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Consider a system that consists of several components. Shocks arrive according
to a counting process (which may be non-homogeneous and with correlated inter-
arrival times) and each shock may simultaneously destroy a subset of the com-
ponents. Shock models of this type arise naturally in reliability modeling in dynamic
environments. Due to correlated shock arrivals, individual component lifetimes are
statistically dependent, which makes the explicit evaluation of the joint distribution
intractable. To facilitate the development of easily computable tight bounds and
good approximations, an analytic analysis of the dependence structure of the
system is needed. The purpose of this paper is to provide a general framework for
studying the correlation structure of shock models in the setup of a multivariate,
correlated counting process and to systematically develop upper and lower bounds
for its joint component lifetime distribution and survival functions. The thrust of
the approach is the interplay between a newly developed notion, majorization with
respect to weighted trees, and various stochastic dependence orders, especially
orthant dependence orders of random vectors and orthant dependence orders of
stochastic processes. It is shown that the dependence nature of the joint lifetime is
inherited from spatial dependence and temporal dependence; that is, dependence
among various components due to simultaneous arrivals and dependence over dif-
ferent time instants introduced by the shock arrival process. The two types of
dependency are investigated separately and their joint impact on the performance
of the system is analyzed. The results are used to develop computable bounds for
the statistics of the joint component lifetimes, which are tighter than the product-
form bounds under certain conditions. The shock model with a non-homogeneous
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Poisson arrival process is studied as an illustrative example. The result is also
applicable to the cumulative damage model with multivariate shock arrival pro-
cesses. � 2000 Academic Press
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1. INTRODUCTION

The purpose of this paper is to provide a general framework in which to
study the correlation structure of shock models in the setup of a multi-
variate, correlated counting process and systematically develop upper and
lower bounds for the joint component lifetime distribution and survival
functions.

Consider the following shock model of a system consisting of s com-
ponents with component index set E=[1, ..., s]. Assume that a counting
process [N(t), t�0] governs the occurrence of shocks of multiple types
that are fatal to the system components, where the counting process may
be non-stationary (due to the impact of dynamic environments) and have
dependent interarrival times. With probability PK, where K�E and
�K�E PK=1, an arriving shock simultaneously destroys all the com-
ponents j # K that are still alive but all of the other components j # E&K
that are still alive survive. Such a shock is called a type-K shock. Note that
with probability P<, an arriving shock is a type-< shock, which means
that all the components in the system survive at the arrival epoch. Let
[NK (t), t�0] denote the type-K shock arrival process, determined by
[N(t), t�0] and PK, K�E. Let Tj denote the life length of component j
for j # E. Then

Tj=inf[t�0 | NK (t)�1, j # K�E], j # E. (1.1)

In general, T=(T1 , ..., Ts) are statistically dependent, due to simultaneous
component failures and the dependent nature of the shock arrival process.

A special case of the above model was first introduced in Marshall and
Olkin (1967), where type-K shocks with rate *K arrive at the system accor-
ding to independent Poisson processes, <{K�E. The joint distribution
of T defined as in (1.1) is known as the Marshall�Olkin multivariate
exponential distribution with a set of parameters [*K, <{K�E]. Equiv-
alently, one may view the shock model as governed by a Poisson shock
arrival process N(t)=�<{K�E NK (t) with rate *=�<{K�E *K, and an
arriving shock is of a type-K shock with probability PK=*K�*, K{<,
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K�E. The Marshall�Olkin distribution, one of the most widely discussed
multivariate lifetime distributions, plays a fundamental role in reliability
modeling and survival analysis (Barlow and Proschan, 1981) and also is a
prelude to recent research interest in modeling multivariate failure systems
in dynamic environments (Singpurwalla, 1995). The s-dimensional
Marshall�Olkin distribution can be computed explicitly and it is positively
associated (see, for example, Barlow and Proschan, 1981). It is known that
if a random vector is associated, then its joint distribution (survival) func-
tion is bounded below by the product of its marginal distribution (survival)
functions (Tong, 1980).

However, if we move away from the Poissonian assumption, the
statistics associated with T and other performance measures are no longer
easily accessible. In studying such correlated systems operating in a ran-
dom environment, we want to know how the dependence structure of the
component lifetime vector T varies in response to the change of environ-
mental input parameters (such as the probability laws that govern the
shock arrival process and the pattern of simultaneous failures). For
example, if both [PK, K�E] and [N(t), t�0] become more dependent in
some sense (e.g., shocks are more synchronized and the interarrival times
become more autocorrelated), then how and in what sense do these
changes affect the dependence structure of the component lifetime vector
T? Are the components of T still positively associated under a counting
shock arrival process, regardless of the properties of [PK, K�E] (the
answer is affirmative if [N(t), t�0] is a Poisson process)? If not, then
under what conditions and in what sense are the components of T
positively and negatively dependent? What are the advantages and disad-
vantages brought into the system by positive and negative dependence? To
answer these questions, a structural dependence analysis that does not rely
on the specific assumptions of the shock arrival process is desirable. Such
an analysis will not only be helpful for the efficient and effective com-
ponent�modular design and failure process control of reliability systems,
but will also provide a vehicle for the development of easily computable,
tight bounds for the statistics of the joint lifetimes and other system perfor-
mance measures whose explicit computations are intractable.

The thrust of our approach is the interplay between a newly developed
notion (Xu and Li, 1998; Li and Xu, 1999), majorization with respect to
weighted trees, and various stochastic dependence orders, especially orthant
dependence orders. Specifically, we consider the random vector (called the
shock loading vector) characterized by the parameter set [PK, K�E]. We
view [PK, K�E] as a weighted tree and establish several partial orders
between two weighted trees. By systematically varying the parameters of a
tree, we can obtain the shock loading vector that is positively upper
(respectively, negatively upper, positively lower, and negatively lower)
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orthant dependent (PUOD) (respectively, NUOD, PLOD, and NLOD).
We also introduce several notions of orthant dependence in time for a real-
valued stochastic process, which are weaker and broader than the notion
of association in time (Esary and Proschan, 1970; Lindqvist, 1988). These
notions of orthant dependence in time for the shock arrival process allows
us to compare the structural difference of two shock arrival processes and
to characterize their autocorrelation properties. Our method yields several
structural results that are worth special attention.

1. We show that, unlike the Marshall�Olkin distribution, the joint
component lifetime vector with a counting shock arrival process is not
necessarily positively associated. Indeed, we illustrate that the component
lifetime vector can even be negatively orthant dependent (see Remark 5.6).
In the literature, association has been used extensively to study the positive
dependence relation among components of a random vector and to develop
the product-form lower bounds for its distribution and survival functions
(see, for example, Baccelli and Makowski, 1989; and Szekli, 1995).
However, we find that the notion of association is not only difficult to
verify, but also fails to be valid in many applications. Instead, here we
resort to the notions of positive and negative orthant dependence of a ran-
dom vector. Using majorization of weighted trees as a tool, we are able to
provide parametric characterizations of these notions and to study the
dependence structure of the joint component lifetimes under weaker and
broader conditions.

2. We show that the dependence nature of the joint lifetime vector T
is induced by the superposition of two types of dependence; dependence
among various components due to simultaneous arrivals and dependence
over different time instants introduced by the shock arrival process. Such
spatial dependence and temporal dependence can be studied separately and
their combined effect characterizes the dependence nature of the perfor-
mance of the system.

3. We derive the upper and lower bounds of the distribution and sur-
vival functions of the joint lifetime vector T. We identify the conditions
under which the bounds outperform the product-form bounds and show
that the improvement can be significant when the number of components
is large or individual component failures rates are high.

4. We show that, of the shock loading vectors with identical
marginal distributions, the shock loading vector that is both NUOD and
PLOD is the most desirable among the four possible combinations PUOD
and PLOD, PUOD and NLOD, PLOD and NUOD, and NUOD and
NLOD, in the sense that it stochastically prolongs the times until the first
and last components fail, whereas the shock loading vector that is both
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PUOD and NLOD is the least desirable among the four combinations, in
the sense that it stochastically shortens the times until the first and last
components fail. Loosely speaking a NUOD (PUOD) shock loading vec-
tor is less (more) likely to destroy at least all the components in set K, for
any K�E, than its independent counterpart does, and hence the lifetime
until the last component fails with the NUOD (PUOD) shock loading vec-
tor is more likely to be larger (smaller) than that with the independent
shock loading vector. Similarly, a PLOD (NLOD) shock loading vector is
less (more) likely to destroy at most those components in set K, for any
K�E, than its independent counterpart does, and hence the time until the
first component fails with the PLOD (NLOD) shock loading vector is
more likely to be larger (smaller) than that with the independent shock
loading vector. It is a common perception that positive correlation can
enhance the system performance. However, our result demonstrates that the
system performance can benefit from positive as well as negative dependence.

Some previous study on shock models with simultaneous component
failures can be found in Shaked and Shanthikumar (1986) and the refer-
ences therein. Olkin and Tong (1994) and Shaked and Shanthikumar
(1997) studied some classes of multivariate distributions arising from ran-
dom vectors with common values. Shaked and Shanthikumar (1997) also
obtained some dependence comparison results using the supermodular
orders (also see Tchen, 1980). Li and Zhu (1994) discussed a similar fatal
shock model where the shock arrival processes are independent renewal
processes with NBU (or NBUE) interarrival times. They obtained some
computable bounds for (T1 , ..., Ts) using the increasing concave ordering
method. In contrast, the bounding methodology used in this paper is the
orthant dependence ordering with fixed one-dimensional marginals. This
enables us to obtain the tighter bounds under more general assumptions.

The organization of this paper is as follows. Section 2 summarizes some
preliminaries about orthant dependence comparisons and tree majoriza-
tions. Section 3 discusses the dependence structures of shock loading vec-
tors and shock arrival processes. Section 4 considers the impact of the two
types of dependence on the performance of the component lifetime vector.
Section 5 derives several bounds for the statistics of the component lifetime
vector. The shock model with non-homogeneous Poisson shock arrivals is
also studied there as an illustrative example. Section 6 discusses several
generalizations of our model.

Throughout this paper, the terms ``increasing'' and ``decreasing'' mean
``nondecreasing'' and ``nonincreasing'', respectively, and the existence of
expectations is assumed without explicit mention. The inequalities in two
separate cases such as A>a (A�a) are always written in the compact
form A>(�) a.
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2. PRELIMINARIES

In this section we first review the definitions of various dependence
orders and related properties. We then introduce the notion of majorization
of weighted trees developed by Xu and Li (1998).

2.1. Notions of Dependence
Many different notions of dependence have been introduced and studied

extensively in the literature (see, for example, Tong, 1980; Shaked and
Shanthikumar, 1994; and Szekli 1995), but the following concepts of
dependence are most relevant to this research.

Definition 2.1. Let X=(X1 , ..., Xs) and Y=(Y1 , ..., Ys) be two ran-
dom vectors.

1. X is said to be positively upper (lower) orthant dependent (PUOD
(PLOD)), if for any x=(x1 , ..., xs) # Rs, P(X>(�) x)�>s

j=1 P(Xj>
(�) xj). X is said to be negatively upper (lower) orthant dependent
(NUOD, (NLOD)), if for any x # Rs, P(X>(�) x)�>s

j=1 P(Xj>
(�) xj).

2. X is said to be larger (smaller) than Y in the upper (lower)
orthant order, denoted X� uo(� lo) Y, if P(X>(�) x)�P(Y>(�) x),
for all x # Rs. If, in addition, X j and Y j have the same distribution for each
j # E (denoted as Xj= st Yj in the following), then X is said to be more
positively upper (lower) orthant dependent than Y.

3. X is said to be associated if Cov( f (X), g(X))�0 whenever f and
g are increasing. X is said to be negatively associated if for every subset
K�[1, ..., s], Cov( f (Xi , i # K), g(Xj , j # K c))�0 whenever f and g are
increasing.

4. X is said to be larger than Y in the usual stochastic order, denoted
as X� st Y, if P(X # U)�P(Y # U) for all upper sets U�Rs (U is said to
be upper if x # U and x�y implies that y # U).

The following facts are easy to verify (see, for example, Tong, 1980, and
Szekli, 1995):

X is associated O X is PUOD and PLOD

O Cov(Xi , Xj)�0, for all i, j, (2.1)

X is negatively associated O X is NUOD and NLOD

O Cov(Xi , Xj)�0, for all i, j, (2.2)

X� st Y O X� uo Y and X� lo Y. (2.3)
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The above notions, in various stochastic senses, express either the different
degrees of dependence among the components of a random vector or
between two random vectors. In general, we found that Definition 2.1, (1),
(2), are the most useful notions in characterizing the dependence behavior
of component lifetime vectors. This is because pairwise correlation is too
weak to describe the dependence nature of the multivariate failure process
and is unable to generate satisfactory bounds for the distribution and sur-
vival functions of the joint components lifetimes, yet the usual multivariate
stochastic order and associations are too strong to be valid.

Remark 2.2. The PLOD (PUOD, NLOD, NUOD) property of a ran-
dom vector means that its joint distribution or survival function can be
bounded below or above by the products of its marginal distributions or
survival functions. The ordering X� uo(� lo) Y, coupled with Xj= st Yj ,
j=1, ..., s, emphasizes dependence comparisons of two random vectors by
separating the marginals from consideration. For the literature studying
negative dependence, see Joag-Dev and Proschan (1983) and Block et al.
(1982), among others.

Some properties regarding orthant dependence comparisons are sum-
marized below and will be used in Sections 3�5.

Lemma 2.3. Let X and Y be two nonnegative n-dimensional random
vectors.

1. If X� uo(� lo) Y, then [Xj , j # K]� uo(� lo)[Yj , j # K], for any
K�[1, 2, ..., n].

2. If X� uo(� lo) Y and if fj is an increasing function, j=1, ..., n, then

( f1(X1), ..., fn(Xn))�uo(� lo)( f1(Y1), ..., fn(Yn)).

3. Let U and V be another two n-dimensional nonnegative random vec-
tors such that X�uo(� lo) Y and U� uo(� lo) V. In addition, X and U are
independent and Y and V are independent. Let fj : R2

+ � R+ be an increasing
function, j=1, 2, ..., n. Then

( f1(X1 , U1), ..., fn(Xn , Un))�uo(� lo)( f1(Y1 , V1), ..., fn(Yn , Vn)).

4. X�uo(� lo) Y if and only if E[>n
j=1 f j (Xj)]�E[>n

j=1 f j (Yj)],
for every collection [ f1 , ..., fn] of univariate nonnegative increasing (decreas-
ing) functions.

Proof. Note that (1), (2), and (4) can be found in Shaked and
Shanthikumar (1994), while (3) can be obtained from (2) and the standard
conditioning arguments. K

69STOCHASTIC BOUNDS AND DEPENDENCE PROPERTIES



2.2. Majorization of Weighted Trees
In order to compare the characteristics of two different yet similar

systems, a common approach is to first establish an ordering between the
two parameter sets of the two compared systems and then, according to the
system dynamics, to show that the two system performance measures pos-
sess a certain stochastic ordering relation (Stoyan, 1983; Chang and Yao,
1994). Therefore, in order to compare dependence structures of two life
length vectors given in (1.1), we need first to compare the distributions of
the corresponding probability masses PK, K�E, over a partially ordered
index set S(E)=[K: K�E] (define the partial order L<K if L�K). To
handle such situations, Xu and Li (1998) introduced the notion of
majorization with respect to weighted trees. We briefly review their notion
below.

Consider a set of parameter values 4=[*K, K�E] with a partially
ordered index set S(E), where S(E) is the collection of all subsets of E=
[1, ..., s], including the empty set <. We treat each subset of E as a node.
For two nodes J and K, if J�K, we say that J is a descendant of K and
K is an ancestor of J. A node may have several immediate descendants and
ancestors, and the root E (node <) is the ancestor (descendant) of
everyone. For each node K, we assign a real number *K and call it the
weight of K. As such, (S(E), 4), or simply 4, can be thought of as an
(s+1)-generation weighted family tree. (We count < as a generation.)
Note that for each node K, K�E, the set of all its ancestors (descendants)
generates a subtree. For convenience, let a node be its own descendant and
ancestor.

Definition 2.4 (Xu and Li, 1998). Let 4 and 4� be two (s+1)-genera-
tion weighted trees on the same index set S(E), with the total weights
*=�K�E *K and *� =�K�E *� K, respectively. 4 is said to majorize 4� from
roots (leaves), denoted by 4�Tr

4� (4�Tl
4� ), if *=*� and

:
K�L

*L� :
K�L

*� L, K�E. (2.4)

\ :
L�K

*L� :
L�K

*� L.+ (2.5)

In words, Definition 2.4 states that 4� is majorized by 4 from roots
(leaves) if the total weights of the two trees, * and *� , are the same and, for
each node K, K�E, the total weight of its ancestors (descendants) in 4� is
less than its counterpart in 4. Therefore, if 4 majorizes 4� from roots
(leaves) then the value of 4 is more concentrated around the nodes in the
earlier (later) generations than 4� is.
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Here and in the following, the scalar multiplication (#4) and the summa-
tion (41+42) of trees defined on the same index set S(E) are operated
node-wise.

Note that a weighted tree as defined above is rather general. In par-
ticular, the weight of a node can be negative. In this paper, we shall mainly
consider the probability tree where each of its components is between 0 and
1 and the total weight of the tree equals 1.

3. DEPENDENCE STRUCTURES OF SHOCK LOADING VECTORS
AND SHOCK ARRIVAL PROCESSES

We first describe the model and introduce the notation used throughout
the paper. Let [N(t), t�0] be a counting process. A shock arrives at the
system (call it the system S) according to [N(t), t�0] and destroys
simultaneously, with probability PK, all the components j # K�E that are
still alive but all of the other components j # E&K that are still alive sur-
vive (type-K shock). For each K # S(E), let NK (t) be the number of type-K
shocks received by time t. Clearly, [NK (t), t�0] is a thinning of the
counting process [N(t), t�0] with thinning probability PK. Define the
probability tree

4={*K=PK, 0�PK�1, :
K�E

PK=1= . (3.1)

Let Pj=�j # L PL be the cumulative weight of all ancestors of node j. For
j # E, let Nj (t)=�j # K NK (t) be the number of shocks component j received
by time t. Again, [Nj (t), t�0] is a thinning of [N(t), t�0], with thinning
probability P j , j # E. In general, both multivariate processes [NK (t),
t�0 | K�E] and [Nj (t), t�0 | j # E] are correlated.

Let $n, j be 1 if the n th shock destroys the component j and zero
otherwise, then the vector $n=[$n, j | j # E] is the set of components in
system S destroyed by the n th shock if they have not been destroyed
already by previous shocks. We shall call $n the shock loading vector. We
have

P($n=eK)=PK, K�E, (3.2)

where eK is the s-dimensional vector with its j th element, j # K, being 1 and
the others zero, K�E. Observe that 4 may be regarded as the joint prob-
ability mass function of the indicator random vector $n . As such, $n, j is the
indicator (Bernoulli) variable of a type-j shock, with probability Pj , j # E.
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Clearly, $n , n=1, 2, ..., are independent and identically distributed (i.i.d.)
random vectors. $n 's are also independent of [N(t), t�0].

Let [N� (t), t�0] be another counting process governing shock arrival
streams and let $� n be the shock loading vector of the n th shock defined by
the probability tree 4� =[*� K=P� K, 0�P� K�1, �K�E P� K=1], where

P($� n=eK)=P� K, K�E. (3.3)

We call the system with shock arrival process [N� (t), t�0] and probability
tree 4� the system S� . We use $ ($� ) to represent the generic version of $n

($� n).
The remainder of this section studies the dependence structures of $ and

the shock arrival process [N(t), t�0]. Let $=[$1 , ..., $s] be a vector of
Bernoulli random variables with marginal weights Pj , j # E. Let $I=
[$I

1 , ..., $I
s] be a vector of independent random variables that have the same

one-dimensional marginal distribution as that of $. Let 4I be the probabil-
ity tree corresponding to $I. Then

P($I=eK)= `
j # K

P j `
j # E&K

(1&Pj), K�E. (3.4)

Next we present a lemma. It states that the root and leaf majorization
orders between two probability trees are the parametric characterizations
of the upper and lower orthant orders between the shock-loading vectors.

Lemma 3.1. Let $ and $� be the shock loading vectors corresponding to
probability trees 4 and 4� , respectively. Then

1. 4�Tr (Tl)
4� if and only if $�uo(�lo) $� .

2. 4�Tr (Tl)
4� and Pj=P� j , j # E, if and only if $ is more positively

upper (lower) orthant dependent than $� .

3. $ is PUOD (PLOD, NUOD, NLOD) if and only if 4�Tr
(�Tl

,
�Tr

, �Tl
) 4I, where 4I is the probability tree of $I given in (3.4).

Proof. We observe that

P($�eK)&P($� �eK)= :
K�L

PL& :
K�L

P� L, (3.5)

P($�eK)&P($� �eK)= :
L�K

PL& :
L�K

P� L. (3.6)
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Then (1) is the immediate consequence of Definition 2.4. To establish (2),
we note, from (3.2) that

Pj&P� j=P($j=1)&P($� j=1)= :
j # L

PL& :
j # L

P� L, j # E.

Since $ and $� are binary random vectors, this implies that they have the
same one-dimensional distribution if and only if Pj=P� j , j # E. This,
together with (1), implies (2). Finally, (3) follows from Lemma 3.1(2) and
Definition 2.1(1). K

Remark 3.2. If bivariate random vectors X and Y have identical
marginal distributions, Xj=st Yj , j=1, 2, then X�uo Y implies X� lo Y
and vice versa (see, for example, Marshall and Olkin, 1979). It is easy to
see that for the s+1=3 generation trees, if Pj=P� j , j=1, 2,

4�Tr
4� � 4�Tl

4� and

($1 , $2)�uo($� 1 , $� 2) � ($1 , $2)�lo ($� 1 , $� 2).

Example 3.3. Suppose the distribution of $ is given by

4=m;=E+ :
s

j=1

;= j+#=<,

where =K, K�E, denotes the (s+1)-generation weighted tree with the
weight on node K being one and zero otherwise. Lemma 3.1(3) states that
$ is PUOD if and only if 4�Tr

4I. Clearly, to ensure 4�Tr
4I, we need

that for 2�k�s, m;�[(m+1) ;]k, which holds if m;�[(m+1) ;]2, for
s�2. Since this condition is equivalent to m+2+1�m�1�;, together with
s;+m;+#=1, we have that $ is PUOD if m�1�(s&2).

Observe that when m is large (e.g., m�1�(s&2)), 4 has a heavy weight
on the root node E; this subsequently ensures that 4 majorizes 4I from
roots. If we ``rotate'' 4 by 180%, we obtain (we still use 4 to denote the
rotated tree)

4=#=E+ :
s

j=1

;=E& j+m;=<.

Using an argument similar to that made before, we have that $ is PLOD
if m�1�(s&2).

Example 3.4. Consider the uniform tree, where the unit weight of the
tree is evenly distributed among its 2s nodes: PK=1�2s, K�E. It follows
from (3.4) that the uniform tree corresponds to the i.i.d. Bernoulli random
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variables with parameter 1�2. Now consider the following s+1=4 genera-
tion-weighted trees:

4= 1
4 (=123+=1+=2+=3), 4I= 1

8 :
K�[1, 2, 3]

=K, and

4� = 1
4 (=12+=13+=23+=<).

We have Pj=PI
j =P� j=1�2. Clearly, 4�Tr

4I�Tr
4� , but 4�Tl

4I�Tl
4� .

Therefore, by Lemma 3.1(3),

P($�eK)� `
j # K

Pj�P($� �eK), and

P($�eK)� `
j # E&K

(1&Pj)�P($� �eK).

That is, $ is PUOD and NLOD, and $� is NUOD and PLOD.

We close this section by discussing briefly the autocorrelation structure
of shock arrival processes. The following notions of dependence over time
can be thought of as generalizations of Definition 2.1(1, 2) to stochastic
processes.

Definition 3.5. Let [X(t), t�0] and [Y(t), t�0] be two real-valued
stochastic processes.

1. [X(t), t�0] is said to be PUOD (PLOD, NUOD, NLOD) in
time if for any set [t1 , t2 , ..., tn], the random vector [X(t1), X(t2), ..., X(tn)]
is PUOD (PLOD, NUOD, NLOD).

2. [X(t), t�0] is said to be larger (smaller) than [Y(t), t�0] in the
upper (lower) orthant order, denoted as [X(t), t�0]�uo (�lo)
[Y(t), t�0], if for any choice of [t1 , t2 , ..., tn], (X(t1), ..., X(tn))�uo (�lo)
(Y(t1), ..., Y(tn)).

Esary and Proschan (1970) introduced the notion of time association for
stochastic processes (also see Lindqvist, 1988) in order to obtain bounds
for the reliability of certain systems with dependent components. A real-
valued stochastic process [X(t), t�0] is said to be associated in time, if for
any set [t1 , t2 , ..., tn], (X(t1), X(t2), ..., X(tn)) is associated. Obviously (see
(2.1)), association in time implies both PUOD in time and PLOD in time.
However, the reverse is not true, in general.

It is worth mentioning that if [N(t), t�0]�st[N� (t), t�0], that is,
E,([N(t), t�0])�E,([N� (t), t�0]) for all real increasing functions ,,
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then [N(t), t�0]�uo(�lo)[N� (t), t�0] (see, for example, Shaked and
Shanthikumar, 1994). The reader is referred to Shaked and Szekli (1995)
for other notions of stochastic comparisons of processes and their applica-
tions.

4. DEPENDENCE COMPARISONS OF JOINT LIFETIMES
OF COMPONENTS

We now turn our attention to the dependence structure of the joint
component lifetime vector T. We show that the spatial dependence and
temporal dependence introduced by [PK, K�E] and [N(t), t�0], respec-
tively, determine the dependence nature of T.

Let S (S� ) be the shock model with shock arrival process [N(t), t�0]
([N� (t), t�0]) and the shock loading vector $ ($� ). Let 4 (4� ) be the prob-
ability tree associated with $ ($� ). The following theorem states that if
[N(t), t�0]�uo (�lo)[N� (t), t�0] and 4�Tr (Tl) 4� , then the numbers of
shocks received by components up to times t=(t1 , ..., ts) in the two systems
preserve the orthant dependence order.

Theorem 4.1. If 4�Tr (Tl ) 4� and [N(t), t�0]�uo (�lo)[N� (t), t�0],
then for any (t1 , ..., ts),

(N1 (t1), ..., Ns (ts))�uo (�lo)(N� 1 (t1), ..., N� s (ts)).

If, in addition, N(t)=st N� (t), for each fixed t�0, and Pj=P� j , j # E, then
(N1 (t1), ..., Ns (ts)) is more positively upper (lower) orthant dependent than
(N� 1 (t1), ..., N� s (ts)).

Proof. Recall that Nj (t) (N� j (t)) is the number of shocks received by the
component j in the system S (S� ) before time t. Without loss of generality,
we now assume that t1�t2� } } } �ts . Since N(t) is increasing almost
surely, we have, for j=1, ..., s,

Nj (tj)= :
N(tj )

n=1

$n, j= :
j

k=1

:
N(tk )

n=N(tk&1)+1

$n, j , (4.1)

where N(t0)=0 and �k
n=l $n is understood as 0 if k<l. Therefore,

(N1 (t1), N2 (t2), ..., Ns (ts))

= :
N(t1 )

n=1

$n+&1 :
N(t2 )

n=N(t1)+1

$n+ } } } +&s&1 :
N(ts )

n=N(ts&1)+1

$n , (4.2)
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where & j is the s-dimensional vector with the first j elements being zeros
and the others 1. Here and in the following, a product of two vectors is
understood as the element-wise product. Similarly, for system S� , we have

(N� 1 (t1), N� 2 (t2), ..., N� s (ts))

= :
N� (t1 )

n=1

$� n+&1 :
N� (t2 )

n=N� (t1)+1

$� n+ } } } +&s&1 :
N� (ts )

n=N� (ts&1)+1

$� n . (4.3)

From Lemma 3.1(1), 4�Tr (Tl) 4� implies that $n�uo (�lo) $� n . Thus, by
Lemma 2.3,

:
l

n=k

$n�uo (�lo) :
l

n=k

$� n , k�l.

Because $n ($� n) are i.i.d. random vectors, from Lemma 2.3 we obtain, for
any k1�k2� } } } �ks , that

:
k1

n=1

$n+&1 :
k2

n=k1+1

$n+ } } } +&s&1 :
ks

n=ks&1+1

$n

�uo (�lo) :
k1

n=1

$� n+&1 :
k2

n=k1+1

$� n+ } } } +&s&1 :
ks

n=ks&1+1

$� n . (4.4)

From (4.3), (4.4), and the monotone sample path property of N� (t), we
obtain that 4�Tr (Tl ) 4� implies that, for any t1�t2� } } } �ts ,

\ :
N� (t1 )

n=1

$n, 1 , ..., :
N� (ts )

n=1

$n, s+�uo (�lo)(N� 1 (t1), N� 2 (t2), ..., N� s (ts)). (4.5)

Since (N(t1), N(t2), ..., N(ts))�uo (�lo)(N� (t1), N� (t2), ..., N� (ts)), by condi-
tioning on $n , we have

\ :
N(t1 )

n=1

$n, 1 , ..., :
N(ts )

n=1

$n, s+�uo (�lo) \ :
N� (t1 )

n=1

$n, 1 , ..., :
N� (ts )

n=1

$n, s+ . (4.6)

Combining (4.5) and (4.6), we obtain that

(N1 (t1), N2 (t2), ..., Ns (ts))�uo (�lo)(N� 1 (t1), N� 2 (t2), ..., N� s (ts)).

The last claim of the theorem follows from Lemma 3.1 and the fact that if
$n, j=st $� n, j and N(tj)=st N� (tj) then Nj (tj)=st N� j (t j). K
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Our main result of this section is a direct consequence of Theorem 4.1.
Loosely speaking, the theorem states that if each arrival shock is more
likely to destroy a large (small) set of components simultaneously, and the
numbers of shocks received over time instants [t1 , t2 , ..., tn] are more
dependent in some sense, then its components are more likely to fail (sur-
vive) jointly. Let [N(t), t�0] and [N� (t), t�0] be two counting processes
governing the shock arrival processes of S and S� , respectively. Let
T=(T1 , ..., Ts) and T� =(T� 1 , ..., T� s) be the corresponding joint lifetimes of
the components.

Theorem 4.2. If 4�Tr (Tl) 4� and [N(t), t�0]�uo (�lo)[N� (t), t�0],
then

T�lo (�uo) T� .

If, in addition, N(t)=st N� (t), for each fixed t�0 and Pj=P� j , j # E, then T
is more positively lower (upper) orthant dependent than T� .

Proof. First we consider the lower orthant case. Clearly,

Tj =inf[t�0 | Nj (t)�1],

T� j =inf[t�0 | N� j (t)�1], j=1, ..., s. (4.7)

Since Nj (t) is increasing almost surely, we have Tj�tj if and only if
Nj (tj)�1, for j=1, ..., s. From this, we obtain that for any t1�0, ..., ts�0,

P(T1�t1 , ..., Ts�ts)=P(N1 (t1)�1, ..., Ns (ts)�1).

Similarly,

P(T� 1�t1 , ..., T� s�ts)=P(N� 1 (t1)�1, ..., N� s (ts)�1).

Thus, from Theorem 4.1, 4�Tr 4� and [N(t), t�0]�uo [N� (t), t�0] imply
that T�lo T� .

Next we consider the upper orthant case. We observe that

P(T1>t1 , ..., Ts>ts)=P(N1 (t1)=0, ..., Ns (ts)=0),

and

P(T� 1>t1 , ..., T� s>ts)=P(N� 1 (t1)=0, ..., N� s (ts)=0).

Again, from Theorem 4.1, 4�Tl 4� and [N(t), t�0]�lo [N� (t), t�0]
imply that T�uo T� .

77STOCHASTIC BOUNDS AND DEPENDENCE PROPERTIES



The second claim of the theorem is a direct consequence of the result on
dependence comparison obtained in Theorem 4.1. K

Remark 4.3. If N(t) is a thinning of N� (t) (or vice versa) with thinning
probability :, then we can normalize the two arrival processes as follows.
Let 4 and 4� be the corresponding probability trees. Let both systems have
the common arrival process [N� (t), t�0]. Let us modify the probability
tree 4 to, say 4� , where

P� K=:PK, K{<, and P� <=(1&:)+:P<.

Clearly, the system governed by [N(t), t�0] and 4 is stochastically equiv-
alent to the system governed by [N� (t), t�0] and 4� . The examples that
one process can be regarded as a thinning of another include Poisson
processes and non-homogeneous Poisson processes.

Example 4.4. Let systems S and S� have the same shock arrival pro-
cess [N(t), t�0]=st [N� (t), t�0]. Let 4=(P12, P1, P2, P<)=( 1

4 , 1
4 , 1

4 , 1
4)

and 4� =(P� 12, P� 1, P� 2, P� <)=(0, 1
2 , 1

2 , 0). Thus, 4�Tr (Tl ) 4� and Pj=P� j=
1
2 .

Therefore, T�uo T� �lo T. For example, if [N(t), t�0] is a Poisson process
with rate 1, then the joint survival function of T is characterized by the
bivariate distribution of the Marshall�Olkin type,

P(T1>t1 , T2>t2)=e&(t1+t2+max[t1, t2])�4. (4.8)

On the other hand, because shocks arrive individually under 4� , T� 1 and T� 2

are independent. Hence

P(T� 1>t1 , T� 2>t2)=P(T� 1>t1) P(T� 2>t2)=e&(t1+t2)�2. (4.9)

Evidently, (4.9) bounds (4.8) from below.

The following corollary follows immediately from Theorem 4.2.

Corollary 4.5. 4�Tr (Tl) 4� and [N(t), t�0]�uo (�lo)[N� (t), t�0]
imply that

max[a1T1 , ..., asTs]�st max[a1T� 1 , ..., as T� s]

(min[a1T1 , ..., asTs]�st min[a1T� 1 , ..., asT� s]),

where aj�0, j=1, 2, ..., s.
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Remark 4.6. The above corollary has some interesting implications. Let
us assume that both of the systems S and S� have identical shock arrival
processes. Let the shock loading vectors to S and S� be $ and $I, respec-
tively, where $I is the independent counterpart of $. Let T(1)=
min[T1 , ..., Ts] and T(s)=max[T1 , ..., Ts]. Then the corollary states that:

$ is PUOD and PLOD O T1�st T� (1) and Ts�st T� (s) ;

$ is NUOD and NLOD O T(1)�st T� (1) and T(s)�st T� (s) ;

$ is PUOD and NLOD O T(1)�st T� (1) and T(s)�st T� (s) ;

$ is NUOD and PLOD O T(1)�st T� (1) and T(s)�st T� (s) .

In particular, note that if $ is PUOD and NLOD, then system S under-
performs system S� in the sense that it stochastically decreases the first and
last component failure times. Note also that if $ is NUOD and PLOD,
then system S outperforms S� in the sense that it stochastically increases
the first and last component failure times. For example, let 4, 4I, and 4�
be defined as in Example 3.4. Let $, $I, and $� be their corresponding shock
loading vectors. We have shown that $ is PUOD and NLOD and $� is
NUOD and PLOD. By Corollary 4.5,

T(1)�st T I
(1)�st T� (1) and T (3)�st T I

(3)�st T� (3) .

Thus, with other conditions being equal, system S underperforms the
system with independent loading vector, which subsequently underper-
forms system S� , as measured by the lengths of the first and last component
failure times. The lesson learned from this example may aid in the decision
for the component design and failure process control of reliability
systems. K

For more examples concerning the class of PUOD and NLOD (NUOD
and PLOD) random vectors, the reader is referred to Xu and Li (1998)
and Li and Xu (1999), where the authors use the so-called inclusion�exclu-
sion transform to systematically generate a sequence of PUOD and NLOD
(NUOD and PLOD) random vectors.

5. BOUNDS FOR THE JOINT LIFETIME DISTRIBUTION
AND SURVIVAL FUNCTIONS

Using Lemma 3.1 and Theorem 4.2, in this section we derive bounds for
the shock model with multiple types of correlated shocks. First, we need
the following.
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Theorem 5.1. Let [N(t), t�0] be a counting process governing the
shock arrivals and let $ be the shock loading vector. Let 4I be the probability
tree corresponding to $I, the independent counterpart of $.

1. If [N(t), t�0] is positively upper (lower) orthant dependent in time
and 4�Tr (Tl ) 4I, then (T1 , ..., Ts) is PLOD (PUOD).

2. If [N(t), t�0] is negatively upper (lower) orthant dependent in
time and 4�Tr (Tl) 4I, then (T1 , ..., TS) is NLOD (NUOD).

Proof. First, we observe that if (N1(t1), N2(t2), ..., Ns(ts)) is PUOD
(PLOD, NUOD, NLOD) for any given (t1 , ..., ts), then (T1 , ..., Ts) is
PLOD (PUOD, NLOD, NUOD). We only need to prove that (N1(t1),
N2(t2), ..., Ns(ts)) is PUOD (PLOD, NUOD, NLOD) under the given con-
ditions. We prove Statement 1 only. Statement 2 can be established
similarly.

From Lemma 3.1, $ is PUOD (PLOD) if and only if 4�Tr (Tl ) 4I. Using
(4.2) and (4.3), and an argument similar to that in Theorem 4.1, we obtain
that if $�uo (�lo) $I, then

(N1(t1), N2(t2), ..., Ns(ts)) = \ :
N(t1 )

n=1

$n, 1 , ..., :
N(ts )

n=1

$n, s+
�uo(�lo) \ :

N(t1 )

n=1

$ I
n, 1 , ..., :

N(ts )

n=1

$ I
n, s+ . (5.1)

Since for each j=1, ..., s, �kj
n=1 $I

n, j is stochastic increasing (in the usual
sense) with respect to kj , then P(�kj

n=1 $I
n, j>(�) x) is increasing (decreas-

ing) in kj . Since [N(t), t�0] is positively upper (lower) orthant dependent
in time, we have that [N(t1), ..., N(ts)] is PUOD (PLOD) for any (t1 , ..., ts).
Because �k1

n=1 $I
n, 1 , ..., �ks

n=1 $I
n, s are independent, from Lemma 2.3 we have

P \ :
N(t1 )

n=1

$I
n, 1>(�) x1 , ..., :

N(ts )

n=1

$I
n, s>(�) xs+

= :
k1, ..., ks

`
s

j=1

P \ :
kj

n=1

$ I
n, j>(�) xj + P(N(t1)=k1 , ..., N(ts)=ks)

� `
s

j=1

:
kj

P \ :
kj

n=1

$ I
n, j>(�) x j + P(N(tj)=kj)

= `
s

j=1

P \ :
N(tj )

n=1

$I
n, j>(�) xj+ .
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We thus obtain that (�N(t1)
n=1 $I

n, 1 , ..., �N(ts)
n=1 $ I

n, s) is PUOD (PLOD). There-
fore, from (5.1), we have, for any given t1�t2� } } } �ts , that (N1(t1),
N2(t2), ..., Ns(ts)) is PUOD (PLOD). K

The proof of the above lemma actually illustrates the following idea: The
combination of dependence among the components and dependence over
time determines the dependence nature of (N1(t1), N2(t2), ..., Ns(ts)) for any
(t1 , t2 , ..., ts), which characterizes the dependence structure of the multi-
variate arrival process.

For any sequence of s-dimensional binary random vectors $n and any
non-negative integer-valued random vector N=[N1 , ..., Ns], we let M($,
N)=(M1($1 , N1), ..., Ms($s , Ns)) where

Mj ($j , Nj)= :
Nj

n=1

$n, j , j=1, 2, ..., s. (5.2)

For any t=(t1 , ..., ts), denote N(t)=(N(t1), ..., N(ts)), where [N(t), t�0]
is a counting process. Let NI(t)=(N I (t1), N I (t2), ..., N I (ts)) be an inde-
pendent version of N(t), that is, N I (t i)=st N(t i) for i=1, ..., s and N I(t1),
N I(t2), ..., N I(ts) are independent. Note that Mj ($j , N(tj))=Nj (t j) for j=
1, ..., s. Also, denote the lifetimes of the components of the system with
shock loading vector $I and shock arrival process [N(t), t�0] as

Tj ($I, N)=inf[t�0 | M j ($I
j , N(t))�1], j=1, 2, ..., s. (5.3)

The following result states that if the system only has spatial dependence,
then the joint distribution (or survival) function of T is bounded by that
of T($I, N)=(T1($I, N), ..., Ts($I, N)). If the system only has temporal
dependence, then the joint distribution (or survival) function of T is
bounded by the joint survival (or distribution) function of M($, NI(t)).

Theorem 5.2. 1. If 4�Tl (Tr) 4I (i.e., $ is PLOD (PUOD)),

P(T�t)�P(T($I, N)�t) (P(T�t)�P(T($I, N)�t)).

Also, if 4�Tl (Tr) 4I (i.e., $ is NLOD (NUOD)),

P(T($I, N)�t)�P(T�t) (P(T($I, N)�t)�P(T�t)).
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2. If the process [N(t), t�0] is PLOD (PUOD) in time,

P(T>t)�P(M($, NI(t))=0) (P(T�t)�P(M($, NI(t))�1)).

Also, if [N(t), t�0] is NLOD (NUOD) in time,

P(M($, NI(t))=0)�P(T>t) (P(M($, NI(t))�1)�P(T�t)).

Here 0=(0, ..., 0), 1=(1, ..., 1) with appropriate dimension.

Proof. Part 1 follows from Theorem 4.2 and we now prove Part 2. If the
process [N(t), t�0] is PLOD (PUOD) in time, then for any (t1 , ..., ts) we
have

(N(t1), ..., N(ts))�lo(�uo)(N I (t1), ..., N I (ts)).

From Lemma 2.3(2), we obtain that

\ :
N(t1 )

n=1

in, 1 , ..., :
N(ts )

n=1

in, s+�lo(�uo) \ :
NI(t1)

n=1

in, 1 , ..., :
NI(ts)

n=1

in, s+ ,

for any non-negative integers (in, 1 , ..., in, s). Thus

\ :
N(t1 )

n=1

$n, 1 , ..., :
N(ts )

n=1

$n, s+�lo(�uo) \ :
NI(t1)

n=1

$n, 1 , ..., :
NI(ts)

n=1

$n, s+ . (5.4)

The inequalities in (2) now follow from (5.4). K

Using Theorems 5.1 and 5.2, we are able to derive the bounds for the
distribution and survival functions of (T1 , ..., Ts) via either analyzing one
type of dependence individually or analyzing them jointly. To compare
bounds obtained in Theorems 5.1 and 5.2, we list the following corollary,
whose proof is straightforward.

Corollary 5.3. 1. If 4�Tl (Tr) 4I (i.e., $ is PLOD (PUOD)) and the
process [N(t), t�0] is PLOD (PUOD) in time, then

P(T>(�) t)�P(T($I, N)>(�) t)�P(M($I, NI(t))�(>) 0)

= `
j # E

P(Tj>(�) t j),

P(T>(�) t)�P(M($, NI(t))�(>) 0)�P(M($I, NI(t))�(>) 0)

= :
j # E

P(Tj>(�) tj).
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2. If 4�Tl (Tr) 4I (i.e., $ is NLOD (NUOD)) and the process [N(t),
t�0] is NLOD (NUOD) in time, then

`
j # E

P(Tj>(�) tj)=P(M($I, NI(t))�(>) 0)

�P(T($I, N)>(�) t)�P(T>(�) t),

`
j # E

P(Tj>(�) tj)=P(M($I, NI(t))�(>) 0)

�P(M($, NI(t))�(>) 0)�P(T>(�) t).

The above corollary suggests that it is a worthwhile effort to evaluate the
distribution and survival functions of T($I, N) or M($, NI(t)) because they
can improve the product-form lower and upper bounds under the condi-
tions specified in Corollary 5.3. To illustrate, we derive the expression of
P(M($, NI(t))=0).

For any k=(k1 , ..., ks), let kij
be the j th smallest number in k, j=1, ..., s

(arrange tied numbers in a randomly selected order). Then (i1 , ..., is) is a
permutation of (1, 2, ..., s). Now let vl

k be the s-dimensional vector with its
elements ij , j=1, 2, ..., l, being zero and others 1. Also denote v0

k =
(1, ..., 1). For example, suppose k=(k1 , k2 , k3)=(5, 3, 7), then (i1 , i2 , i3)=
(2, 1, 3), v1

k =(1, 0, 1), and v2
k =(0, 0, 1). Then

P(M($, NI(t))=0)

=P \ :
NI(t1)

n=1

$n, 1=0, ..., :
NI(ts)

n=1

$n, s=0+
= :

all k

`
s

j=1
_P \v j&1

k :

kij

n=kij&1
+1

$n=0+ P(N I (t ij
)=kij

)&
= :

all k

`
s

j=1
_\ :

L�[<, i1, ..., ij&1]

PL+
kij

&kij&1

P(N(t ij
)=kij

)& ,

where ki0
=0. The evaluation of the above expression is relatively

straightforward since it only involves parameter tree 4 and the marginal
distribution of [N(t), t�0].

In general, the evaluation of the joint distribution and survival distribu-
tions of T($I, N) is not an easy task, because one must deal with the joint
distribution function of (N(t1), N(t2), ..., N(ts)). However, when [N(t), t�
0] has independent increments, the closed form solutions of P(T($I, N)�t)
and P(T($I, N)�t) can be derived relatively easily. We illustrate this with
the following example.
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Example 5.4. Let [N(t), t�0] be a non-homogeneous Poisson pro-
cess with intensity function *(t) and mean value function �t

0 *(x) dx=m(t),
t�0. Because [N(t), t�0] has independent increments, then for t1�
t2� } } } �ts ,

P(N(t1)=k1 , ..., N(ts)=ks)= `
s

j=1

P(N(t j)&N(t j&1)=k� j),

where N(t0)=0, k0=0, and k� j=kj&kj&1 . Clearly, [N(t), t�0] is
associated in time, and so [N(t), t�0] is positively upper and lower
orthant dependent in time. Let us derive the survival function of T($I, N),
for t1�t2� } } } �ts ,

P(T($I, N)>t)

=P(N I
1(t1)=0, ..., N I

s(ts)=0)

= :
k1� } } } �ks

`
s

j=1

P \ :
kj

n=1

$ I
n, j=0+ P(N(tj)&N(t j&1)=k j&kj&1)

= :
�

k� 1=0

} } } :
�

k� s=0

`
s

j=1

(1&Pj)
� j

i=1 k� i e&[m(tj)&m(tj&1)]

_
[m(tj)&m(tj&1)]k� j

k� j !

= `
s

j=1

e&[m(tj)&m(tj&1)] :
�

k� j=0

_`
s

i= j

(1&Pi)(m(tj)&m(tj&1))&
k� j

k� j !

=e&� s
j=1 (1&>s

i= j (1&Pi))[m(tj)&m(tj&1)]

=e&� s
j=1 Pj >s

i=j+1 (1&Pi) m(tj), (5.5)

where >k
i=l a i is defined as 1 whenever l>k. Let us compare this expres-

sion with the product form solution,

`
s

j=1

P(Tj>t j)= `
s

j=1

P(Nj (t j)=0)=e&�s
j=1 Pjm(tj). (5.6)

If $� lo $I, then both (5.5) and (5.6) serve as the lower bounds for the sur-
vival function of T. However, since >s

i= j+1 (1&Pi)�1, the lower bound
in (5.5) is always larger than the bound in (5.6). Especially, for large Pj 's
or large s, the former can be significantly sharper than the latter. Finally,
to obtain the joint distribution function of T($I, N), we have
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P(T($I, N)�t)

=P(N I
1(t1)>0, ..., N I

s(ts)>0)

=1& :
s

j=1

P(N I
j(t j)=0)+ :

i< j

P(N I
i(t i)=0, N I

j(t j)=0)

& } } } +(&1)s P(N I
1(t1)=0, ..., N I

s(ts)=0)

=1& :
s

j=1

e&Pj m(tj)+ :
i< j

e&Pi (1&Pj) m(ti)&Pj m(tj)

& } } } +(&1)s e&�s
j=1

Pj >s
i=j+1

(1&Pi) m(tj). (5.7)

In Remark 4.3, we show that if [N(t), t�0] is a thinning of [N� (t),
t�0] or vice versa, then one can normalize the two arrival processes by
modifying the arrival process and probability tree 4. The following
example shows that for certain shock arrival processes we can use the thin-
ning as a tool to construct bounds of the lifetime vector. Consider an
arbitrary renewal process [N� (t), t�0]. Since for any t, N� (t) is a decreasing
functional of the sequence of independent interarrival times,
(N� (t1), ..., N� (tn)) is associated for any t1 , ..., tn (see Lindqvist, 1988). Thus
any renewal process is associated in time and therefore positively upper
and lower orthant dependent in time.

Example 5.5. Let system S be governed by a renewal process [N(t),
t�0] with the generic interarrival time X. Assume X=�N

i=1 Yi , where Y i 's
are i.i.d. non-negative random variables, and that N has geometric distribu-
tion with parameter :. Let 4 be the probability tree of S, with marginal
weight Pj=%, j # E. Let T be the corresponding lifetime vector of com-
ponents. We aim at deriving the lower bounds for the distribution and sur-
vival functions of T. To this end, we introduce a renewal process
[N� (t), t�0] with interarrival times Yi . We treat [N(t), t�0] as a thin-
ning of [N� (t), t�0], with thinning probability :. Now introduce the
probability tree 4� , where

P� K=:PK, <{K�E, and P� <=1&:+:P<.

Note that the marginal weights of 4� are P� j=:%, j # E. Let T� be the lifetime
vector of components corresponding to [N� (t), t�0] and 4� . From
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Remark 4.3, T=st T� . Therefore, it is sufficient to derive stochastic bounds
for T� .

To construct the bounds of the distribution and survival functions of T�
for s>2, we introduce an ``extremal'' tree,

4� =
1

s&2
;=E+ :

s

i=1

;= i+#=<,

where =K is defined as in Example 3.3. Let T� be the joint lifetime vector of
components for the system with arrival process [N� (t), t�0] and tree 4� .
From Theorem 5.1 and Example 3.3, T� is PLOD.

If %�1�:(s&1) and PE�(1�(s&1)) %, then set ;=((s&2)�(s&1)) :%
and #=1&(s&1) :%�0. Thus :PE�;�(s&2), and hence it is easy to
show that 4� � Tr

4� and that the marginal weights of 4� and 4� are the same.
From Theorem 4.2, T� is more lower orthant dependent than T� is, and so
T� (or T ) is PLOD.

Similarly, we can also obtain the conditions under which T� (or T ) is
PUOD.

It is worth emphasizing that our approach in this example is the follow-
ing: (a) there exists a ``super'' arrival process (in our example, [N� (t),
t�0]) such that the arrival process is a thinning of this super arrival pro-
cess; (b) corresponding to the super arrival process, we can construct an
extremal tree that is majorized from roots and leaves by another tree of the
identical marginals; and (c) the joint distribution and survival functions of
the lifetime vector corresponding to the super arrival process and the
extremal tree has a product form bound.

Remark 5.6. To illustrate that simultaneous arrivals may also intro-
duce negative dependence, suppose that the shock arrival process
[N(t), t�0] has a deterministic sample path (admittedly unrealistic). It is
easy to see that in such a case [N(t), t�0]=[N I(t), t�0]. In other
words, the counting process with constant interarrival times is simul-
taneously PUOD, PLOD, NUOD and NLOD in time. Then, examining
the proof of Theorem 5.1, one sees that T($I, N) are independent random
variables. Hence, if 4�Tl

4I, then T is NUOD; if 4�Tr
4I, then T is

NLOD.

6. GENERALIZATIONS

Our results derived in Sections 3 and 4 still hold under the following
generalizations.
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1. Suppose that the n th shock loading vector is governed by 4n=
[PK (n) | K�E], where PK (n) is the probability that the n th shock is a
type-K shock, n=1, 2, ... . Let $n be the random variable defined by 4n ,
n=1, 2, ..., and assume that they are independent. Then if we replace the
condition ``4�Tr (Tl )

4� '' by the condition ``4n�Tr (Tl)
4� n for all n,'' in

Sections 3 and 4, then all the major results carry.

2. Suppose that component j has nj spare parts, j # E, which can be
used to replace component j when it fails. The fatal failure of component
j occurs when it receives the (nj+1) st shock, when no spare of its own
type is available to replace the failed component, j # E. As before, let
[N1(t1), ..., Ns(ts)] be the multivariate counting process. Let [T1 , ..., Ts] be
the component lifetime vector. Then,

Tj=inf[t�0 | Nj (t)�nj+1], j # E.

Hence,

P(T1�(>) t1 , ..., Ts�(>) ts)

=P(N1(t1)�(<) n1+1, ..., Ns(ts)�(<) ns+1).

Note that only Theorem 4.2 is affected by this new assumption. But it is tri-
vial to observe that Theorem 4.2 remains valid with the modified definition
of T.

3. Consider a system with s components that are subjected to multi-
ple types of shocks, whose occurrences are governed by a counting process.
With probability PK, K�E, a shock simultaneously inflicts random
damage on the components in set K. Suppose that for each component
j # E, the damage of the n th shock to component j is Dn, j , if the n th shock
inflicts component j. Suppose that (Dn, 1 , ..., Dn, s), n=1, 2, ..., are i.i.d. ran-
dom vectors and are also independent of the shock arrival process
[N(t), t�0] as well as of K. Suppose that the damages accumulate
additively. Let Tj denote the life length of component j, for j # E, that is, the
first time that the total damage accumulated at component j exceeds its
design threshold, say dj . Marshall and Shaked (1979) and Savits and
Shaked (1981) studied a similar multivariate cumulative damage model,
assuming that the shock arrival process is Poisson. This model also
includes, as special cases, several cumulative damage shock models that
appeared in the literature (e.g., Li and Zhu, 1994, and Kijima et al., 1998).
The lifetime of component j can be expressed by

Tj=inf {t�0 } :
Nj (t)

n=1

$n, jDn, j>dj= , j # E,
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where the nth shock loading vector $n=[$n, 1 , ..., $n, s] is independent of
the n th shock damage vector Dn=[Dn, 1 , ..., Dn, s]. Then

P(T1�(>) t1 , ..., Ts�(>) ts)

=P \ :
N1(t1)

n=1

$n, 1Dn, 1>(�) d1 , ..., :
Ns(ts)

n=1

$n, sDn, s>(�) ds+ .

Again, only Theorem 4.2 is affected by this new assumption. Using the
independence of $n and Dn and Lemma 2.3, it is straightforward to show
that Theorem 4.2 is still true.
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