CVR curve, although a small trend of reduced
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FIGURE 9 Premature beat conduction patterns for deterministic (s ¼ 0)

and stochastic pacings (N ¼ 30). As s increases, the propensity for wave-

breaks decreases.
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slope with increased stochasticity was observed. Neverthe-
less, in contrast to steep APDR slopes, steep CVR slopes
are not considered a prerequisite for wavebreak initiation
in all scenarios (13). Finally, we demonstrated the influence
of stochastic pacing on wavebreak, showing its reduced
likelihood to occur for high pacing stochasticity. The
moderating effect of rate stochastic variations correlates
well with the clinically established protective effect of
HRV. Although this study is purely theoretical and is based
on computational models and analysis, some experimental
support for the proposed effect of stochastic pacing can
be found in the literature. Wu and Patwardhan (22) intro-
duced stochastic pacing as a new pacing protocol for
establishing APDR curves. Their experiments, conducted
on isolated right ventricular endocardial tissue from dogs,
showed that a uniform stochastic pacing resulted in
shallower APDR slope in comparison with both dynamic
and S1-S2 pacing protocols. In addition, Toal et al. (33)
assessed experimental APDR curves during the early stages
of VF in humans, during which time the ventricular activa-
tion sequence is in principle stochastic. They found that
during the early stages of VF, the slope of the APDR was
very shallow (<1) for small DI values, where the slope is
expected to be steep (>1).

Stochastic pacing is associated with modifications of
short-term cardiac memory (22,23), and it is possible that
stochastic pacing tends to reduce or eliminate short-term
memory due to the lack of pacing-rhythm stability. Experi-
ments conducted on isolated rabbit hearts have shown that
reduced short-term cardiac memory sustains effects similar
to those established in this work, i.e., elimination of concor-
dant and discordant APD alternans (34). Other investigators
have proposed random stimulation protocols to investigate
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short-term cardiac memory. Wu and Patwardhan (22)
employed oscillatory, random, and linear pacing to establish
APDR curves. They showed that the differences in the re-
sulting curves were attributed to the memory effect (22).
However, although they established the APDR for stochas-
tic pacing, the authors did not investigate the antiarrhythmic
role of random pacing as a stabilizer of electrical activity.
Dai and Keener (23) presented a method that uses stochastic
cycle pacing to investigate the relationship between APD
bifurcation and restitution to cardiac memory. However,
in that study too, pacing stochasticity was introduced solely
as a new means of establishing APDR curves that reflect
cardiac memory, and the effect of stochastic pacing on sta-
bility properties of the cardiac electrical activity was not
studied. To the best of our knowledge, our study shows
for the first time that increased stochasticity in ventricular
pacing is directly linked to a decreasing APDR slope and
a tendency to eliminate APD alternans (discordant and/or
concordant). These results may imply that the stochasticity
essence of HRV per se works to provide the heart with
a protective mechanism against arrhythmogenesis, and a
better recovery potential once tachypacing is initiated. A
plausible alternative mechanism that might explain the pro-
tective role of pacing stochasticity relates to the established
stabilizing effect of additive random noise on Markovian
models, as known from switching and control systems
theory (26).

Several limitations in our study should be noted. We
modeled pacing stochasticity using a Gaussian distribution.
However, ventricular activation variations that arise from
HRV are more complex. In the frequency domain, the
physiological HRV presents four main frequency ranges:
ultralow (%0.003 Hz), very low (0.003–0.04 Hz), low
(0.04–0.015 Hz), and high (0.15–0.4 Hz) (6). This broad
range of frequencies indicates a random characteristic and
chaos that are often ascribed to HRV (35–37). In this study,
we employed a basic, simple, random pacing model that
allowed us to study the most basic role of pacing stochastic-
ity in stabilizing the ventricular electrical activity. A more
physiological HRV model should be employed in future
works. Additionally, we employed the ionic kinetics model
of normal human ventricular cardiac myocytes. Further
research should be conducted to extend the simulations to
cardiac models relating to the existence of heart failure.
Finally, the presented model did not include tissue remodel-
ing due to an impaired balance of the autonomic nerve sys-
tem, which can be a source of pacing variability (38–41).
Instead, we chose to uncouple pacing variability and
possible membrane remodeling to gain insights into the spe-
cific role of heart-rate stochasticity in arrhythmia immunity.

In conclusion, our study provides novel (to our knowl-
edge) insights regarding the mechanisms by which stochas-
tic ventricular activation contributes to cardiac arrhythmia
immunity via modulation of arrhythmogenic factors such
as the APDR slope and APD alternans propensity. We corre-
late our results with clinical evidence indicating that low
HRV is a risk predictor for arrhythmia. The results of this
study may find clinical application in improving the design
of artificial pacemakers. We suggest that by adding specific
stochasticity to the programmed pacing sequence, the stabil-
ity of cardiac electrical conduction can be improved to
reduce the initiation of arrhythmia events originating from
conduction blocks or wavebreaks.
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