
isolates that are identified as A. baumannii by
commercial identification methods, but that fail
to yield a PCR product, may be identified
tentatively as genomic sp. 3 if they grow at
41�C but fail to grow at 44�C.

The gyrB PCR method is robust and reproduc-
ible, and can yield a result in <2.5 h. Its simplicity
means that it can be employed readily in most
laboratories, where it should contribute to a better
understanding of the epidemiology and clinical
significance of the two most important Acineto-
bacter species.
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ABSTRACT

This study describes the development of a real-
time PCR protocol for rapid detection of the most
common blaVIM (blaVIM-1, blaVIM-2, blaVIM-3, blaVIM-4,
blaVIM-5, blaVIM-6, blaVIM-10, blaVIM-11, blaVIM-12) and
blaIMP (blaIMP-1, blaIMP-2, blaIMP-6, blaIMP-8, blaIMP-10,
blaIMP-15, blaIMP-19, blaIMP-20) genes in a single
reaction. The genes were specifically detected
and clearly differentiated into four groups, i.e.,
(i)blaVIM-1-like (blaVIM-1,blaVIM-4,blaVIM-5,blaVIM-12);
(ii) blaVIM-2-like (blaVIM-2,blaVIM-3, blaVIM-6,blaVIM-10,
blaVIM-11); (iii) blaIMP-1-like (blaIMP-1, blaIMP-6,
blaIMP-10); and (iv) blaIMP-2-like (blaIMP-2, blaIMP-8,
blaIMP-15, blaIMP-19, blaIMP-20), by melting curve
analysis of the real-time PCR products. The
protocol was used to screen positive blaVIM-1,
blaVIM-2 and blaIMP-1 control strains, 70 Gram-
negative isolates resistant to carbapenems, and 30
Gram-negative isolates susceptible to carbapen-
ems (negative controls).

Corresponding author and reprint requests: A. Bisiklis,
Department of Clinical Microbiology, AHEPA University
Hospital, 1 Styl. Kiriakidi Str., PC 545 36, Thessaloniki, Greece
E-mail: bisiklis@hol.gr

Research Notes 1201

� 2007 The Authors
Journal Compilation � 2007 European Society of Clinical Microbiology and Infectious Diseases, CMI, 13, 1199–1222

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82042617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Keywords Carbapenems, detection, IMP, metallo-b-
lactamases, real-time PCR, VIM

Original Submission: 23 January 2007; Revised Sub-

mission: 22 June 2007; Accepted: 12 July 2007

Clin Microbiol Infect 2007; 13: 1201–1203
10.1111/j.1469-0691.2007.01832.x

The VIM and IMP classes of metallo-b-lactamases
include at least 14 and 23 different enzymes,
respectively (http://www.lahey.org/studies/
other/htm), and these enzymes are increasingly
being detected in clinical isolates worldwide [1].
This study describes a real-time PCR assay for the
specific detection of blaVIM and blaIMP genes in
Gram-negative bacteria that allows amplification,
detection and product identification in <1 h.

Sixty Pseudomonas aeruginosa isolates, 36
Klebsiella pneumoniae isolates and four Pseudomo-
nas putida isolates recovered from various clinical
specimens were used to evaluate the real-time
PCR protocol (see below). The Vitek2 system
(bioMérieux, Hazelwood, MO, USA) and Etests
(AB Biodisk, Solna, Sweden) were used for bac-
terial identification and detection of resistance to
imipenem and meropenem [2]. The presence of a
metallo-b-lactamase was tested using MBL Etests
[3]. DNA was extracted using a high-pure PCR
Template Preparation Kit (Roche, Mannheim,
Germany) from single bacterial colonies growing
on MacConkey agar. The kit includes a buffer for
the removal of potential inhibitors. The quality
and the quantity of extracted DNA were deter-
mined using a Genova MK3 analyser (Jenway
Ltd, Dunmow, UK).

The real-time PCR assay utilised the Light-
Cycler 2.0 platform (Roche). Primers and Hyb-
Probes were designed and synthesised by TIB
MolBiol Syntheselabor GmbH (Berlin, Germany),
based on published sequences corresponding to
the most common blaVIM and blaIMP gene families
(Table S1, see Supplementary material). Hyb-
Probes were used for the specific detection and
identification of the blaVIM and blaIMP genes. Two
sequence-specific oligonucleotide probes labelled
with different dyes, termed the anchor and sensor
probes, hybridise to target sequences on the
amplified DNA, bringing the two dyes into close
proximity. The anchor dye (fluorescein) is excited
by a light-emitting diode, and the energy emitted
then excites the sensor dye attached to the second
probe, which emits fluorescent light at a different

wavelength. The latter signal is measured by the
LightCycler detection system.

Sequence alignment of the most common blaVIM
genes (blaVIM-1, blaVIM-2, blaVIM-3, blaVIM-4, blaVIM-5,
blaVIM-6, blaVIM-10, blaVIM-11, blaVIM-12) revealed that
these could be divided into two groups, named
blaVIM-1-like (blaVIM-1, blaVIM-4, blaVIM-5, blaVIM-12) and
blaVIM-2-like (blaVIM-2, blaVIM-3, blaVIM-6, blaVIM-10,
blaVIM-11). The two groups can be distinguished by
amplification using the same forward primer
(VIM-fw 5¢-GTACGCATCACCGTCGACAC), but
different reverse primers. The blaVIM-1-like genes
are only amplified using reverse primer VIM-
spec1-re (5¢-TGACGGGACGTATACAACCAGA),
whereas the blaVIM-2-like genes are only amplified
using reverse primer VIMspec2-re (5¢-AGA-
CGGGACGTACACAACTAAG). In both cases,
the amplification product is 172 bp in size, but
the products can be distinguished using Hyb-
Probes and melting curve analysis following the
PCR. While the VIM-Anch (5¢-GGTGCTGCGCA-
TTCGACCGACA-FL) Hybprobe perfectly
matches all these genes, the VIM-Sen (5¢-LC-
Red640-TTCGGTCCAGTAGAACTCTTCTATCC-
PH) Hybprobe perfectly matches the blaVIM-2

group, but has a mismatch with the blaVIM-1

group, resulting in different melting profiles.
In order to amplify the most common blaIMP

genes (blaIMP-1, blaIMP-2, blaIMP-6, blaIMP-8, blaIMP-10,
blaIMP-15, blaIMP-19, blaIMP-20), forward primer
IMP-fw (5¢-AAGTTAGTCA(A ⁄C)TTGGTTTGTG-
GAGC) and reverse primer IMP-as (5¢-CAAAC-
CACTACGTTATCT(G ⁄T)GAGTGTG) were used
to produce a 269-bp PCR product. The blaIMP-13

gene is not amplified by these primers. The two
HybProbes (IMP-Anch, 5¢-AGTTCATTT-
GTTAATTCAGATGCATACGTGGG-FL and
IMP-Sen, 5¢-LCRed640-ATAGATCGAGAATT-
AAGCCACTCTATTCC-PH) were designed to
group the blaIMP genes into two categories, i.e.,
blaIMP-1-like genes (blaIMP-1, blaIMP-6, blaIMP-10) and
blaIMP-2-like genes (blaIMP-2, blaIMP-8, blaIMP-15,
blaIMP-19, blaIMP-20). While the IMP-Anchor probe
perfectly matches both groups, the IMP-sensor
probe perfectly matches with the blaIMP-1 group,
but has a mismatch with the blaIMP-2 group,
resulting in different melting profiles.

Real-time PCR was performed in glass capil-
laries with a final volume of 20 lL. Each PCR
assay contained 0.5 lM each primer, 0.2 lM each
probe, 1 U of uracil-DNA-glycosylase, 2 lL of
LightCycler FastStart DNA Master Mix (Roche),
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3 mM MgCl2 and 1 lL of DNA extract. Thermo-
cycling and detection were performed in the
LightCycler 2.0 instrument, with 35 cycles of
95�C for 10 s, 48�C for 7 s and 72�C for 15 s.
Fluorescence corresponding to specific amplified
targets was measured at 640 nm after each cycle.
In order to identify the PCR products, melting
curve analysis was performed by heating to 95�C
for 3 s, annealing at 48�C for 45 s, and then slowly
heating from 48�C to 95�C with a step-mode
acquisition of fluorescence at 640 nm.

Control strains comprised a K. pneumoniae
strain with a blaVIM-1 gene and two P. aeruginosa
strains with a blaVIM-2 and a blaIMP-1 gene, respec-
tively. A single PCR containing primers and
probes for the blaIMP and blaVIM genes was
performed for each test organism. The melting
curve analysis for the blaVIM-1 and blaVIM-2 control
strains generated Tm values of 60.28�C (average of
25 separate runs; standard deviation 0.51�C) and
65.12�C (average of 25 separate runs, standard
deviation 0.75�C), respectively. The lower melting
peak for the blaVIM-1 control strain is explained by
a mismatch of the VIM sensor probe with the
DNA target. The melting curve analysis of the
blaIMP-1 control strain generated a Tm value of
52.24�C (average of 20 separate runs, standard
deviation 0.37�C). Amplification of a blaIMP-2-like
gene would have generated a Tm value of <52�C
because of the mismatch with the IMP sensor
probe.

When the assay was used to screen 100 isolates
of Gram-negative bacteria recovered from clinical
samples, all P. aeruginosa and P. putida isolates
resistant to imipenem ⁄meropenem that produced
a metallo-b-lactamase were found to carry a
blaVIM-2-like gene, while a blaVIM-1-like gene was
detected in all carbapenem-resistant isolates of
K. pneumoniae (Table 1). The real-time PCR results
were confirmed by electrophoresis of the prod-

ucts. No PCR products were amplified from the
carbapenem-susceptible isolates.

Extensive spread of blaVIM and blaIMP genes
among clinically important Gram-negative
bacteria is now being observed worldwide, with
most of these genes being located on integrons
in combination with other resistance
genes [1,4,5]. The real-time PCR protocol
described above can be used to screen for the
presence of most common blaVIM and blaIMP

genes so that their epidemiological spread can
be monitored.

SUPPLEMENTARY MATERIAL

The following supplementary material is
available for this article online at http://www.
blackwell-synergy.com:
Table S1. Results of sequence alignments for the
real-time PCR primers and the most commonly
described blaVIM and blaIMP genes
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Table 1. Summary of antimicrobial
susceptibility tests, Etests formetallo-
b-lactamase production, and real-
time PCR assays

Isolates

No. of

isolates

Carbapenem

resistance

Etest for

metallo-b-lactamases Real-time PCR

Pseudomonas aeruginosa 35 Resistant Positive blaVIM-2 like
P. aeruginosa 10 Resistant Negative Negative
P. aeruginosa 15 Sensitive Negative Negative
Pseudomonas putida 1 Resistant Positive blaVIM-2 like
P. putida 3 Sensitive Negative Negative
Klebsiella pneumoniae 21 Resistant Positive blaVIM-1 like
K. pneumoniae 3 Resistant ND blaVIM-1 like
K. pneumoniae 12 Sensitive Negative Negative
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