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Abstract

In this paper, we examine various notions of universality, which have already been proved generic.
Our main purpose is to prove that generically they occur simultaneously with the same approximative
sequence.
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1. Introduction

Let Q%C be a simply connected domain arfde H(Q). For{ € Q we denote by
N (n)
SWLD@ =) ! ,@

n= n

(z — )" the Nth partial sum off with center(.

Definition 1.1. A holomorphic functionf € H(Q) belongs to the clasg (Q) if for ev-
ery compact sek C Q° with K¢ connected and for every function : K — C
continuous onK and holomorphic inK?, there exists a sequenge,},cn of natural
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numbers such that:

supsup|S;, (f,O(@) —h(z)] — 0, n— 400
(el zeK

for every compact sat C Q.

The above class of functions, which are called universal Taylor series, was introduced in
[20] and it was proved; s and dense i (2) with the topology of uniform convergence
on compacta. 11fi 8] the following class was also introduced and progggdand dense in
H(Q).

Definition 1.2. A holomorphic functionf € H (£2) belongs to the clasg(Q) if there exists
a sequencéu, },<n Of natural numbers such that for all compact detd. C Q we have

supsup|S,, (f, )@ — f(@)| — 0, n— +oo.
(el zeL

Since H () is a complete metrizable space and bottf2) and B(2) were proveds s
and dense irH (£2), their intersection is als&; s and dense irH (€2). This argument is
valid for various notions of universality and we obviously obtain that there exist functions
which are simultaneously universal in various notions. In the past constructive proofs were
considered for the existence of universal functions and @ a long and technical proof
is given only to prove that the intersection of classes of universal functions is dense (and
not G5 dense) in H(£2). This shows us the power of proofs using Baire’s theorem. For
the importance of generic results and the role of Baire's theorem in complex, harmonic or
functional analysis we refer {a.0,8].

In this paper we are concerned with the following question “Do they exist functions,
universal in various senses, which combine these universalities harmonically i.e. with the
same approximative sequence?’[18] it was proved that it is possible to find a function
f € U ) N B(2) which realizes both approximations with the same subsequence of
partial sums of Taylor expansion of the function, i%&. = y, (in Definitions 1.1 and 1.2).

In view of the above result (which was generic) we study the same question for various
notions of universality.

Let us recall some notation and give two definitions. Followit@ 13}, if f € H(2), a
sequenceg ™ is called a strict sequence offold antiderivatives off, if for everyz € Q
the following hold:

@ =r@
and
d n-1) (=)
d_f (z) = fU™(z) foreveryn=0,1,2,....
z
Definition 1.3. Let f € H(Q) andlet £ be a strict sequence offold antiderivatives

of f. We say that the sequengé&" is a strict universal sequencerofold antiderivatives
of f if for every compact setL c Q with connected complement and every function
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¢ : L — C, continuous onL and holomorphicinL?, there exists a sequendeé, },cn
such that:

Sup|f(7)'”) — @)l — 0, n— 4o0.
zeL

Now, we may consider two sequences of complex numbers,cn and {b,},cn such
that:

e a, #0 foreveryn € N.

e Every boundary point of2 is an accumulation point ofb, },,cN-

e Foreverycompactse¥ C C there exists a natural numbeg suchthata,z+b, € Q
foreveryn € N, n>ng and for everyz € M.

Definition 1.4. A holomorphic function f € H(Q) belongs to the class

V(Q, {an}neN, {Pnlnen), if fOr every compact setk ¢ Q° with K¢ connected, for
compact setM c C with M€ connected, for every choice of compact séfs L C Q
with connected complements, for every choice of compact gets, L c Q, for every
b € 0Q and for every choice of continuous functions as follows

h:K — C h holomorphic inK?°,

w:M— C  holomorphic inM?°,

y:L — C  holomorphic inL",

¢:L— C ¢ holomorphicinL?,
there exist a sequendg,,},cy and a strict universal sequence of antiderivatiyés™ of
f such that

1 supsup|S;, (f,O@) — f(2)l — 0 as n— +oo,

(eL zeL
2. supsup|S,, (f, O(z) —h(z)] — O as n — +oo,
(el zeK
3. suplf(a,,z+ b;_n) —wi)|—20 as n — +oo,
zeM
and  |b;, —b| =0
4 sup| £ (2) = Y(2)| — 0 as n — +oo,
zel'
5 SUPU(?)M")(Z) —¢@|—0 as n — +oo.
zeL

We shall prove that the clas® (2, {a,,},eNs {Pnlnen) IS NON-empty. In fact our main
result states that this class@g; and dense i (2) (Theorem2.5). Moreover at the end
of the paper we give another definition (Definition 2.6) which is equivalent to Definition
1.4. The difference is that the sequenbg does not converge to a point di2 but it
accumulates to every point Gf¢Q2.
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Inthe above definition property 2 gfimplies thatf is a universal Taylor series. This class
of functions and similar other classes, concerning also property 1, where stui8e 20}
see also (for weaker resul{8),11,14,7] The class of functions which satisfy property 3 of
Definition 1.4 were studied ifL5] (see alsg2,7]). For a treatise in the fourth universality
see[17,5,7,6,1,4] Finally the fifth universality appeared jh3,14,1] In [16] all the above
universalities appear and a function is constructed with all the above properties, but as we
mentioned before the approximation does not occur with the same approximative sequence.
Baire’'s method leads us naturally and easily to simultaneous universalities with the same
approximative sequence of indices.

2. The classV (Q, {a,}nenNs {bn}nen) IS residual

Let D, = {z € C: |zI<m}, m =1,2,... and let {{P},cn be a sequence of
points in 02 which are dense irbQ. In addition, let{L,,},en be an exhausting family
of compact subsets i@ (see[21]). Becausd? is a simply connected domain, the sequence
{Ln}men can be chosen such th&§, is connected. Moreover €K, },,cn be a sequence
of compact subsets ¢2° such thatk ¢ is connected satisfying the following property: for
everyK C Q° compact withk ¢ connected, there exists € N such thatk C K, (see
[18]). We can also consider that for eaghthe sef{m’ : K,,, = K,,,} is infinite. Finally, let
{fj}jen be an enumeration of polynomials with coefficientslin+- i Q. Then, for every
m, £, j1, j2, j3,s andn € N we define the sek (m, ¢, j1, j2, j3, , s, n) as following:

A holomorphic functiong € H(Q) belongs toE (m, ¢, j1, jo2, j3, s, n) if it satisfies the
following four properties:

1
1 sup sup[S,(g, H(@) —g@)| < -,
CELm ZELy s
1
2. sup sup|S,(g, O — fi@@I| < =,
leL,, z€Kn s
3. sup lg(anz +by) — fj,(2) < = and |b, — | < —,
z€Dy, s N
1
4. suplg™ (@) — f@)I < =
zeLl, §

Remark. For many indicesn the above set maybe empty, but for everye N there

exists infinitely many indices: such that the set is not empty.

Lemma 2.1. For every function f € H(Q), any functionp € H(Q) and any sequence
{Znlnen there exists a strict universal sequengé™ of n-fold antiderivatives off such
that

f(*i;l)(z) — @(z) as n— 400

locally uniformly in Q, where {4, },cn is a subsequence dfi, },en-
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Proof. We only need to modify a little the proof of theorem|[it2]. In this lemma for
every function f € H(Q), a strict universal sequence™™ of n-fold antideriva-

tives of f is constructed. First we observe that in this construction subsequences of
a sequence{ f™ ),y realize all the desired approximations. We may choosg

great enough so as to obtain that the corresponding ingexbelongs to the sequence
{Zx}nen- Then subsequences of the sequeriég),cn are going to be sufficient for the
approximation. [J

Lemma 2.2. The following holds

]

V@, (anhers adee = (V) ) N
J2=1j3=1

m=1¢=1 j1=1

N (U E(m, £, j1, j2, j3. 5, n))

s=1 \n=1

Proof. We set

»~0NNN ﬁﬁ(Uﬂm@sz Js,sn>>

m=14=1 j1=1 jo=1 ja=1s=1 \n=1

The inclusionV (2, {a,},eN, {Pr}nen) C A is Obvious.

Suppose now that € A. We will prove thatg € V(Q, {a,}neN, {PrlneN)-

Itis easy to see that there exists a sequdige,<n Of natural numbers such that properties
1-4 of Definition 1.4 are satisfied (see similar proof§li@,19])).

In view of the previous lemma, we may realize the fifth approximation with a subsequence
{Zphnen OF {Anlnen and the result follows. O

Lemma 2.3. For every m, £, j1, j2, j3, s andn € N the set
E@m, ¢, j1, j2, j3, s, n) isopeninH (Q) in the topology of uniform convergence on compact
subsets of2.

Proof. The setE(m, ¢, j1, j2, j3, s, n) is the intersection of sets which have been proved
open (or are obviously open) H (2) thus itis open (seR0,18,7,4). O

Lemma 2.4. The sero 1 E@m, ¢, j1, j2, j3, s, n) is dense inH (Q) for every m, £, ji,
n=
Jo, jaand s € N.

Proof. Let f € H(), L C Q compact anct > 0. We will find a functiong €

U EGn. €, ju, j2, ja 5, m) such that sup, | £(2) — g(2)] < e
Let k > m be a natural number such that: C L.
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There existz; € N andr > 0 such that

Dy +b, CQ,
Dy + by C D(b, ) 1)
and
(Lx UKy)N(anDy +by) =0 (2)

for everyn>nj.
Furthermore, we set

My =Ly UD®,r) UKy, (3)
and
T = suplz|. (4)
zEM1

. N . L
Thus if fj;(z) = Zk—o cr(z — (o)* where(y € LY, is fixed, we set

)k+n

Moaiz-0
p"(Z)zg(k+1)~--(k+n)

and the following holds:

P = fis(@) - ®)

Observe thaff; is to be approximated by a derivative, thereby (5) serves this purpose.
Next we present some propertiesggf. In particular

(T + ICol)"

SUP [ ()] < —— = Z el (T + 180D* (see (3), (4))

ZEM1 '

Thus
sup |pn(z)] — 0O asn — +o00. (6)
zZEM1

If R = 4T > 0 andM> is a compact set such th@(d D((, R) C M>, we have the
following: S

¢ pf.")(é)
sup sup [S,(pn. O(2)| = sup sup z—0OF
QELm €M1 CELm zeM1 k 0
¢ Ry | Pn(w)]
< sup sup QUED“’? ¢
z€Ly ZEMlk 0 R

T k
< sup |pn(w)|2< ) <2 sup |p,(w)| .

weM>o weMp
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One can easily conclude (see the proof of (6)) that,syp | p» (w)] "ZFo.
Therefore

sup sup [Su(pn, O(@)| — 0  asn — +o0. )
(eL, zeM

Since L, K, are disjoint compact sets with connected complements, we may apply
Mergelyan’s theorem oh U K, to find a polynomialp such that

sup|f(2) — p(a)l < % ®)
(el
and
1
sup |fj,(2) — p(2)| < > 9
zek,,

Finally, for eachn > max{n1, degp} we use Mergelyan’s theorem again, on the compact
set(a, Dy, + by) U L U Ky, to find a polynomialy,, such that

sup
z€dy Dy +by,

— 0 asn — +oo (10)

— by,
P(@) + P — £, (Z - ) — gu(2)

n

(so that we approximatg;,; recall thata, # O for everyn € N) and

L 2r\F o
sup  [g(2)| maXiZ (7) . n—} — 0  asn — +oo, (11)

zeLiUKp o P

where

dist(L,, aLerl)
P72
Hence, fom > max{n1, degp, degfj,} we set

8n(2) = pn(2) + p2) — gqn(2) .

We shall prove that for some largethe polynomiag,, is a suitable function to serve our pur-
poses (i.e g, satisfies the four properties in order to belong to thé&set, ¢, j1, j2, j3, s, n)
and approximates the functigfy.

More specifically for the first property of the definition of the set

E@m, ¢, j1, j2, j3, s, n) we have

sup sup [S,(gn, O(2) — gn(2)l

(ELW z€Ly
< sup sup [Su(pa, O]+ sup |pa(2)]
CELW Z€Lm €Ly,

+ sup sup [Su(gn, O(2)| + suplg. ()| .

(eL,, z€Ln z€Ly,
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Using Cauchy estimates we obtain

sup  sup [Su(gn, O(2)| = sup  sup
éELm zeL, UK, éELm zeL, UK,

n (k)
ZQn (O (z — C)k

k=0

SUR, cpz o dn(w)l
< sup  sup webCp) T

{eLy z€LmUKm ;g pk
T k
< sup [ga(2)l Z ( ) (recall (4)).
ZGLm+1 p
Since the last expression tends to g as +oo (see (1) and due toT) and @) we obtain
sup sup |S,(gn. () —gn(z)] — 0O asn — 400 . (12)
(eL,, z€Ln

For the second property of we have:

sup sup [, (gn, (2) — [, (2)]

CELm z€Kpy

< sup sup Sy (pa, O(ZH + sup sup [S,(gn, C)(Z)|
(eLy z€Knm leL,, z€Kn

+ sup | fi(z) — p(2)] . (13)

7€k,

Combining previous result with relations (7) and (9) we have

1
sup sup [Su(gn, O(2) — fj ()] < o T o). (14)
éELm zeKpy
Relation (10) is enough to verify the first inequality of property 3.
Now for the fourth property we have

Py (2) = f5,(z) and g,(z) = pu(2) + p(z) — gu(2) it follows that
(n) (n) |61;5")(Z)| n— o0
suplg,” (2) — fip(2)| = suplg,” ()|< sup p—nn! ~0

{eLm ZE€Ly, z€Lyt1

(see also (11)).
Obviously (see relations (7) and (8)):

SUp| £ (z) — gn(2)] < g +o(D).

zel

Now since the sequencg,},cn is dense indQ2 there exists a subsequeng®,, }ren
which converges td“). Thus we may choose, large enough such that the functigp,
satisfies all requirements.[J

Theorem 2.5. The seV (Q, {a,},en, {bulnen) IS G5 and dense itH () with the topology
of uniform convergence on compacta.
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Proof. Using Lemmasg2.2-2.4 and due to the fact thatf (Q2) is a complete metrizable
space, the result follows from Baire’s theoreni.]

We would also like to give another, equivalent definition of the class
V(€ {an}, {bn}).

Definition 2.6. A holomorphic function f € H(Q) belongs to the class
V(Q, {an}neN, {bnlnen), if fOr every compact setk ¢ Q° with K¢ connected, for
compact setM c C with M connected, for every choice of compact séts L C Q
with connected complements, for every choice of compactkefs, L C 2 and for every
choice of continuous functions as follows

h:K — C h holomorphic inK°,

w:M— C o holomorphic inM?°,

y:L — C Y holomorphic inL",

p:L—C @ holomorphic inZ?,

there exist a sequende,, },ey and a strict universal sequence of antiderivatiyés™ of
f such that

1 supsup|S,, (f, O(@) — f()| — 0 as n — +oo,

tel zel
2. supsuplS;, (f. O(z) —h()| — 0  as n — 400,
(el zekK
3. suplf(a;,z+b,,) — w@|—0 as n — +oo,
zeM
and {b), }nen is dense indQ
4. supl £ (2) = Y(z)] — O as n — 400,
zel’
S. supl £ (2) — p(z)] — 0 as n — +oo.
ZEZ
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