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a b s t r a c t

We simulate cluster formation ofmodel colloidal particles interacting via DLVO (Derjaguin,
Landau, Vervey, Overbeek) potentials. The interaction potentials can be related to
experimental conditions, defined by the pH-value, the salt concentration and the volume
fraction of solid particles suspended in water. The system shows different structural
properties for different conditions, including cluster formation, a glass-like repulsive
structure, or a liquid suspension. Typically, many simulations are required to explore
the parameter space. In order to reduce the computational effort and data storage
requirements, we developed a steering approach to control a running simulation and to
detect interesting transitions from one region in the configuration space to another. The
advantages of the steering approach and the restrictions of its applicability due to physical
constraints are illustrated by several example cases.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Soft matter physics is a large field which has gained more and more importance during the last years. It comprises for
example complex fluids, biological systems like membranes, solutions of large molecules like proteins, or suspensions of
small soft or solid particles, which are commonly called ‘‘colloids’’. Since one can find examples for these materials nearly
everywhere in everyday life (in medicine, food industry, paintings, glue, blood, ceramics,. . . ), scientific research can be very
relevant for practical applications. In this context, it is fair to say that colloid science is presently one of themost active fields
of research. Considerable effort has been invested to describe colloidal suspensions from a theoretical point of view and by
simulations [1–5], as well as to understand the particle–particle interactions [6–11] and the phase behavior [12–16]. One
of the main characteristics of soft matter and especially of colloidal systems, is the key role of a so-called mesoscopic scale,
which is a length and time scale much larger than the atomistic scale, but still much smaller than the macroscopic scale.
Material properties on themacroscopic scale, e.g., the viscosity of a suspension, are determined by effects on themesoscopic
scale.
This mesoscopic level allows to control the parameters of a certain material by manipulating the processes on the meso-

scopic length scale. For colloids there are many ways to control the interactions between the individual colloidal particles.
For example, it is possible to initiate clustering in a colloidal suspension by changing the particles’ interactions [17–23].
However, on the mesoscopic length scale, often many different effects are in a subtle interplay making it difficult to

provide quantitative predictions. Computer simulations can help to study these systems in detail, e.g., to observe the
response of the systemon a change in the particles’ interactions. Such a change can be achieved by adding salt to a suspension
or by tuning the pH-value [18,19,22,24]. However, in mesoscopic systems where many different effects contribute to the
overall behavior, the parameter space is quite large and one has to perform a large number of different simulations, each of
which requiring a lot of computing resources, to gain an understanding of all inter-relationships.
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Therefore, it is useful to be able to steer the simulation on-line. Steering in this context canmean changing the interaction
potentials or other parameters like an externally applied shear rate. It can also mean going back in the simulation time and
following a different path starting from an earlier configuration, both options induced by interaction with the user [25,26].
For our studywe havemodeled an aqueous suspension of Al2O3-particles. The particles aremonodisperse spheres of 0.37

µm in diameter. They interact via DLVO (Derjaguin, Landau, Vervey, Overbeek) potentials [6,7] as well as a repulsive force
ensuring excluded volume for the particles. The properties of this model system have been investigated by simulations and
experiments in previous works [27,24,22,28–30]. In this paper we discuss how simulation steering can help to explore the
parameter space and which problems may occur when using steering techniques.
In the following section we describe our simulation method and focus on the implementation of the steering. Then, we

discuss some examples of simulations where steering helps to explore the parameter space, but we also give examples in
which a steered simulation might lead to different results if compared to a non-steered simulation. Finally, we summarize
our results and draw a conclusion.

2. Simulation Method

Our simulation method is described in detail in Refs. [27,24,28] and consists of two parts: a Molecular Dynamics (MD)
code, which treats the colloidal particles, and a Stochastic Rotation Dynamics (SRD) simulation for the fluid solvent. In the
MD part we include effective electrostatic interactions and van der Waals attraction, known as DLVO potentials [6,7]. The
repulsive term results from the surface charge of the suspended particles
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where d denotes the particle diameter, r the distance between the particle centers, e the elementary charge, T the
temperature, kB the Boltzmann constant, and z is the valency of the ions of added salt. ε0 is the permittivity of the vacuum,
εr = 81 the relative dielectric constant of the solvent, κ the inverse Debye length defined by κ2 = 8π`BI , with I being the
ionic strength and the Bjerrum length `B = 7 Å. We have related the effective surface potential ζ to the pH-value and the
ionic strength of the solvent by means of a charge regulation model in our previous work [24]. Thus, the particle interaction
potentials can be related to distinct experimental conditions. The second termof theDLVOpotentialswhich does not depend
on the pH-value or the ionic strength is the attractive van der Waals interaction
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AH = 4.76 · 10−20 J is the Hamaker constant [17]. The attractive contribution VVdW competes with the repulsive term and is
responsible for the cluster formation as one can observe for conditions in which the attraction dominates.
Since DLVO theory is based on the assumption of large particle separations, it does not correctly reproduce the primary

minimum in the potential, which should appear at particle contact. Therefore, we cut off the DLVO potentials and model
the minimum by a parabola as described in Refs. [27,28]. To ensure excluded volume of the particles we use a repulsive
(Hertzian) potential. Below the resolution of the SRD algorithm short-range hydrodynamics is corrected by a lubrication
force within the MD framework as explained in Refs. [27,24,28].
For the simulation of a fluid solvent, many different simulation methods have been proposed: direct Navier–Stokes

solvers [31–34], StokesianDynamics (SD) [35,36,3], Accelerated StokesianDynamics (ASD) [37,38], pair drag simulations [4],
Brownian Dynamics (BD) [17,39], Lattice Boltzmann (LB) [1,2,40,41], and Stochastic Rotation Dynamics (SRD) [42,43,27].
These mesoscopic fluid simulation methods have in common that they impose certain approximations to reduce the
computational effort. Some of them include thermal noise intrinsically, or it can be included consistently. They scale
differently with the number of embedded particles, and the complexity of the algorithm differs largely. In particular, there
are big differences in the concepts how to couple the suspended particles to the surrounding fluid.
We apply the Stochastic Rotation Dynamics method (SRD) introduced by Malevanets and Kapral [44,45]. It intrinsically

contains fluctuations, is easy to implement, and has been shown to be well suitable for simulations of colloidal and polymer
suspensions [42,43,46–48,27,24]. The method is also known as ‘‘Real-coded Lattice Gas’’ [42] or as ‘‘Multi-Particle-Collision
Dynamics’’ (MPCD) [49,50]. It is based on the so-called fluid particles with continuous positions and velocities. A streaming
step and an interaction step are performed alternately. In the streaming step, each particle i is moved according to

ri(t + τ) = ri(t)+ τ vi(t), (3)

where ri(t) denotes the position of particle i at time t , and τ is the time step. In the interaction step, the fluid particles are
sorted into cubic cells of a regular lattice, and only the particles within the same cell interact with each other according to
an artificial interaction. The interaction step is designed to exchange momentum among the particles, but at the same time
to conserve total energy and total momentum within each cell, and to be very simple, i.e., computationally cheap. Each cell
j is treated independently: first, the mean velocity uj(t ′) = 1

Nj(t ′)

∑Nj(t ′)
i=1 vi(t) in cell j is calculated. Nj(t ′) is the number of
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fluid particles contained in cell j at time t ′ = t+τ . Then, the velocities of each fluid particle in this cell are rotated according
to

vi(t + τ) = uj(t ′)+Ωj(t ′) · [vi(t)− uj(t ′)]. (4)

Ωj(t ′) is a rotationmatrix, which is independently chosen at random for each time step and each cell.We use rotations about
one of the coordinate axes by an angle ±α, with α fixed. The coordinate axis as well as the sign of the rotation are chosen
at random, resulting in 6 possible rotation matrices. However, there exists great freedom to choose the rotation matrices.
Any set of rotation matrices satisfying the detailed balance for the space of velocity vectors could be used here. To remove
anomalies introduced by the regular grid, one can either choose themean free path to be sufficiently large or shift the whole
grid by a random vector once per SRD time step [51,52].
For the coupling of the SRD and the MD simulation, three main methods have been introduced in the literature.

Inoue et al. proposed a way to implement no slip boundary conditions on the particle surface [42]. To achieve full slip
boundary conditions, Lennard-Jones potentials can be applied for the interaction between the fluid particles and the colloidal
particles [45,53]. A more coarse grained method was originally designed to couple the monomers of a polymer chain to the
fluid [54,55], but in our previous work [27,24,22] we have demonstrated that it can also be applied to colloids, as long as no
detailed spatial resolution of the hydrodynamics is required. We use this coupling method in our simulations and describe
it shortly in the following.
To couple the colloidal particles to the fluid, they are sorted into the SRD cells and included in the SRD interaction step.

The stochastic rotation is performed in momentum space instead of the velocity space to take into account the difference of
inertia between light fluid and heavy colloidal particles. We have described the simulation method in more detail in Refs.
[27,24,28].
In the present work we report several studies of pressure filtration, cluster formation in a steered simulation, and

sedimentation. All these studies are proofs of principle, and therefore small simulations are performed. Typical parameters
for these simulations are as follows: on average there are 60 fluid particles in each cubic box of 0.296 µm extension in
each Cartesian direction. The volume of the box is set to be identical to the volume of a colloidal particle with a diameter of
0.37µm. The system size is 30 to 60 boxes in each direction. By adjusting the diffusion constant, the density and the viscosity
to a certain suspension [24], the scaling scheme we have presented in Ref. [27] yields a scaled temperature of 14mK and a
scaled viscosity of 4.78 · 10−8 Pa s. To preserve the correct dynamics, characterized by the dimensionless numbers (Re, Pe,
Kn,. . . ) one has to rescale the potentials and all driving forces in the MD scheme by the same scaling factor, as well.
Let us now shortly sketch the technical realization of the steering interface in our simulation code. The program is an

object oriented code written in C++. Each object contains virtual routines save()and load(), which write the data of the
object to a buffer, or load it from there, respectively. The buffer contains a plain text description of all variables contained
in the object including their values. This is similar to the C++ source code one would write to initialize an instance of
that class. The work flow of a simulation, including the actual MD loop as well as data input/output tasks is described in
this manner using specialized ‘‘workstep-classes’’.1 Each workstep-class provides a specialized work()-routine, which
performs different actions depending on the actual class type of the respective object. One of the workstep-classes is
designed to change a specified object by using its save()and load()routine. First, the current values are stored to a
temporary buffer, then one or several variables may be overwritten by new values, and finally the object to be modified
is loaded again from the temporary buffer. The description of the changes may be read from standard input or from a file,
similar to the simulation setup, which is read during the initialization of the simulation. workstep-class objects can also
be included into the work flow at later times, or may even be disconnected from the usual work flow and bound to standard
UNIX system signals. By default a workstep writing particle positions to standard output and a workstep to change objects
getting its buffer from standard input are bound to the SIGTTOU(‘‘terminal output’’) and SIGTTIN(‘‘terminal input’’) signal,
respectively. This allows to embed the simulation program into a framework of shell scripts which generate the appropriate
input, redirect the output to a visualization tool and send the signals according to the user interaction. This can be realized
in a client–server fashion, even on different hosts and platforms using appropriate scripts and TCP/IP connections.

3. Results

We now turn to a discussion of the advantages of such a steering approach for computer simulations. We highlight some
pitfalls resulting from the physical background in the context of steering. This section is subdivided into several subsections
each of them focusing on a particular example to illustrate the steering approach in practice.

3.1. Pressure filtration

In this example a filtration of a suspension is simulated. The suspended particles cannot pass the filter, whereas the fluid
passes through the filter without resistance in an idealized filtration process. The suspended particles agglomerate in front

1 The workstep concept was originally introduced by M. Strauß in his SRD code [56].
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Fig. 1. Local density expressed in terms of volume fraction of the solid particles constituting the filter cake depending on the pH-value. The ionic strength
is kept constant at I = 3 mmol/l, and the volume fraction at Φ = 5%. The plots for different pH-values are shifted against each other vertically by 0.2 for
better visibility. The shape of the profile differs since the spacing of the particles depends on their interactions.

of the filter and form a so-called filter cake. Since the dynamics of the particles is not only governed by the hydrodynamics
of the fluid, but also by their DLVO interaction, the density and the structure of the filter cake depend on the pH-value and
the ionic strength.
In our simulation we drive the fluid by an applied force pointing downwards acting in a small region close to the upper

boundary of the system. For the fluidwe apply fully periodic boundary conditions,whereas the boundaries for the suspended
particles are closed in z-direction. In this way, the fluid is forced to stream in vertical direction and to drag the particles to
the bottom of the system. We choose a constant ionic strength of I = 3mmol/l and a constant volume fraction ofΦ = 5%,
and simulate the filtration process for several pH-values.
Depending on the interactions, different internal structures of the filter cake are formedwhen the density of the particles

increases at the bottom of the system. To gain good statistics for the structure, large simulations are needed. However, in
a filtration process, usually low initial densities are used, so that very large simulation volumes are needed to obtain large
particle numbers for good statistics. On the other hand, large simulation volumes also imply large data files and long transient
times until the filter cake is formed and a considerable part of the particles has reached the bottom of the system.
This is a typical problem, in which one would like to observe the running simulation occasionally to check if the filter

cake is already formed and when the structure does not change significantly anymore. One would like to measure pressure
profiles, local streaming velocities, or simply the final density profile of the filter cake. Here, steering means to initiate data
acquisition by user interaction. This is of advantage if an action, like starting to average certain data, should be initiated
when conditions are fulfilled, which are difficult to check automatically. Since the density and structure of the filter cake
are a priori unknown, an automatic check is difficult to implement.
Additionally, the upper boundary of the filter cake is diffusive and depends on the conditions (pH-value and ionic

strength) as well. In Fig. 1 the dependence of the density profiles of filter cakes obtained in simulations for different pH-
values are shown. With increasing pH-value the height of the filter cake increases and the density profile changes slightly.
Some voids in the filter cake diminish the local density if compared to a dense packing. At the bottom of the filter cake, layers
of particles are present, whereas in the upper regions the structure becomes more irregular. However, the structure of the
sediment and its height will also depend on the pressure exerted on the fluid and probably on the initial volume fraction.
Larger simulations than this proof of principle are needed to be able to quantify the pH-value dependence of the height of
the filter cake. However, simulations without a driving force on the fluid can also help to understand this system. Therefore,
we explore the parameter space in the absence of a driving force in the following subsection.

3.2. Observation of cluster formation

Since several parameters, namely the volume fraction, pH-value, ionic strength, and external driving forces influence the
system, a first step to understand its behavior is to examine it in the absence of external forces. Still, two parameters–the
pH-value and the ionic strength–govern the dynamics of the system. If the potentials are attractive, cluster formation can
be observed [57], provided the attraction is strong enough compared to thermal fluctuations. In our previous work [22,28]
we have explored this part of the parameter space for some distinct volume fractions by performing numerous individual
simulations. However, with the newly implemented steering approach one can detect boundaries between different regions
of the stability diagram more quickly and more sensitively.
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Fig. 2. Memory effects in a steered simulation: the grayscale denotes the coordinationnumber. Particles closer than2.4 radii are considered to beneighbors.
Dark particles in this sense are highly coordinated, bright ones have low coordination numbers. (a) Right after initialization, homogeneous distribution
of the particles, (b) cluster formation after tuning the potentials to be attractive, (c) still inhomogeneous regions after steering the simulation out of the
clustered region, (d) the system is homogeneous againwhendiffusion has counterbalanced the density inhomogeneities. The steering path in the parameter
space as well as the points (a)–(d) thereon are illustrated in Fig. 3.

In Fig. 2 we illustrate the effects of changing the properties of the interaction potentials. All snapshots correspond to
the same simulation and represent different points of the trajectory in parameter space the system is steered through: (a)
The initial situationwith repulsive potentials, shortly after initialization of the system, (b) after crossing the boundary to the
clustered region, (c) shortly after steering back to the suspended regime,where still some inhomogeneities in the system can
be observed, and, finally, (d) after some time when diffusion has restored a homogeneous system. This time depends on the
distance between the clusters and on the characteristic diffusion time of the particles. The steering path in the configuration
space is shown in Fig. 3. The points at which the snapshots of Fig. 2 are taken are marked by black dots. In the insets of Fig. 3
the total potential is plotted for several cases. During the simulation we change the pH-value and the ionic strength, and
we drive the system along a closed trajectory in parameter space. We start at low ionic strength I = 1mmol/l and pH = 4
(potential shown) and first increase the pH-value (potential shown for I = 1mmol/l and pH = 7), then increase the ionic
strength, then reduce the pH-value again while further increasing the ionic strength (potential shown for I = 15mmol/l
and pH = 4), and finally decrease the ionic strength to return to the starting point. We choose the trajectory such that
the barrier between the primary and the more shallow secondary minimum of the DLVO potential does not go below 5
kBT . Since the secondary minimum becomes deeper during the simulation, cluster formation can be observed. However,
the barrier between the primary and the secondary minimum of the DLVO potentials prevents irreversible aggregation in
the primary minimum. A case in which the barrier vanishes and irreversible aggregation would appear is also shown in the
upper right inset (I = 15mmol/l and pH = 7). In any case, in our simulation all clusters dissolve again after steering back to
a lower pH-value and lower ionic strength (see Fig. 2 (d)). This confirms that we have reversible clustering in the secondary
minimum of the DLVO potentials.
One of the advantages of a steered simulation is that one can detect the onset of the cluster formation more accurately

than by starting individual simulations for different conditions. One might predict the boundary by evaluating the depth of
the secondaryminimum in the potential, but since also the hydrodynamic damping forces and an eventually applied driving
pressure influence this process the prediction of the boundary can becomemore complicated. We have experienced similar
difficulties in the context of shear flow simulations of the same colloidal suspension [24,22].
A quantity to support the visualization of clusters is the coordination number. We consider two particles whose centers

are closer than 2.4 particle radii as neighbors and define the coordination number of each particle as the number of its
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Fig. 3. Steering path of the simulation: we start at the bottom left corner at low pH-value and low ionic strength and steer the simulation along the dashed
path through the parameter space. The region of reversible cluster formation is reached, but the barrier between primary and secondary minimum of the
DLVO potentials prevents irreversible clustering: when reaching the starting point again, all clusters have vanished. The boundary of the clustering region
is sketched: reversible clustering is observed when the depth of secondary DLVOminimum is of the order of kBT , and irreversible clustering appears when
the height of the barrier between the two DLVO minima is of the order of kBT or less. The labeled black dots mark the positions at which the snapshots of
Fig. 2 are taken. The insets show the total potential at some selected extreme cases (see text).

neighbors in the sense just described. The particles in Fig. 2 are drawn in grayscale corresponding to their coordination
number, where dark particles are highly coordinated particles and bright ones are those with a low coordination number.
At the beginning of the simulation the particles are distributed homogeneously in simulation volume (a). After steering
the simulation into the region of attractive potentials, cluster formation can be observed (b). When the potentials are
made less attractive again, the clusters dissolve (c). However, the particles preferably stay at their positions and thus,
the inhomogeneities in the system do not disappear immediately, which can also be seen in the dark color denoting high
coordination numbers. After some time, diffusion restores the homogeneity of the system (d). However, if the pH-value or
the ionic strength are increased toomuch, so that the barrier between the primary and the secondaryminimum of the DLVO
potentials vanishes, the clustering process becomes irreversible. We avoided this by choosing an appropriate steering path
(Fig. 3).
In this example, the simulation ‘‘remembers’’ the interaction of the user. Even if the steering path is selected carefully

inside the reversible range, the simulated suspension needs a characteristic time to relax after changing the interactions.
The interaction by the user can be seen as a perturbation in the physical sense and the system needs time to adopt to the
new situation. In these cases special care is advised when steering a simulation. We illustrate this by another example in
the following subsection.

3.3. Sedimentation: Hydrodynamic interaction

Not only the particle positions and velocities, but also hydrodynamic interactions can influence the behavior of the
system. Therefore, inhomogeneous particle distributions induced by first steering the simulation into a clustered region
of the parameter space might influence the result. In the following paragraph we show that a sedimentation process can be
accelerated, if cluster formation by attractive interactions creates density inhomogeneities in the system.
The friction force a single particle feels in a sedimentation process can be calculated analytically, but it differs if other

particles are present. In Ref. [27]wehave confirmed that the sedimentation velocity in our simulationdepends on the volume
fraction, as it iswell known from sedimentation theory [58]. But even at constant volume fraction the sedimentation velocity
can be different in different configurations. If the particles form clusters, it settles down and the fluid streams around the
whole cluster. The resistance is much less compared to the case when the particles are distributed homogeneously and
the fluid streams around each of them separately (compare Ref. [28] and references therein). In Fig. 4 we have plotted the
sedimentation velocity evaluated in several simulations, which only differ by the potentials. The volume fraction is the same
for all of them. However, as one can see in the figure, the sedimentation velocity is smaller for low pH-values. Around pH = 4
the sedimentation velocity of an isolated particle of 0.6 diameters/s is reached [28].
This can be explained as follows: since for increasing pH-value the potentials become attractive, the particles form

clusters and settle down faster. This effect is purely due to the hydrodynamics of the system. Since the flow field depends
on all particle positions and velocities not only at a given time, but also on their history, steering in this context may
be very dangerous. When long-range interactions (like hydrodynamics) which also depend on the history of the system,
are important, steering should be avoided. In this case, to obtain reasonable results, one has to start again from an initial
configuration when changing the interactions.
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Fig. 4. Sedimentation velocity of a Φ = 5% suspension in a closed vessel. The sedimentation velocity of the particles in the upper part of the system
is averaged over several time steps. The particles at the bottom of the system are not taken into account. The velocity depends on the particle–particle
interaction. Clusters settle down faster than individual particles. Symbols denote simulation results, the line is a guide to the eye.

4. Conclusion

By bearing in mind the underlying physics, one can roughly estimate the limits of steered simulations. Let us summarize
the points we have brought forward in this paper. First of all, steering can save computing time when aiming at a rough
understanding of the influences on a system, especially when looking for the ‘‘interesting points’’ in parameter space,
e.g., when searching for transition lines between different phases. We have shown this by the onset of cluster formation due
to modifying the interaction potentials in a model suspension. Steering can be used as well to start data acquisition after a
transient at the beginning of a simulation or to adjust the frequency for the data acquisition according to the current state of
the simulation. This is especially interesting for large simulations with long transient times, as illustrated by the simulation
of filter flow. We also explained why in some cases steering may be seen as a perturbation of the system, especially when
the interaction potentials are changed. Special care is advised when dealing with non-ergodic systems, memory effects, or
long-range interactions, like the role of hydrodynamics in sedimentation as in our last example.

Acknowledgments

We thank H.J. Herrmann for valuable collaboration and his support. The High Performance Computing Center Stuttgart,
the Scientific Supercomputing Center Karlsruhe and theNeumann Institute for Computing in Jülich are highly acknowledged
for providing the computing time and the technical support needed for our research. J.H. thanks theDFG for financial support
within the priority program ‘‘nano- and microfluidics’’. M.H. thanks the ICMMES for travel funds and the DFG for financial
support within SFB 716.

References

[1] A.J.C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. theoretical foundation, J. Fluid Mech. 271
(1994) 285–309.

[2] A.J.C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 2. numerical results, J. FluidMech. 271 (1994)
311–339.

[3] T.N. Phung, J.F. Brady, G. Bossis, Stokesian dynamics simulation of Brownian suspensions, J. Fluid Mech. 313 (1996) 181–207.
[4] L.E. Silbert, J.R.Melrose, R.C. Ball, Colloidalmicrodynamics: Pair-drag simulations ofmodel-concentrated aggregated systems, Phys. Rev.E 56 (6) (1997)
7067–7077.

[5] L. Harnau, S. Dietrich, Depletion potential in colloidal mixtures of hard spheres and platelets, Phys. Rev.E 69 (2004) 051501.
[6] E.J.W. Vervey, J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.
[7] B.V. Derjaguin, L.D. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of
electrolytes, Acta Physicochimica USSR 14 (1941) 633.

[8] S. Alexander, P.M. Chaikin, P. Grant, G.J. Morales, P. Pincus, D. Hone, Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals:
Theory, J. Chem. Phys. 80 (11) (1984) 5776–5781.

[9] M.J. Grimson, M. Silbert, A self-consistent theory of the effective interactions in charge-stabilized colloidal dispersions, Mol. Phys. 74 (2) (1991)
397–404.

[10] R. van Roij, J.-P. Hansen, Van derwaals-like instability in suspensions ofmutually repelling charged colloids, Phys. Rev. Lett. 79 (16) (1997) 3082–3085.
[11] J. Dobnikar, Y. Chen, R. Rzehak, H.H. von Grünberg, Many-body interactions in colloidal suspensions, J. Phys.: Condens. Matter. 15 (2003) S263.
[12] V. Trappe, V. Prasad, L. Cipelletti, P.N. Segre, D.A. Weitz, Jamming phase diagram for attractive particles, Nature 411 (3) (2001) 772–774.
[13] Y. Levin, T. Trizac, L. Bocquet, On the fluid-fluid phase separation in charged-stabilized colloidal suspensions, J.Phys.: Condens.Matter 15 (2003) S3523.
[14] D. Costa, J.-P. Hansen, L. Harnau, Structure and equation of state of interaction sitemodels for disc-shaped lamellar colloids, Mol. Phys. 103 (14) (2005)

1917–1927.
[15] A.-P. Hynninen, M. Dijkstra, R. van Roij, Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions, Phys. Rev.

E 69 (2004) 061407.
[16] A. de Candia, E. del Gado, A. Fierro, N. Sator, A. Coniglio, Colloidal gelation percolation and structural arrest, Physica A 358 (2005) 239–248.



1002 M. Hecht, J. Harting / Computers and Mathematics with Applications 58 (2009) 995–1002

[17] M. Hütter, Brownian dynamics simulation of stable and of coagulating colloids in aqueous suspension, Ph.D. Thesis, Swiss Federal Institute of
Technology Zurich, 1999.

[18] T.J. Graule, F.H. Baader, L.J. Gauckler, Shaping of ceramic green compacts direct from suspensions by enzyme catalyzed reactions, Ceram. Forum Int.
71 (6) (1994) 314–322.

[19] T.J. Graule, F.H. Baader, L.J. Gauckler, Casting uniform ceramics with direct coagulation, Chem. Tech. 25 (6) (1995) 31–37.
[20] F. Mallamace, S.H. Chen, A. Coniglio, L. de Arcangelis, E. Del Gado, A. Fierro, Complex viscosity behavior and cluster formation in attractive colloid

systems, Phys. Rev. E 73 (2006) 020402(R).
[21] H. Graf, H. Löwen, Density jumps across phase transitions in soft-matter systems, Phys. Rev. E 57 (5) (1998) 5744–5753.
[22] M. Hecht, J. Harting, H.J. Herrmann, Stability diagram for dense suspensions of model colloidal Al2O3-particles in shear flow, Phys. Rev. E 75 (5) (2007)

051404.
[23] P. Linse, Structure, phase stability, and thermodynamics in charged colloidal solutions, J. Chem. Phys. 113 (10) (2000) 4359–4373.
[24] M. Hecht, J. Harting, M. Bier, J. Reinshagen, H.J. Herrmann, Shear viscosity of clay-like colloids in computer simulations and experiments, Phys. Rev. E

74 (2006) 021403.
[25] J. Prins, J. Hermans, G. Mann, L. Nyland, M. Simons, A virtual environment for steered molecular dynamics, Future Gener. Comput. Syst. 15 (4) (1999)

485–495.
[26] J. Chin, J. Harting, S. Jha, P. Coveney, P.A.R.S. Pickles, Steering in computational science: Mesoscale modelling and simulation, J. Contemp. Phys. 44 (5)

(2003) 417–434.
[27] M. Hecht, J. Harting, T. Ihle, H.J. Herrmann, Simulation of claylike colloids, Phys. Rev. E 72 (2005) 011408.
[28] M. Hecht, Simulation of peloids, Ph.D. Thesis, Universität Stuttgart, Germany 2007.
[29] R. Oberacker, J. Reinshagen, H. von Both, M.J. Hoffmann, Ceramic slurries with bimodal particle size distributions: Rheology, suspension structure and

behaviour during pressure filtration, in: N.C.S. Hirano, G.L. Messing (Eds.), Ceramic Processing Science VI, vol. 112, acers, ISBN: 1574981048, 2001,
pp. 179–184.

[30] S. Richter, G. Huber, Resonant column experiments with fine-grained model material-evidence of particle surface forces, Granular Matter 5 (2003)
121–128.

[31] W. Kalthoff, S. Schwarzer, G. Ristow, H.J. Hermann, On the application of a novel algorithm to hydrodynamic diffusion and velocity fluctuations in
sedimenting systems, Internat. J. Modern. Phys. C 7 (4) (1996) 543–561.

[32] W.Kalthoff, S. Schwarzer, H.J. Herrmann, Algorithm for the simulation of particle suspensionswith inertia effects, Phys. Rev. E 56 (2) (1997) 2234–2242.
[33] B. Wachmann, W. Kalthoff, S. Schwarzer, H.J. Herrmann, Collective drag and sedimentation: Comparison of simulation and experiment in two and

three dimensions, Granular Matter 1 (2) (1998) 75–82.
[34] S. Schwarzer, Sedimentation and flow through porous media: Simulating dynamically coupled discrete and continuum phases, Phys. Rev. E 52 (1995)

6461–6475.
[35] J.F. Brady, G. Bossis, Stokesian dynamics, Ann. Rev. Fluid Mech. 20 (1988) 111–157.
[36] J.F. Brady, The rheological behavior of concentrated colloidal suspensions, J. Chem. Phys. 99 (1) (1993) 567–581.
[37] A. Sierou, J.F. Brady, Accelerated stokesian dynamics simulations, J. Fluid Mech. 448 (2001) 115.
[38] A. Sierou, J.F. Brady, Shear-induced self-diffusion in non-colloidal suspensions, J. Fluid Mech. 506 (2004) 285.
[39] M. Hütter, Local structure evolution in particle network formation studied by Brownian dynamics simulation, J. Colloid Interface Sci. 231 (2000)

337–350.
[40] A.J.C. Ladd, R. Verberg, Lattice-Boltzmann simulations of particle-fluid suspensions, J. Stat. Phys. 104 (5) (2001) 1191.
[41] A. Komnik, J. Harting, H.J. Herrmann, Transport phenomena and structuring in shear flow of suspensions near solid walls, J. Statist. Mech.: Theory and

Experiment, P12003.
[42] Y. Inoue, Y. Chen, H. Ohashi, Development of a simulation model for solid objects suspended in a fluctuating fluid, J. Stat. Phys. 107 (1) (2002) 85–100.
[43] J.T. Padding, A.A. Louis, Hydrodynamic and Brownian fluctuations in sedimenting suspensions, Phys. Rev. Lett. 93 (2004) 220601.
[44] A. Malevanets, R. Kapral, Mesoscopic model for solvent dynamics, J. Chem. Phys. 110 (1999) 8605.
[45] A. Malevanets, R. Kapral, Solute molecular dynamics in a mesoscale solvent, J. Chem. Phys. 112 (2000) 7260.
[46] M. Ripoll, K. Mussawisade, R.G. Winkler, G. Gompper, Low-reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics,

Europhys. Lett. 68 (2004) 106–112.
[47] R.G.Winkler, K. Mussawisade, M. Ripoll, G. Gompper, Rod-like colloids and polymers in shear flow: Amulti-particle-collision dynamics study, J. Phys.:

Condens. Matter. 16 (38) (2004) S3941–S3954.
[48] I. Ali, D. Marenduzzo, J.M. Yeomans, Dynamics of polymer packaging, J. Chem. Phys. 121 (2004) 8635–8641.
[49] M. Ripoll, K. Mussawisade, R.G.Winkler, G. Gompper, Dynamic regimes of fluids simulated bymultiparticle-collision dynamics, Phys. Rev. E 72 (2005)

016701.
[50] M. Ripoll, R.G. Winkler, G. Gompper, Star polymers in shear flow, Phys. Rev. Lett. 96 (2006) 188302.
[51] T. Ihle, D.M. Kroll, Stochastic rotation dynamics I: Formalism Galilean invariance green-kubo relations, Phys. Rev. E 67 (6) (2003) 066705.
[52] T. Ihle, D.M. Kroll, Stochastic rotation dynamics II: Transport coefficients numerics long time tails, Phys. Rev. E 67 (6) (2003) 066706.
[53] J.T. Padding, A.A. Louis, Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length-scales, Phys.

Rev. E 74 (2006) 031402.
[54] A. Malevanets, J.M. Yeomans, Dynamics of short polymer chains in solution, Europhys. Lett. 52 (2) (2000) 231.
[55] E. Falck, J.M. Lahtinen, I. Vattulainen, T. Ala-Nissila, Influence of hydrodynamics on many-particle diffusion in 2d colloidal suspensions, Eur. Phys. J. E

13 (2004) 267–275.
[56] E. Tuzel, M. Strauss, T. Ihle, D.M. Kroll, Transport coefficients in three dimensional stochastic rotation dynamics, Phys. Rev. E 68 (2003) 036701.
[57] M. Hecht, J. Harting, H.J. Herrmann, Formation and growth of clusters in colloidal suspensions, Internat. J. Modern. Phys. C 18 (4) (2007) 501–510.
[58] J.F. Richardson, W.N. Zaki, Sedimentation and fluidisation: Part 1., Trans. Inst. Chem. Eng. 32 (1954) 35–53.


	Computational steering of cluster formation in Brownian suspensions
	Introduction
	Simulation Method
	Results
	Pressure filtration
	Observation of cluster formation
	Sedimentation: Hydrodynamic interaction

	Conclusion
	Acknowledgments
	References


