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Improved methods for detecting individual patients recover
ing from myocardial infarction who are at high risk for 
sudden cardiac death are essential for reducing mortality 
from ventricular arrhythmias. During the past decade, many 
investigators have recorded low-amplitude, high-frequency 
waveforms and altered frequency components in the termi
nal QRS complex in laboratory animals (1,2), and patients 
prone to sustained ventricular tachycardia (3-16). These 
microvolt level waveforms are termed late potentials. The 
reported prevalence of abnormal signals has ranged from 
60% to 90%, depending on the method of signal processing, 
the definition of late potentials, and the patient groups 
studied (6,8,10). Conversely, the incidence of abnormal 
signals in normal subjects is quite low and has been reported 
from 0% to 7% when essentially the same recording tech
niques were used (17,18). 

The technique for recording these abnormal signals is 
called high-resolution electrocardiography. Since the tech
nical aspects of the available commercial systems differ 
considerably, standardization of recording units and the 
algorithm of analysis by the use of standard signals and 
digitized electrocardiogram (ECG) examples is strongly sug
gested to make results of these devices comparable. The 
impact of high-resolution electrocardiography on patient 
care will ultimately depend on its capabilities in identifying 
patients at high risk of ventricular tachyarrhythmias. 
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The purpose of this task force committee was to establish 
standards for data acquisition and analysis and to define the 
role of high-resolution electrocardiography in clinical decision 
making. In many areas, a consensus on standards was easily 
achieved. However, the committee recognizes that high
resolution electrocardiography is a new field that is under 
continuing investigation. Accordingly, the committee believes 
that recommendations in some areas are premature and addi
tional studies are required before firm guidelines can be estab
lished. 

Pathophysiological Basis of Late Potentials 
Results of laboratory (19-30) and clinical (31-37) studies 

implicate reentrant mechanisms, at least in part, in the 
genesis of sustained ventricular tachycardia complicating 
ischemic heart disease. Abnormal ventricular conduction 
during sinus rhythm has been observed in regions bordering 
the infarct (31,32,38-43) and appears temporally related to 
the development of ventricular tachycardia (20-22,39-43). 

Myocardial activation may be delayed because the path
way of excitation is lengthened, conduction velocity is 
slowed, or both. Structural features may be critical determi
nants of delayed activation (40,41). Clinically, most myocar
dial infarcts do not result in complete transmural necrosis 
(42). The amount of surviving myocardium is variable and 
may be located in subepicardial, subendocardial, and intra
mural regions. Islands of fibrosis create barriers that 
lengthen the excitation pathway. The increased separation of 
myocardial bundles and disruption of their parallel orienta
tion by fibrosis distort ventricular activation (40,41). How
ever, the action potentials of surviving myocardial cells may 
appear relatively normal (40). Extracellular electrograms 
recorded from the endocardial surface from such bundles 
usually have small amplitudes because of the intervening 

0735-1097/91/$3.50 



1000 ACC POLICY STATEMENT 

layers of fibrous tissue and small diameter of the muscle 
bundles. When individual bundles are separated by connec
tive tissue septa, heterogeneous patterns of activation may 
occur and may result in fragmentation of local extracellular 
electrograms (40,42). 

Late potentials on the body surface appear to be a 
manifestation of delayed activation of myocardium. They 
have been recorded during experimental infarction in dogs 
and corresponded in time with fragmented and delayed 
electrograms recorded from the epicardium (1,2,20,21). In 
patients, late potentials recorded from the body surface have 
been accompanied by late, fragmented electrograms re
corded directly from the heart (42,44). Although fragmented 
electrograms can be recorded from most patients with re
mote infarction, including those with normal high-resolution 
ECGs, delayed activation is more profound and detectable at 
more cardiac sites from patients with sustained ventricular 
tachycardia, compared with those without sustained ventric
ular tachycardia (31,44-46). 

The finding of fragmented local electrograms during di
rect catheter mapping or late potentials on the body surface 
may indicate that the substrate for reentry is present (44). 
Although late potentials seem to represent a fixed substrate for 
reentrant excitation, additional triggering mechanisms, such as 
one or more premature beats, as well as other modulating 
factors, such as the autonomic nervous system or ischemia, 
may also be required for spontaneous manifestation of reentry. 

Technical Considerations 
Electrodes and Electrocardiographic Leads 

Silver-silver chloride electrodes have the lowest half-cell 
potential and are the electrodes of choice. The subject's skin 
should be thoroughly cleansed with alcohol or another 
solvent and abraded to decrease impedance, which gener
ates noise. Ideally, impedance should be measured and be 
less than 1,000 n. 

Most studies in the time domain have used a bipolar X, Y, 
and Z lead system, which the committee recognizes as a 
standard (6). The X lead should be positioned at the fourth 
intercostal space in both midaxillary lines. The Y lead should 
be positioned on the superior aspect of the manubrium and on 
either the upper left leg or left iliac crest. The Z lead should be 
at the fourth intercostal space (V2 position), with the second 
electrode directly posterior on the left side of the vertebral 
column. Positive electrodes are left, inferior, and anterior. 

The results of high-resolution electrocardiography are 
lead dependent. Accordingly, criteria and approaches estab
lished with one lead system may not be applicable to other 
systems. The Frank leads and modified uncorrected orthog
onal leads have been used in the frequency domain (47). 
Additional studies are required to determine the optimum 
lead system. 

Amplifiers and AID Conversion 
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Electrocardiographic signals should be recorded with a 
low-noise amplifier. The American Heart Association stan
dards concerning leakage current should be followed (48,49). 
The amplifiers need not be protected against damage during 
defibrillation since high-resolution electrocardiography is 
not used for arrhythmia monitoring. Notch filters for power 
line interference should not be used. The minimum band 
pass should be from 0.5 Hz to 250 Hz, and the voltage 
calibration should be accurate to ±2%. The range oflinearity 
for input signals should not be less than ±2.5 mY. 

Standard gain and calibration are also necessary for 
quantifying absolute differences in the magnitudes of specific 
frequencies and are necessary for relating changes in specific 
frequencies to the cardiac source when using Frank or other 
corrected ECG leads. 

Data should be sampled at no less than 1,000 Hz and AID 
converted with at least 12-bit precision. All ECG leads 
should be recorded and converted concurrently. Although 
there is no definitive evidence to support the concept that 
frequencies above 500 Hz contribute to the differentiation of 
patient groups, sampling below 1,000 Hz may preclude 
recovery of potential signals of interest. 

Signal Averaging 

The signal-averaging technique requires that a new beat 
first be aligned against previous beats (i.e., template) before 
averaging. The computer algorithm that facilitates the align
ment should be capable of excluding ectopic beats or grossly 
noisy signals. Testing of new beats should be performed 
across all input leads. The input beat should be aligned by 
matching it against a template of averaged beats. If cross 
correlation is used for alignment, then correlation of at least 
40 msec should be performed on the most rapidly changing 
part (upstroke and downstroke) of the QRS complex, and a 
correlation of greater than 98% should be required for 
acceptance. Beats immediately after a rejected beat should 
be rejected as well. Ideally, the input data and the template 
beat should be displayed as well as the proportion of the 
number of rejected beats. Signal averaging of all leads should 
be calculated in real time, and the system should be able to 
average at least 100 beats/min. There should be a permanent 
means of storage for the averaged waveforms. 

High-frequency signals are attenuated during signal aver
aging if alignment of incoming beats is not exact (trigger 
jitter) (50). Trigger jitter, measured with an artificial QRS 
complex, should be less than 1.0 msec and ideally, 0.5 msec. 

Noise Reduction 

Adequate noise reduction is crucial for analysis of high
resolution ECGs (51). The extent of noise reduction primar
ily depends on the number of cycles averaged, the baseline 
level of noise at the start of the study session, and the type 
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of filters used. Careful preparation of the skin, patient 
relaxation, and warm surroundings are essential for minimiz
ing patient-generated noise. 

For time-domain analysis, the committee recommends 
that noise be measured in the averaged signal over an 
interval of at least 40 msec in the ST or TP segment with a 
four-pole Butterworth filter. With this approach, noise 
should be less than 1 f-L V with a 25 Hz high-pass cutoff or less 
than 0.7 f-L V with a 40 Hz high-pass cutoff as measured by the 
root mean square method from a vector magnitude of the X, 
Y, and Z leads. The segment for noise level analysis should 
be determined automatically. The inherent noise level of the 
recording should be low so that adequate noise reduction can 
be achieved by averaging 50-300 beats. Averaging a greater 
number of beats to obtain adequate noise reduction indicates 
that baseline noise is excessive for optimum recording. 

Guidelines for noise measurements with other filters or 
frequency analysis have not yet been established. Ideally, 
background noise should first be characterized as a function 
of frequency. The noise level and method of determination 
should be stated in all studies. 

Filter Characteristics 

The band pass and characteristics of the filter are crucial 
to time-domain results since they determine the configura
tion and amplitude of the ECG signals to be analyzed (52). 
The bidirectional filter has been used in most studies in the 
time domain (6). This filter was designed to avoid ringing and 
other artifacts and was derived from a four-pole Butterworth 
filter (24 dB/octave). A high-pass corner frequency of 25 or 
40 Hz is most commonly used. Because controversy contin
ues over which cutoff is best, the committee recommends 
that the high-pass corner frequency be programmed by the 
user. 

The committee does not want to exclude development or 
implementation of other filters that may improve detection of 
late potentials. Implementation of new filters will necessitate 
that normal and abnormal values be redefined since results 
obtained with one mode of signal processing may not be 
comparable to those obtained with other processing tech
mques. 

For studies with frequency analysis, the band pass, at a 
minimum, should be 0.5-300 Hz. With a 1,000 Hz sampling 
rate, aliasing of frequencies above 500 Hz occurs. An 
infinite-impulse response low-pass filter of 250 Hz may 
distort phase below 250 Hz. No notch filters for power line 
interference should be incorporated into the system's hard
ware or software. 

Ambulatory Electrocardiographic Tapes 

Guidelines for deriving high-resolution electrocardio
grams from Holter tapes have yet to be established, although 
early experience with this approach is promising (53). 
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Results of most studies have been based on analysis of a 
vector magnitude of the filtered leads, V x2 + y2 + Z2, called 
the filtered QRS complex (6). The committee recognizes the 
filtered QRS complex as one standard. The end of the filtered 
QRS complex is defined as the midpoint of a 5 msec segment 
in which mean voltage exceeds the mean noise level plus 
three times the standard deviation of the noise sample. The 
end point and onset of the filtered QRS complex should be 
verified visually, and the system should allow manual adjust
ment of the automatically determined end points. Analysis 
should include determination of 1) the filtered QRS duration 
(6); 2) root mean square voltage of the terminal 40 msec of 
the filtered QRS (6), and 3) amount of time that the filtered 
QRS complex remains below 40 f-L V (54). The definition of a 
late potential and the scoring of a high-resolution ECG as 
normal or abnormal have not yet been standardized. Repre
sentative criteria include that a late potential exists (using 
40 Hz high-pass bidirectional filtering) when 1) the filtered 
QRS complex is greater than 114 msec, 2) there is less than 
20 f-L V of signal in the last 40 msec of the vector magnitude 
complex, and 3) the terminal vector magnitude complex 
remains below 40 f-LV for more than 38 msec (55,56). Other 
criteria have been used, and their predictive value varies 
with the specific criterion applied and the prevalence of 
disease in the popUlation studied. For example, a late 
potential was defined as the last 40 msec of the vector 
magnitude complex of less than 25 f-L V at 25 Hz and less than 
16 f-LV at 40 Hz high-pass filtering. Each laboratory must 
define its own normal values. 

Although the committee recognizes analysis of vector 
magnitude as having the largest volume of comparative 
publications, it is anticipated that further refinements and 
other approaches may improve the diagnostic power of the 
high-resolution ECG. The high-resolution electrocardiog
raphy system should be flexible enough to allow incorpora
tion of new developments; these developments may include 
other types of filters, analysis of individual leads, alternate 
definitions of the end points of QRS, or of ECG intervals 
other than the terminal 40 msec of the filtered QRS complex. 
The differences in the algorithms for defining the end of QRS 
seem to be responsible for the discordance between various 
devices (57,58). 

Frequency Analysis 

A sequence generated by sampling a time-domain signal 
like the ECG can be represented in the frequency domain by 
taking the fast Fourier transform. Even though the informa
tional content in time- and frequency-domain representa
tions of a periodic waveform is equivalent, the extent to 
which each can depict components of interest depends on 
the signal being analyzed. The Fourier transform is a com
plete description of the ECG and contains information that 
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may not be seen in the output of a particular fixed-band filter. 
Frequency analysis offers potential advantages for identifi
cation and characterization of signals that differentiate pa
tients with from those without sustained ventricular tachy
cardia. Most studies have calculated the fast Fourier 
transform to estimate scalar-lead spectra of the terminal 
QRS and ST segment of signal-averaged Frank X, Y, Z or 
uncorrected orthogonal leads 01-16,47,59). The results have 
often been expressed as indexes of the relative contributions 
of specific frequencies that comprise these ECG segments. A 
window function such as the four-term Blackman-Harris 
window has been used to diminish spectral leakage caused 
by edge discontinuities. 

The development of frequency analysis of high-resolution 
ECGs is proceeding rapidly (14,47,59-63). Key issues that 
affect the spectra of ECG signals are being investigated (64). 
For example, the frequency content of ECG signals is 
spatially variable and thus lead-dependent. Indexes derived 
from spectra of uncorrected leads may not be comparable to 
end points or approaches developed using corrected leads. 
Analysis of multiple segments (spectrotemporal mapping) 
may allow better separation between noise and late poten
tials (14,60). The value of autoregressive models of spectral 
estimation (65,66) and analysis of the entire cardiac cycle 
with methods that obviate window functions are currently 
being determined (62,63). Accordingly, the committee be
lieves it is premature to standardize this approach at present. 

Beat-to-Beat Analysis 

Ensemble signal averaging is predicated on the assump
tion that signals of interest are reproducible throughout the 
averaging process. Electrophysiological abnormalities may 
change on a beat-to-beat basis, resulting in a failure of 
signal-averaged recordings to identify changes related to 
arrhythmogenesis. Results of pilot studies have indicated the 
feasibility of detecting ventricular late potentials using beat
to-beat analysis of ECG signals (67,68). Adequate noise 
reduction remains a major challenge. Noise may be reduced 
by spatial averaging of data from a number of closely spaced 
electrode sites. This approach is limited by torso size, 
electrode size, and the perimeter of the chest field having 
similar polarity. Additional methods of signal-to-noise en
hancement are required. At present, the committee believes 
it is premature to recommend single-beat analysis for clinical 
use, although the committee is optimistic about its ultimate 
applicability. 

Potential Indications for Use in Patients 
Vulnerability to Sustained Ventricular Tachycardia 

Retrospective studies have demonstrated distinguishing 
features in the high-resolution ECG that differentiate postin
farction patients with and without sustained ventricular 
tachycardia (3,6-16,47,54,60,69-75). Several prospective 
studies in postmyocardial infarction patients have confirmed 
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the increased likelihood of spontaneous sustained ventricu
lar tachycardia or sudden cardiac death in patients recover
ing from myocardial infarction who have an abnormal high
resolution ECG (76-83). Results of multivariate analysis 
have indicated that risk stratification based on the high
resolution ECG is independent of more traditional determi
nants of risk that include left ventricular ejection fraction or 
the presence and complexity of ventricular ectopy (72). 
Based on results of published studies, 14-29% of patients 
recovering from myocardial infarction with abnormal high
resolution ECGs will experience sustained ventricular tachy
cardia within the first year, compared with only 0.8-4.5% of 
those with a normal high-resolution ECG (84). Another 3.6% 
to 40% of patients with late potentials will die suddenly 
compared with 0% to 4.3% of patients without late potentials 
(84). Moreover, the predictive accuracy of the high
resolution ECG can be increased by combining its results 
with measures of left ventricular function (72,75,79,83). 
Thus, the high-resolution ECG is a sensitive, noninvasive 
method for risk stratification of patients recovering from 
myocardial infarction. However, the optimum time after 
myocardial infarction for recording the high-resolution ECG 
for this purpose has not been defined (85-87). Some studies 
suggest that recordings obtained during the second week 
after myocardial infarction have the highest predictive accu
racy for arrhythmic events (83). 

At present, sufficient data are not available for using 
time-domain analysis for detecting vulnerability to sustained 
ventricular arrhythmias among patients manifesting right or 
left bundle branch block patterns during sinus rhythm (83). 
Based on results obtained from patients with known sus
tained ventricular tachycardia, frequency analysis may offer 
promise for identifying patients at risk for sustained ventric
ular tachycardia regardless of the presence or absence of 
bundle branch block during sinus rhythm (14-16,47). 

The relatively low positive predictive accuracy of the 
high-resolution ECG in postmyocardial infarction patients 
emphasizes the need for continued methodological refine
ments that will increase its diagnostic power. More impor
tant, improved understanding of the interaction of other 
factors, including autonomic tone, residual ischemia, elec
trolyte imbalance, and ventricular ectopy with the electro
physiologicaUanatomic derangements detected by analysis 
of the high-resolution ECG should further increase the 
predictive accuracy of this promising noninvasive approach. 

Risk stratification of patients with remote infarction and 
non sustained ventricular tachycardia appears promising. 
Studies have demonstrated that patients with abnormal 
high-resolution ECGs are more prone to inducible sustained 
monomorphic ventricular tachycardia (75,88-90). Prospec
tive studies of patients with remote myocardial infarction 
and spontaneous non sustained ventricular tachycardia in 
which the end point of follow-up is spontaneous ventricular 
tachycardia, ventricular fibrillation, or sudden cardiac death 
have recently been reported and suggest that the high
resolution ECG could be used for risk stratification and 
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management of patients with nonsustained ventricular 
tachycardia (91). The clinical value of high-resolution EeGs 
for the purpose of prospectively detecting patients with 
nonischemic cardiomyopathy, hypertrophic cardiomyopa
thy, or mitral valve prolapse at risk for sustained ventricular 
arrhythmias has not yet been established. 

At present, it is the opinion of the committee that the 
high-resolution EeG has an established value for risk strat
ification after acute myocardial infarction. However, the 
committee wants to emphasize that management strategies 
for postmyocardial infarction patients who have abnormal 
high-resolution EeGs have not yet been defined. 

Unexplained Syncope 

In patients with remote infarction, sustained monomor
phic ventricular tachycardia is sometimes suspected as the 
cause of unexplained syncope. Several prospective studies 
have demonstrated that patients with unexplained syncope 
and abnormal high-resolution EeGs are more prone to 
inducible sustained ventricular tachycardia during pro
grammed ventricular stimulation (90,92-94). This should not 
be construed as a recommendation for requiring an abnormal 
high-resolution EeG before electrophysiological study since 
ventricular tachycardia may be inducible in certain patients 
in the absence of an abnormal high-resolution EeG. Further
more, mechanisms of syncope other than ventricular 
tachycardia may be identified with appropriate electrophys
iological studies. The extent of the clinical utility of the 
high-resolution EeG for this application has not yet been 
completely defined. 

Postoperative Patients 

Patients with a previously positive high-resolution EeG 
who have undergone surgery for recurrent ventricular tachy
cardia or fibrillation in whom the high-resolution EeG 
reverts to normal after surgery have a high likelihood (about 
90%) of no recurrence of these arrhythmias (95,96). This fact 
may help identify postoperative patients who do not neces
sarily need follow-up electrophysiological studies to test for 
inducibility of previous ventricular arrhythmias (95,96). 

Future Applications 

Preliminary studies suggest that the high-resolution EeG 
may be helpful in detection of acute rejection of cardiac 
transplants (61,97), or prompt recognition of myocardial 
reperfusion in patients with acute myocardial infarction after 
treatment with thrombolytic agents (98-101). 

Further refinements in the methodology may be neces
sary before the potential of analysis of the high-resolution 
EeG for these purposes is fully appreciated. 
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Summary 
Sufficient data are available to recommend the use of the 

high-resolution or signal-averaged electrocardiogram in pa
tients recovering from myocardial infarction without bundle 
branch block to help determine their risk for developing 
sustained ventricular tachyarrhythmias. However, no data 
are available about the extent to which pharmacological or 
nonpharmacological interventions in patients with late 
potentials have an impact on the incidence of sudden cardiac 
death. Therefore, controlled, prospective studies are re
quired before this issue can be resolved. As refinements in 
techniques evolve, it is anticipated that the clinical value of 
high-resolution or signal-averaged electrocardiography will 
continue to increase. 
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