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Abstract

Coupled nonlinear Schrödinger systems describe some physical phenomena such as the propagation in
birefringent optical fibers, Kerr-like photorefractive media in optics and Bose–Einstein condensates. In
this paper, we study the existence of concentrating solutions of a singularly perturbed coupled nonlinear
Schrödinger system, in presence of potentials. We show how the location of the concentration points de-
pends strictly on the potentials.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Very recently, different authors focused their attention on coupled nonlinear Schrödinger sys-
tems which describe physical phenomena such as the propagation in birefringent optical fibers,
Kerr-like photorefractive media in optics and Bose–Einstein condensates.

First of all, let us recall that, in the last twenty years, motivated by the study of the propagation
of pulse in nonlinear optical fiber, the nonlinear Schrödinger equation,

−Δu + u = u3 in R
3,

has been faced by many authors. It has been proved the existence of the least energy solution
(ground state solution), which is radial with respect to some point, positive and exponentially
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decaying with its first derivatives at infinity. Moreover, there are also many papers about the
semiclassical states for the nonlinear Schrödinger equation with the presence of potentials

−ε2Δu + V (x)u = u3 in R
3,

giving sufficient and necessary conditions to the existence of solutions concentrating in some
points, and recently, in set with nonzero dimension (see, e.g., [4–8,13,15,16,20,21,27,28,30,31]).

However, by I.P. Kaminow [19], we know that single-mode optical fibers are not really
“single-mode,” but actually bimodal due to the presence of birefringence. This birefringence
can deeply influence the way in which an optical evolves during the propagation along the fiber.
Indeed, it can occur that the linear birefringence makes a pulse split in two, while nonlinear
birefringent traps them together against splitting. C.R. Menyuk [25,26] showed that the evolu-
tion of two orthogonal pulse envelopes in birefringent optical fibers is governed by the following
coupled nonlinear Schrödinger system:

{
iφt + φxx + |φ|2φ + β|ψ |2φ = 0,

iψt + ψxx + |ψ |2ψ + β|φ|2ψ = 0,
(1.1)

with β positive constant depending on the anisotropy of the fibers. System (1.1) is also impor-
tant for industrial applications in fiber communications systems [17] and all-optical switching
devices [18]. If one seeks for standing wave solutions of (1.1), namely solutions of the form

φ(x, t) = eiw2
1 t u(x) and ψ(x, t) = eiw2

2 t v(x),

then (1.1) becomes
{−uxx + u = |u|2u + β|v|2u in R,

−vxx + w2v = |v|2v + β|u|2v in R,
(1.2)

with w2 = w2
2/w

2
1. Finally, we want to recall that (1.2) describes also other physical phenomena,

such as Kerr-like photorefractive media in optics (cf. [1,10]).
Problem (1.2), in a more general situation and also in higher dimension, has been studied by

R. Cipolatti and W. Zumpichiatti [11,12]. By concentration compactness arguments, they prove
the existence and the regularity of the ground state solutions (u, v) �= (0,0). Later on, in two
very recent papers, T.C. Lin and J. Wei [22] and L.A. Maia, E. Montefusco and B. Pellacci [24]
deal with problem (1.2), also in the multidimensional case, and, among other results, they prove
the existence of least energy solutions of the type (u, v), with u,v > 0. Moreover, T.C. Lin and
J. Wei [22] prove that, if β < 0, then the ground state solution for (1.2) does not exist. We refer
to all these papers and to references therein for more complete informations about (1.2).

Another motivation to the study of coupled Schrödinger systems arises from the Hartree–Fock
theory for the double condensate, that is a binary mixture of Bose–Einstein condensates in two
different hyperfine states |1〉 and |2〉 (cf. [14]). Indeed, these phenomena are governed by the
following system:

⎧⎪⎪⎨
⎪⎪⎩

−ε2Δu + λ1u = μ1u
3 + βuv2 in Ω,

−ε2Δv + λ2v = μ2v
3 + βu2v in Ω,

u,v > 0 in Ω,
(1.3)
u = v = 0 on ∂Ω,
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where Ω is a bounded domain of R
3. Physically, u and v represent the corresponding conden-

sate amplitudes, ε2 = h̄2/(2m), with h̄ the Planck constant and m the atom mass. Moreover
μj = −(Nj − 1)Ujj and β = −N2U12, with Nj � 1 a fixed number of atoms in the hyperfine
state |j 〉, and Uij = 4π(h̄2/m)aij , where ajj ’s and a12 are the intraspecies and interspecies scat-
tering lengths. Besides, by E. Timmermans [29], we infer that μj = μj (x) represents a chemical
potential. For more informations about (1.3), see [22,23] and references therein.

T.C. Lin and J. Wei, in [23], studied problem (1.3) with λ1, λ2,μ1,μ2 positive constants and
they proved that if β <

√
μ1μ2, for ε sufficiently small, (1.3) has a least energy solution (uε, vε).

Moreover, they distinguished two cases: the attractive case and the repulsive one. In the attractive
case, which occurs whenever β > 0, uε and vε concentrate respectively in Qε and Q′

ε , with

|Qε − Q′
ε|

ε
→ 0, as ε → 0.

Precisely they proved that

(Qε, ∂Ω) → max
Q∈Ω

d(Q,∂Ω), d
(
Q′

ε, ∂Ω
) → max

Q∈Ω
d(Q,∂Ω).

In the repulsive case, that is when β < 0, the concentration points Qε and Q′
ε satisfy the follow-

ing condition:

ϕ
(
Qε,Q

′
ε

) → max
(Q,Q′)∈Ω2

ϕ(Q,Q′),

where

ϕ(Q,Q′) = min
{√

λ1|Q − Q′|,√λ2|Q − Q′|,√λ1d(Q,∂Ω),
√

λ2d(Q′, ∂Ω)
}
.

In particular,

|Qε − Q′
ε|

ε
→ ∞, as ε → 0.

Motivated by these results and by the fact that we know that μj may be not constants (cf.
[29]), in this paper we study the following problem:

⎧⎪⎪⎨
⎪⎪⎩

−ε2Δu + J1(x)u = J2(x)u3 + βuv2 in Ω,

−ε2Δv + K1(x)v = K2(x)v3 + βu2v in Ω,

u,v > 0 in Ω,

u = v = 0 on ∂Ω,

(Pε)

with Ω ⊂ R
3, possibly unbounded and with smooth boundary, and with β < 0, namely in the

repulsive case. We will show that the presence of the potentials change drastically the situation
with respect to the case with positive constants for what concerns the location of peaks, but, in
some sense, not the repulsive nature of the problem. In fact, with suitable assumptions on the
potentials, for ε sufficiently small, we will find solutions (uε, vε) of (Pε), even if not of least
energy, concentrating respectively on Qε and Q′

ε which tend toward the same point, determined
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by the potentials, as ε → 0, but with the property that the distance between them divided by ε

diverges (see Remark 1.2).
Up to our knowledge, in this paper we give a first existence result of concentrating solutions

for problem (Pε), in presence of potentials.
On the potentials Ji and Ki we will do the following assumptions:

(J) for i = 1,2, Ji ∈ C1(Ω,R), Ji and DJi are bounded; moreover,

Ji(x) � C > 0 for all x ∈ Ω;

(K) for i = 1,2, Ki ∈ C1(Ω,R), Ki and DKi are bounded; moreover,

Ki(x) � C > 0 for all x ∈ Ω.

Without lost of generality, we can suppose that there exists ε0 > 0, such that Ω0 := Ω ∩
(Ω − ε0e1) �= ∅, where e1 = (1,0,0).

Let us introduce an auxiliary function which will play a crucial role in the study of (Pε). Let
Γ :Ω0 → R be a function defined by

Γ (Q) = J1(Q)
1
2 J2(Q)−1 + K1(Q)

1
2 K2(Q)−1. (1.4)

Let us observe that by (J) and (K), Γ is well defined.
Our main result is:

Theorem 1.1. Suppose (J) and (K) and β < 0. Let Q0 ∈ Ω0 be an isolated local strict minimum
or maximum of Γ . There exists a ε̄ > 0 such that if 0 < ε < ε̄, then (Pε) possesses a solution
(uε, vε) such that uε concentrates in Qε with Qε → Q0, as ε → 0, and vε concentrates in Q′

ε

with Q′
ε → Q0, as ε → 0.

Remark 1.2. Let us observe that, by the proof, it will be clear that, even if

∣∣Qε − Q′
ε

∣∣ → 0, as ε → 0,

we have

|Qε − Q′
ε|

ε
→ ∞, as ε → 0.

Let us present how Theorem 1.1 becomes in some particular situations.
Let H :Ω → R satisfies the assumption:

(H) H ∈ C1(Ω,R), H and DH are bounded; moreover,

H(x) � C > 0 for all x ∈ Ω.

Corollary 1.3. Suppose (H) and β < 0. Suppose, moreover, that we are in one of the following
situations:



262 A. Pomponio / J. Differential Equations 227 (2006) 258–281
• all the potentials Ji and Ki coincide with H ;
• there exists i0 = 1,2 such that Ji0 ≡ H and Ki0 ≡ H , for i = i0, while Ji and Ki are constant

for i �= i0;
• all the potentials Ji and Ki are constant, except only one, which coincides with H .

Let Q0 ∈ Ω0 be an isolated local strict minimum or maximum of H . There exists ε̄ > 0 such
that if 0 < ε < ε̄, then (Pε) possesses a solution (uε, vε) such that uε concentrates in Qε with
Qε → Q0, as ε → 0, and vε concentrates in Q′

ε with Q′
ε → Q0, as ε → 0.

Remark 1.4. If, instead of β constant, we consider β ∈ C1(Ω,R), bounded and bounded above
by a negative constant, then we have exactly the same results.

Finally, we want to observe that we can treat also a more general problem than (Pε). Let us
consider, indeed,

⎧⎪⎪⎨
⎪⎪⎩

−ε2Δu + J1(x)u = J2(x)u2p−1 + βup−1vp in Ω,

−ε2Δv + K1(x)v = K2(x)v2p−1 + βupvp−1 in Ω,

u,v > 0 in Ω,

u = v = 0 on ∂Ω,

(P̄ε)

with Ω ⊂ R
N , possibly unbounded and with smooth boundary, with β < 0 and

2 < 2p < 2∗ =
{+∞ if N = 1,2,

2N
N−2 if N � 3.

(1.5)

Also in this case, without lost of generality, we can suppose that there exists ε0 > 0, such that
Ω̄0 := Ω ∩ (Ω − ε0ē1) �= ∅, where ē1 = (1,0, . . . ,0) ∈ R

N .
Let us define now Γ̄ : Ω̄0 → R be a function defined by

Γ̄ (Q) = J1(Q)
p

p−1 − N
2 J2(Q)

− 1
p−1 + K1(Q)

p
p−1 − N

2 K2(Q)
− 1

p−1 .

In this case, Theorem 1.1 becomes:

Theorem 1.5. Assume (1.5) and suppose (J) and (K) and β < 0. Let Q0 ∈ Ω̄0 be an isolated
local strict minimum or maximum of Γ̄ . There exists ε̄ > 0 such that if 0 < ε < ε̄, then (P̄ε)
possesses a solution (uε, vε) such that uε concentrates in Qε with Qε → Q0, as ε → 0, and vε

concentrates in Q′
ε with Q′

ε → Q0, as ε → 0.

Remark 1.6. Let us observe that, if p = 2 and N = 3, then Theorem 1.1 is nothing else than
a particular case of Theorem 1.5. Nevertheless, since problem (Pε) is more natural and more
important by a physical point of view, we prefer to present Theorem 1.1 as our main result and
to prove it directly, showing how, with slight modifications, the proof of Theorem 1.5 follows.

Theorem 1.1 will be proved as a particular case of a multiplicity result in Section 5 (see
Theorem 5.1). The proof of the theorem relies on a finite dimensional reduction, precisely on the
perturbation technique developed in [2,3,7]. In Section 2 we give some preliminary lemmas and
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some estimates which will be useful in Section 3 and Section 4, where we perform the Lyapunov–
Schmidt reduction, making also the asymptotic expansion of the finite dimensional functional.
Finally, in Section 5, we give also a short proof of Theorem 1.5.

Notations.

• We denote Ω0 := Ω ∩ (Ω − ε0e1), where e1 = (1,0,0) and ε0 is sufficiently small such that
Ω0 �= ∅.

• If r > 0 and x0 ∈ R
3, Br(x0) := {x ∈ R

3: |x −x0| < r}. We denote with Br the ball of radius
r centered in the origin.

• If u : R3 → R and P ∈ R
3, we set uP := u(· − P).

• If ε > 0, we set Ωε := Ω/ε = {x ∈ R
3: εx ∈ Ω}.

• We denote Hε = H 1
0 (Ωε) × H 1

0 (Ωε).
• If there is no misunderstanding, we denote with ‖ · ‖ and with (· | ·) respectively the norm

and the scalar product both of H 1
0 (Ωε) and of Hε . While we denote with ‖ · ‖R3 and with

(· | ·)R3 respectively the norm and the scalar product of H 1(R3).
• With Ci and ci , we denote generic positive constants, which may also vary from line to line.

2. Some preliminary

Performing the change of variable x �→ εx, problem (Pε) becomes:

⎧⎪⎪⎨
⎪⎪⎩

−Δu + J1(εx)u = J2(εx)u3 + βuv2 = 0 in Ωε,

−Δv + K1(εx)v = K2(εx)v3 + βu2v = 0 in Ωε,

u, v > 0 in Ωε,

u = v = 0 on ∂Ωε,

(2.1)

where Ωε = ε−1Ω . Of course if (u, v) is a solution of (2.1), then (u(·/ε), v(·/ε)) is a solution
of (Pε).

Solutions of (2.1) will be found in

Hε = H 1
0 (Ωε) × H 1

0 (Ωε),

endowed with the following norm:

∥∥(u, v)
∥∥2
Hε

= ‖u‖2
H 1

0 (Ωε)
+ ‖v‖2

H 1
0 (Ωε)

, for all (u, v) ∈Hε.

If there is no misunderstanding, we denote with ‖ · ‖ and with (· | ·) respectively the norm and
the scalar product both of H 1(Ωε) and of Hε .

Solutions of (2.1) are critical points of the functional fε :Hε → R, defined as

fε(u, v) = 1

2

∫
Ωε

|∇u|2 + 1

2

∫
Ωε

J1(εx)u2 − 1

4

∫
Ωε

J2(εx)u4

+ 1

2

∫
|∇v|2 + 1

2

∫
K1(εx)v2 − 1

4

∫
K2(εx)v4 − β

2

∫
u2v2.
Ωε Ωε Ωε Ωε
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If we define f J
ε :H 1

0 (Ωε) → R and f K
ε :H 1

0 (Ωε) → R as

f J
ε (u) = 1

2

∫
Ωε

|∇u|2 + 1

2

∫
Ωε

J1(εx)u2 − 1

4

∫
Ωε

J2(εx)u4,

f K
ε (v) = 1

2

∫
Ωε

|∇v|2 + 1

2

∫
Ωε

K1(εx)v2 − 1

4

∫
Ωε

K2(εx)v4,

we have

fε(u, v) = f J
ε (u) + f K

ε (v) − β

2

∫
Ωε

u2v2.

Furthermore, for any fixed Q ∈ Ω , we define the two functionals FJ
Q :H 1(R3) → R and

FK
Q :H 1(R3) → R, as follows:

FJ
Q(u) = 1

2

∫
R3

|∇u|2 + 1

2

∫
R3

J1(Q)u2 − 1

4

∫
R3

J2(Q)u4,

FK
Q (v) = 1

2

∫
R3

|∇v|2 + 1

2

∫
R3

K1(Q)v2 − 1

4

∫
R3

K2(Q)v4.

The solutions of (2.1) will be found near (UQ,V Q), properly truncated, where UQ is the
unique solution of

⎧⎨
⎩

−Δu + J1(Q)u = J2(Q)u3 in R
3,

u > 0 in R
3,

u(0) = maxR3 u,

(2.2)

and VQ is the unique solution of

⎧⎨
⎩

−Δv + K1(Q)v = K2(Q)v3 in R
3,

v > 0 in R
3,

v(0) = maxR3 v,

(2.3)

for an appropriate choice of Q ∈ Ω0. It is easy to see that

UQ(x) = √
J1(Q)/J2(Q) · W (√

J1(Q) · x)
, (2.4)

V Q(x) = √
K1(Q)/K2(Q) · W (√

K1(Q) · x)
, (2.5)

where W is the unique solution of

⎧⎨
⎩

−Δz + z = z3 in R
3,

z > 0 in R
3, (2.6)
z(0) = maxR3 z,
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which is radially symmetric and decays exponentially at infinity with its first derivatives (cf. [16,
20]).

For all Q ∈ Ω0, we set Q′ = Q′(ε,Q) = Q+√
εe1 ∈ Ω and moreover we call P = P(ε,Q) =

Q/ε ∈ Ωε and P ′ = P ′(ε,Q) = Q′/ε ∈ Ωε . Let us observe that

|P − P ′| = 1√
ε

→ ∞, as ε → 0. (2.7)

Let χ : R3 → R be a smooth function such that

χ(x) = 1, for |x| � ε−1/4;
χ(x) = 0, for |x| � 2ε−1/4;

0 � χ(x) � 1, for ε−1/4 � |x| � 2ε−1/4;∣∣∇χ(x)
∣∣ � 2ε1/4, for ε−1/4 � |x| � 2ε−1/4. (2.8)

We denote

UP (x) := χ(x − P)UQ(x − P), (2.9)

VP ′(x) := χ(x − P ′)V Q(x − P ′). (2.10)

Let us observe that (UP ,VP ′) ∈ Hε . For Q varying in Ω0, (UP ,VP ′) describes a 3-dimensional
manifold, namely,

Zε = {
(UP ,VP ′): Q ∈ Ω0

}
. (2.11)

Remark 2.1. Of course, if Ω = R
3, then Ω0 = R

3 and we do not need to truncate UQ and V Q.
In this case, we would have simply UP = UQ(· − P) and VP ′ = V Q(· − P ′).

First of all let us give the following estimate which will be very useful in the sequel.

Lemma 2.2. For all Q ∈ Ω0 and for all ε sufficiently small, if Q′ = Q + √
εe1, P = Q/ε ∈ Ωε

and P ′ = Q′/ε ∈ Ωε , then

∫
Ωε

U2
P V 2

P ′ = o(ε). (2.12)

Proof. Let us start observing that, since

|P − P ′| = ε−1/2 > 4ε−1/4,

we infer that

B2ε−1/4(P ) ∪ B2ε−1/4(P
′) = ∅.
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Therefore, by the definitions of (2.9) and (2.10) and by the exponential decay of UP and VP ′ , we
get

∫
Ωε

U2
P V 2

P ′ �
∫

B2ε−1/4 (P )∪B2ε−1/4 (P ′)

(
UQ

)2
(x − P)

(
V Q

)2
(x − P ′)

� c1

∫
R3\B2ε−1/4 (P ′)

(
V Q

)2
(x − P ′) + c2

∫
R3\B2ε−1/4 (P )

(
UQ

)2
(x − P) = o(ε).

This concludes the proof. �
In the next lemma we show that the 3-dimensional manifold Zε , defined in (2.11), is actually

a manifold of almost critical points of fε .

Lemma 2.3. For all Q ∈ Ω0 and for all ε sufficiently small, if Q′ = Q + √
εe1, P = Q/ε ∈ Ωε

and P ′ = Q′/ε ∈ Ωε , then

∥∥∇fε(UP ,VP ′)
∥∥ = O

(
ε1/2). (2.13)

Proof. For all (u, v) ∈Hε , we have

(∇fε(UP ,VP ′) | (u, v)
) =

∫
Ωε

[∇UP · ∇u + J1(εx)UP u − J2(εx)U3
P u

]

+
∫
Ωε

[∇VP ′ · ∇v + K1(εx)VP ′v − K2(εx)V 3
P ′v

]

− β

∫
Ωε

UP V 2
P ′u − β

∫
Ωε

U2
P VP ′v. (2.14)

Let us study the first integral of the right-hand side of (2.14). By the exponential decay of UQ

and recalling that UQ is solution of (2.2), we get

∫
Ωε

[∇UP · ∇u + J1(εx)UP u − J2(εx)U3
P u

]

=
∫

(Ω−Q)/ε∩B
ε−1/4

[∇UQ · ∇u−P + J1(εx + Q)UQu−P

]

−
∫

(Ω−Q)/ε∩B
ε−1/4

J2(εx + Q)
(
UQ

)3
u−P + o(ε)

=
∫

3

[∇UQ · ∇u−P + J1(εx + Q)UQu−P − J2(εx + Q)
(
UQ

)3
u−P

] + o(ε)
R
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=
∫
R3

[∇UQ · ∇u−P + J1(Q)UQu−P − J2(Q)
(
UQ

)3
u−P

]

+
∫
R3

(
J1(εx + Q) − J1(Q)

)
UQu−P

−
∫
R3

(
J2(εx + Q) − J2(Q)

)(
UQ

)3
u−P + o(ε)

=
∫
R3

(
J1(εx + Q) − J1(Q)

)
UQu−P

−
∫
R3

(
J2(εx + Q) − J2(Q)

)(
UQ

)3
u−P + o(ε). (2.15)

Moreover, from the assumption DJi bounded, we infer that

∣∣Ji(εx + Q) − Ji(Q)
∣∣ � c1ε|x|,

and so,

∫
R3

(
J1(εx + Q) − J1(Q)

)
UQu−P � ‖u‖

( ∫
R3

∣∣J1(εx + Q) − J1(Q)
∣∣2∣∣UQ

∣∣2
)1/2

� c1‖u‖
( 3∫

R

ε2|x|2∣∣UQ
∣∣2

)1/2

= O(ε)‖u‖. (2.16)

Analogously,
∫
R3

(
J2(εx + Q) − J2(Q)

)(
UQ

)3
u−P = O(ε)‖u‖. (2.17)

Therefore, by (2.15)–(2.17), we infer
∫
Ωε

[∇UP · ∇u + J1(εx)UP u − J2(εx)U3
P u

] = O(ε)‖u‖. (2.18)

Similarly, since V Q is solution of (2.3), we get

∫
Ωε

[∇VP ′ · ∇v + K1(εx)VP ′v − K2(εx)V 3
P ′v

]

=
∫

3

(
K1(εx + Q + √

εe1) − K1(Q)
)
V Qv−P ′
R
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−
∫
R3

(
K2(εx + Q + √

εe1) − K2(Q)
)(

V Q
)3

v−P ′ + o(ε). (2.19)

Therefore, from the assumption DKi bounded, we infer that

∣∣Ki

(
εx + Q + √

εe1
) − Ki(Q)

∣∣ � c2
√

ε
∣∣√εx + e1

∣∣,
and so,

∫
R3

(
K1

(
εx + Q + √

εe1
) − K1(Q)

)
V Qv−P ′

� ‖v‖
( ∫

R3

∣∣K1
(
εx + Q + √

εe1
) − K1(Q)

∣∣2|V Q|2
)1/2

� c2‖v‖
( 3∫

R

ε
∣∣√εx + e1

∣∣2∣∣V Q
∣∣2

)1/2

= O
(
ε1/2)‖v‖. (2.20)

Analogously,

∫
R3

(
K2

(
εx + Q + √

εe1
) − K2(Q)

)(
V Q

)3
v−P ′ = O

(
ε1/2)‖v‖. (2.21)

Therefore, by (2.19)–(2.21), we infer

∫
Ωε

[∇VP ′ · ∇v + K1(εx)VP ′v − K2(εx)V 3
P ′v

] = O
(
ε1/2)‖v‖. (2.22)

Let us study the last two terms of (2.14). Arguing as in Lemma 2.2, we get

∣∣∣∣
∫
Ωε

UP V 2
P ′u

∣∣∣∣ � c3

( ∫
Ωε

U
4/3
P V

8/3
P ′

)3/4

‖u‖ = o(ε)‖u‖ (2.23)

and ∣∣∣∣
∫
Ωε

U2
P VP ′v

∣∣∣∣ = o(ε)‖v‖. (2.24)

Now the conclusion of the proof easily follows by (2.14), (2.18), (2.22)–(2.24). �
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3. Invertibility of D2fε on (T(UP ,VP ′ )Z
ε)⊥

In this section we will show that D2fε is invertible on (T(UP ,VP ′ )Z
ε)⊥, where T(UP ,VP ′ )Z

ε

denotes the tangent space to Zε at the point (UP ,VP ′).
Let

Lε,Q :
(
T(UP ,VP ′ )Z

ε
)⊥ → (

T(UP ,VP ′ )Z
ε
)⊥

denote the operator defined by setting

(
Lε,Q(h,h′) | (k, k′)

) = D2fε(UP ,VP ′)
[
(h,h′), (k, k′)

]
.

Lemma 3.1. Given μ > 0, there exists C > 0 such that, for ε small enough and for all Q ∈ Ω0
with |Q| � μ, one has that

∥∥Lε,Q(h,h′)
∥∥ � C

∥∥(h,h′)
∥∥, ∀(h,h′) ∈ (

T(UP ,VP ′ )Z
ε
)⊥

. (3.1)

Proof. First of all, let us observe that, for all (h,h′), (k, k′) ∈ Hε , we have

D2fε(u, v)
[
(h,h′), (k, k′)

]
= D2f J

ε (u)[h, k] + D2f K
ε (v)[h′, k′]

− β

∫
Ωε

v2hk − 2β

∫
Ωε

uvhk′ − 2β

∫
Ωε

uvh′k − β

∫
Ωε

u2h′k′. (3.2)

By (2.4), if we set a(Q) = √
J1(Q)/J2(Q) and b(Q) = √

J1(Q), we have that UQ(x) =
a(Q)W(b(Q)x) and so UP (x) = χ(x − P)a(εP )W(b(εP )(x − P)). Therefore, we have

∂Pi
UP (x) = ∂Pi

(
χ(x − P)UQ(x − P)

)
= −UQ(x − P)∂xi

χ(x − P) + χ(x − P)∂Pi
UQ(x − P)

= −UQ(x − P)∂xi
χ(x − P) + εχ(x − P)∂Pi

a(εP )W
(
b(εP )(x − P)

)
+ εχ(x − P)a(εP )∂Pi

a(εP )∇W
(
b(εP )(x − P)

) · (x − P)

− χ(x − P)a(εP )b(εP )(∂xi
W)

(
b(εP )(x − P)

)
.

Hence

∂Pi
UP (x) = −∂xi

UP (x) + O(ε). (3.3)

Analogously, we can prove that

∂Pi
VP ′(x) = ∂P ′

i
VP ′(x) = −∂xi

VP ′(x) + O(ε). (3.4)

We recall that

T(UP ,V ′ )Z
ε = spanH

{
(∂P1UP , ∂P1VP ′), (∂P2UP , ∂P2VP ′), (∂P3UP , ∂P3VP ′)

}
.

P ε
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We set

Vε = spanHε

{
(UP ,VP ′), (∂x1UP , ∂x1VP ′), (∂x2UP , ∂x2VP ′), (∂x3UP , ∂x3VP ′)

}
.

By (3.3) and (3.4), therefore it suffices to prove Eq. (3.1) for all (h,h′) ∈ spanHε
{(UP ,VP ′),

(φ,φ′)}, where (φ,φ′) is orthogonal to Vε . Precisely we shall prove that there exist C1,C2 > 0
such that, for all ε > 0 small enough, one has

(
Lε,Q(UP ,VP ′) | (UP ,VP ′)

)
� −C1 < 0, (3.5)(

Lε,Q(φ,φ′) | (φ,φ′)
)
� C2

∥∥(φ,φ′)
∥∥2

, for all (φ,φ′) ⊥ Vε. (3.6)

Proof of (3.5). By (3.2), we get

D2fε(UP ,VP ′)
[
(UP ,VP ′), (UP ,VP ′)

]
= D2f J

ε (UP )[UP ,UP ] + D2f K
ε (VP ′)[VP ′ ,VP ′ ] − 6β

∫
Ωε

U2
P V 2

P ′ . (3.7)

Let us study the first term of the right-hand side of (3.7),

D2f J
ε (UP )[UP ,UP ]

=
∫
Ωε

|∇UP |2 +
∫
Ωε

J1(εx)U2
P − 3

∫
Ωε

J2(εx)U4
P

=
∫

(Ω−Q)/ε∩B
ε−1/4

[∣∣∇UQ
∣∣2 + J1(εx + Q)

(
UQ

)2 − 3J2(εx + Q)
(
UQ

)4] + o(ε)

=
∫
R3

[∣∣∇UQ
∣∣2 + J1(Q)

(
UQ

)2 − 3J2(Q)
(
UQ

)4]

+
∫
R3

(
J1(εx + Q) − J1(Q)

)(
UQ

)2 − 3
∫
R3

(
J2(εx + Q) − J2(Q)

)(
UQ

)4 + o(ε)

= −2
∫
R3

J2(Q)
(
UQ

)4 + O(ε)

= −2J1(Q)
1
2 J2(Q)−1

∫
R3

W 4 + O(ε) � −c1.

In a similar way it is possible to prove that

D2f K
ε (VP ′)[VP ′ ,VP ′ ] � −c2.
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Finally, by Lemma 2.2, we know that

∫
Ωε

U2
P V 2

P ′ = o(ε),

and so Eq. (3.5) is proved.

Proof of (3.6). Recalling the definition of χ (see (2.8)), we set χ1 := χ and χ2 := 1−χ1. Given
(φ,φ′) ⊥ Vε , let us consider the functions

φi(x) = χi(x − P)φ(x), i = 1,2; (3.8)

φ′
i (x) = χi(x − P ′)φ′(x), i = 1,2. (3.9)

With calculations similar to those of [7], we have

‖φ‖2 = ‖φ1‖2 + ‖φ2‖2 + 2
∫
Ωε

χ1χ2
(
φ2 + |∇φ|2)

︸ ︷︷ ︸
Iφ

+O
(
ε1/4)‖φ‖2, (3.10)

‖φ′‖2 = ∥∥φ′
1

∥∥2 + ∥∥φ′
2

∥∥2 + 2
∫
Ωε

χ1χ2
(
(φ′)2 + |∇φ′|2)

︸ ︷︷ ︸
Iφ′

+O
(
ε1/4)‖φ′‖2. (3.11)

We need to evaluate the three terms in the equation below:

(
Lε,Q(φ,φ′) | (φ,φ′)

) = (
Lε,Q

(
φ1, φ

′
1

) ∣∣ (
φ1, φ

′
1

)) + (
Lε,Q

(
φ2, φ

′
2

) ∣∣ (
φ2, φ

′
2

))
+ 2

(
Lε,Q

(
φ1, φ

′
1

) ∣∣ (
φ2, φ

′
2

))
. (3.12)

Let us start with (Lε,Q(φ1, φ
′
1) | (φ1, φ

′
1)). Since β < 0, we get

(
Lε,Q

(
φ1, φ

′
1

) ∣∣ (
φ1, φ

′
1

)) = D2f J
ε (UP )[φ1, φ1] + D2f K

ε (VP ′)
[
φ′

1, φ
′
1

]
− 4β

∫
Ωε

UP VP ′φ1φ
′
1 − β

∫
Ωε

U2
P φ′

1
2 − β

∫
Ωε

V 2
P ′φ2

1

> D2f J
ε (UP )[φ1, φ1] + D2f K

ε (VP ′)
[
φ′

1, φ
′
1

]
− 4β

∫
Ωε

UP VP ′φ1φ
′
1. (3.13)

Arguing as in Lemma 2.2, we know that

∫
UP VP ′φ1φ

′
1 = o(ε). (3.14)
Ωε



272 A. Pomponio / J. Differential Equations 227 (2006) 258–281
Therefore we need only to study the first two terms of the right-hand side of (3.13). For simplicity,
we can assume that Q = εP is the origin O. In this case, we recall that we denote with UO the
unique solution of (2.2) whenever Q = O, while we denote with UO the truncation of UO ,
namely UO = χUO , where χ is defined in (2.8). We have

D2f J
ε (UO)[φ1, φ1] =

∫
Ωε

[|∇φ1|2 + J1(εx)φ2
1 − 3J2(εx)U2

Oφ2
1

]

=
∫
R3

[|∇φ1|2 + J1(εx)φ2
1 − 3J2(εx)

(
UO)2

φ2
1

] + o(ε)‖φ‖2

= D2FJ(O)
(
UO)[φ1, φ1] +

∫
R3

(
J1(εx) − J1(O)

)
φ2

1

− 3
∫
R3

(
J2(εx) − J2(O)

)(
UO)2

φ2
1 + o(ε)‖φ‖2

� D2FJ(O)
(
UO)[φ1, φ1] − c3ε

∫
R3

|x|φ2
1 + O(ε)‖φ‖2

= D2FJ(O)
(
UO)[φ1, φ1] + O

(
ε3/4)‖φ‖2,

therefore

D2f J
ε (UO)[φ1, φ1] � D2FJ(O)

(
UO)[φ1, φ1] + O

(
ε3/4)‖φ‖2. (3.15)

We recall that φ is orthogonal to

VU
ε = spanH 1

0 (Ωε)
{UO, ∂x1UO, ∂x2UO, ∂x3UO}.

Moreover by [9], we know that if φ̃ is orthogonal to V with

VU = spanH 1(R3)

{
UO, ∂x1U

O, ∂x2U
O, ∂x3U

O}
,

then the fact that UO is a Mountain Pass critical point of FJ(O) implies that

D2FJ(O)
(
UO)[φ̃, φ̃] > c4‖φ̃‖2

R3 for all φ̃ ⊥ VU . (3.16)

We can write φ1 = ξ + ζ , where ξ ∈ VU and ζ ⊥ VU . More precisely,

ξ = (
φ1 | UO)

R3U
O∥∥UO∥∥−2

R3 +
3∑

i=1

(
φ1 | ∂xi

UO)
R3∂xi

UO∥∥∂xi
UO∥∥−2

R3 .

Let us calculate (φ1 | UO)R3 . By the exponential decay of UO and since φ ⊥ VU
ε , we have
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(
φ1 | UO)

R3 =
∫
R3

∇φ1 · ∇UO +
∫
R3

φ1U
O

=
∫
Ωε

∇φ1 · ∇UO +
∫
Ωε

φ1UO + o(ε)‖φ‖

=
∫
Ωε

∇φ · ∇UO +
∫
Ωε

φUO + o(ε)‖φ‖ = o(ε)‖φ‖.

In a similar way, we can prove also that (φ1 | ∂xi
UO)R3 = o(ε)‖φ‖, and so

‖ξ‖R3 = o(ε)‖φ‖, (3.17)

‖ζ‖R3 = ‖φ1‖ + o(ε)‖φ‖. (3.18)

Let us estimate D2FJ(O)(UO)[φ1, φ1]. We get:

D2FJ(O)
(
UO)[φ1, φ1] = D2FJ(O)

(
UO)[ζ, ζ ] + 2D2FJ(O)

(
UO)[ζ, ξ ]

+ D2FJ(O)
(
UO)[ξ, ξ ]. (3.19)

By (3.16) and (3.18), since ζ ⊥ VU , we know that

D2FJ(O)
(
UO)[ζ, ζ ] > c3‖ζ‖2

R3 = c3‖φ1‖2 + o(ε)‖φ‖2,

while, by (3.17) and straightforward calculations, we have

D2FJ(O)
(
UO)[ζ, ξ ] = o(ε)‖φ‖2, D2FJ(O)

(
UO)[ξ, ξ ] = o(ε)‖φ‖2.

By these last two estimates, (3.19) and (3.15), we can say that

D2f J
ε (UO)[φ1, φ1] > c4‖φ1‖2 + O

(
ε3/4)‖φ‖2.

Hence, in the general case, we infer that, for all Q ∈ Ω0 with |Q| � μ,

D2f J
ε (UP )[φ1, φ1] > c4‖φ1‖2 + O

(
ε3/4)‖φ‖2, (3.20)

and, analogously,

D2f K
ε (VP ′)

[
φ′

1, φ
′
1

]
> c5

∥∥φ′
1

∥∥2 + O
(
ε1/2)‖φ′‖2. (3.21)

By (3.13), (3.14), (3.20) and (3.21), we can say that

(
Lε,Q

(
φ1, φ

′
1

) | (φ1, φ
′
1

))
> c6

∥∥(
φ1, φ

′
1

)∥∥2 + O
(
ε1/2)∥∥(

φ,φ′
1

)∥∥2
. (3.22)

Let us now evaluate (Lε,Q(φ2, φ
′
2) | (φ2, φ

′
2)). Arguing as in Lemma 2.2, since β < 0 and

using the definition of χi and the exponential decay of UP and of VP ′ , we easily get
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(
Lε,Q

(
φ2, φ

′
2

) | (φ2, φ
′
2

)) = D2f J
ε (UP )[φ2, φ2] + D2f K

ε (VP ′)
[
φ′

2, φ
′
2

]
− 4β

∫
Ωε

UP VP ′φ2φ
′
2 − β

∫
Ωε

U2
P φ′

2
2 − β

∫
Ωε

V 2
P ′φ2

2

� D2f J
ε (UP )[φ2, φ2] + D2f K

ε (VP ′)
[
φ′

2, φ
′
2

] + o(ε)
∥∥(φ,φ′)

∥∥2

� c7
∥∥(

φ2, φ
′
2

)∥∥2 + o(ε)
∥∥(φ,φ′)

∥∥2
. (3.23)

Let us now study (Lε,Q(φ1, φ
′
1) | (φ2, φ

′
2)). Arguing as in Lemma 2.2, we get

(
Lε,Q

(
φ1, φ

′
1

) | (φ2, φ
′
2

)) = D2f J
ε (UP )[φ1, φ2] + D2f K

ε (VP ′)
[
φ′

1, φ
′
2

]
− 2β

∫
Ωε

UP VP ′φ1φ
′
2 − 2β

∫
Ωε

UP VP ′φ2φ
′
1

− β

∫
Ωε

U2
P φ′

1φ
′
2 − β

∫
Ωε

V 2
P ′φ1φ2

= D2f J
ε (UP )[φ1, φ2] + D2f K

ε (VP ′)
[
φ′

1, φ
′
2

]
− β

∫
Ωε

U2
P φ′

1φ
′
2 − β

∫
Ωε

V 2
P ′φ1φ2 + o(ε)

∥∥(φ,φ′)
∥∥2

. (3.24)

Using the definition of χi and the exponential decay of UP and of VP ′ , we easily get

D2f J
ε (UP )[φ1, φ2] � c8Iφ + O

(
ε1/4)‖φ‖2, (3.25)

D2f K
ε (VP ′)

[
φ′

1, φ
′
2

]
� c9Iφ′ + O

(
ε1/4)‖φ′‖2, (3.26)

where Iφ and Iφ′ are defined, respectively in (3.10) and (3.11). Moreover, by the definition of χ

(see (2.8)), and by the definitions of φi and φ′
i (see (3.8) and (3.9)),

φ1(x)φ2(x) = χ(x − P)
(
1 − χ(x − P)

)
φ2(x) � 0, for all x ∈ R

3,

and so, also

φ′
1(x)φ′

2(x) � 0, for all x ∈ R
3.

Therefore

−β

∫
Ωε

U2
P φ′

1φ
′
2 − β

∫
Ωε

V 2
P ′φ1φ2 � 0. (3.27)

By (3.24)–(3.27), we infer

(
Lε,Q

(
φ1, φ

′
1

) | (φ2, φ
′
2

))
� c10(Iφ + Iφ′) + O

(
ε1/4)∥∥(φ,φ′)

∥∥2
. (3.28)
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Hence, by (3.12), (3.22), (3.23), (3.28) and recalling (3.10) and (3.11), we get

(
Lε,Q(φ,φ′) | (φ,φ′)

)
� c11

∥∥(φ,φ′)
∥∥2 + O

(
ε1/4)∥∥(φ,φ′)

∥∥2
.

This completes the proof of the lemma. �
4. The finite dimensional reduction

By means of the Lyapunov–Schmidt reduction, the existence of critical points of fε can be
reduced to the search of critical points of an auxiliary finite dimensional functional.

Lemma 4.1. Fix μ > 0. For ε > 0 small enough and for all Q ∈ Ω0 with |Q| � μ, there exists a
unique (w,w′) = (w(ε,Q),w′(ε,Q)) ∈ Hε of class C1 such that

(1) (w(ε,Q),w′(ε,Q)) ∈ (T(UP ,VP ′ )Z
ε)⊥;

(2) ∇fε(UP + w,VP ′ + w′) ∈ T(UP ,VP ′ )Z
ε .

Moreover, the functional Aε :Ω0 → R, defined as

Aε(Q) := fε

(
UQ/ε + w(ε,Q),V(Q+e1

√
ε)/ε + w′(ε,Q)

)

is of class C1 and satisfies

∇Aε(Q0) = 0 ⇐⇒ ∇fε

(
UQ0/ε + w(ε,Q0),V(Q0+e1

√
ε)/ε + w′(ε,Q0)

) = 0.

Proof. Let P = Pε,Q denote the projection onto (T(UP ,VP ′ )Z
ε)⊥. We want to find a solution

(w,w′) ∈ (T(UP ,VP ′ )Z
ε)⊥ of the equation

P∇fε

(
UP + w,VP ′ + w′) = 0.

One has that

∇fε(UP + w,VP ′ + w′) = ∇fε(UP ,VP ′) + D2fε(UP ,VP ′)[w,w′] + R(UP ,VP ′ ,w,w′)

with ‖R(UP ,VP ′ ,w,w′)‖ = o(‖(w,w′)‖), uniformly with respect to (UP ,VP ′). Therefore, our
equation is

Lε,Q(w,w′) +P∇fε(UP ,VP ′) +PR(UP ,VP ′ ,w,w′) = 0. (4.1)

According to Lemma 3.1, this is equivalent to

(w,w′) = Nε,Q(w,w′),

where

Nε,Q(w,w′) = −(Lε,Q)−1(P∇fε(UP ,VP ′) +PR(UP ,VP ′ ,w,w′)
)
.
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By (2.13), it follows that

∥∥Nε,Q(w,w′)
∥∥ = O

(
ε1/2) + o

(∥∥(w,w′)
∥∥)

. (4.2)

Therefore it is easy to check that Nε,Q is a contraction on some ball in (T(UP ,VP ′ )Z
ε)⊥ provided

that ε > 0 is small enough. Then there exists a unique (w,w′) such that (w,w′) = Nε,Q(w,w′).
Let us point out that we cannot use the Implicit Function Theorem to find (w(ε,Q),w′(ε,Q)),
because the map (ε, u, v) �→P∇fε(u, v) fails to be C2. However, fixed ε > 0 small, we can apply
the Implicit Function Theorem to the map (Q,w,w′) �→ P∇fε(UP + w,VP ′ + w′). Then, in
particular, the function (w(ε,Q),w′(ε,Q)) turns out to be of class C1 with respect to Q. Finally,
it is a standard argument, see [2,3], to check that the critical points of Aε(Q) = fε(UP + w,

VP ′ + w′) give rise to critical points of fε . �
Remark 4.2. From (4.2) it immediately follows that

∥∥(w,w′)
∥∥ = O

(
ε1/2). (4.3)

Let us now make the asymptotic expansion of the finite dimensional functional.

Theorem 4.3. Fix μ > 0 and let Q ∈ Ω0 with |Q| � μ, Q′ = Q + √
εe1, P = Q/ε ∈ Ωε and

P ′ = Q′/ε ∈ Ωε . Suppose (J) and (K). Then, for ε sufficiently small, we get

Aε(Q) = fε

(
UP + w(ε,Q),VP ′ + w′(ε,Q)

) = c0Γ (Q) + o
(
ε1/4), (4.4)

where Γ :Ω0 → R is defined in (1.4), namely

Γ (Q) = J1(Q)
1
2 J2(Q)−1 + K1(Q)

1
2 K2(Q)−1

and

c0 := 1

2

∫
R3

W 4 (4.5)

with W the unique solution of (2.6).

Proof. We have

Aε(Q) = fε

(
UP + w(ε,Q),VP ′ + w′(ε,Q)

)
= 1

2

∫
Ωε

∣∣∇(UP + w)
∣∣2 + 1

2

∫
Ωε

J1(εx)(UP + w)2 − 1

4

∫
Ωε

J2(εx)(UP + w)4

+ 1

2

∫
Ωε

∣∣∇(VP ′ + w′)
∣∣2 + 1

2

∫
Ωε

K1(εx)(VP ′ + w′)2 − 1

4

∫
Ωε

K2(εx)(VP ′ + w′)4

− β

2

∫
(UP + w)2(VP ′ + w′)2.
Ωε
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Therefore, by (4.3) and Lemma 2.2,

Aε(Q) = 1

2

∫
Ωε

|∇UP |2 + 1

2

∫
Ωε

J1(εx)U2
P − 1

4

∫
Ωε

J2(εx)U4
P

+ 1

2

∫
Ωε

|∇VP ′ |2 + 1

2

∫
Ωε

K1(εx)V 2
P ′ − 1

4

∫
Ωε

K2(εx)V 4
P ′ + O

(
ε1/2)

= f J
ε (UP ) + f K

ε (VP ′) + O
(
ε1/2). (4.6)

Let us study the first term of the right-hand side of (4.6),

f J
ε (UP ) = 1

2

∫
Ωε

|∇UP |2 + 1

2

∫
Ωε

J1(εx)U2
P − 1

4

∫
Ωε

J2(εx)U4
P

= 1

2

∫
(Ω−Q)/ε∩B

ε−1/4

[∣∣∇UQ
∣∣2 + J1(εx + Q)

(
UQ

)2 − 1

2
J2(εx + Q)

(
UQ

)4
]

+ o(ε)

= 1

2

∫
R3

∣∣∇UQ
∣∣2 + 1

2

∫
R3

J1(Q)
(
UQ

)2 − 1

4

∫
R3

J2(Q)
(
UQ

)4

+ 1

2

∫
R3

(
J1(εx + Q) − J1(Q)

)(
UQ

)2

− 1

4

∫
R3

(
J2(εx + Q) − J2(Q)

)(
UQ

)4 + o(ε)

= 1

2

∫
R3

J2(Q)
(
UQ

)4 + o
(
ε1/4)

= 1

2
J1(Q)

1
2 J2(Q)−1

∫
R3

W 4 + o
(
ε1/4).

Hence

f J
ε (UP ) = 1

2
J1(Q)

1
2 J2(Q)−1

∫
R3

W 4 + o
(
ε1/4). (4.7)

Analogously,

f K
ε (VP ′) = 1

2

∫
|∇VP ′ |2 + 1

2

∫
K1(εx)V 2

P ′ − 1

4

∫
K2(εx)V 4

P ′
Ωε Ωε Ωε
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= 1

2

∫
(Ω−Q′)/ε∩B

ε−1/4

[∣∣∇V Q
∣∣2 + K1(εx + Q′)

(
V Q

)2]

− 1

4

∫
(Ω−Q′)/ε∩B

ε−1/4

K2(εx + Q′)
(
V Q

)4 + o(ε)

= 1

2

∫
R3

∣∣∇V Q
∣∣2 + 1

2

∫
R3

K1(Q)
(
V Q

)2 − 1

4

∫
R3

K2(Q)
(
V Q

)4

+ 1

2

∫
R3

(
K1

(
εx + Q + √

εe1
) − K1(Q)

)(
V Q

)2

− 1

4

∫
R3

(
K2

(
εx + Q + √

εe1
) − K2(Q)

)(
V Q

)4 + o(ε)

= 1

2

∫
R3

K2(Q)
(
V Q

)4 + o
(
ε1/4)

= 1

2
K1(Q)

1
2 K2(Q)−1

∫
R3

W 4 + o
(
ε1/4).

Therefore

f J
ε (VP ′) = 1

2
K1(Q)

1
2 K2(Q)−1

∫
R3

W 4 + o
(
ε1/4). (4.8)

Now (4.4) follows immediately by (4.6)–(4.8). �
5. A multiplicity result and proofs of theorems

In this section we give the proofs of our theorems. First of all, let us prove Theorem 1.1 as an
easy consequence of the following multiplicity result:

Theorem 5.1. Let (J) and (K) hold and suppose Γ has a compact set X ⊂ Ω0 where Γ achieves
a strict local minimum (respectively maximum), in the sense that there exist δ > 0 and a δ-
neighborhood Xδ ⊂ Ω0 of X such that

b := inf
{
Γ (Q): Q ∈ ∂Xδ

}
> a := Γ |X

(
respectively sup

{
Γ (Q): Q ∈ ∂Xδ

}
< Γ |X

)
.

Then there exists ε̄ > 0 such that (Pε) has at least cat(X,Xδ) solutions that concentrate near
points of Xδ , provided ε ∈ (0, ε̄). Here cat(X,Xδ) denotes the Lusternik–Schnirelman category
of X with respect to Xδ .

Proof. First of all, we fix μ > 0 in such a way that |Q| < μ for all Q ∈ X. We will apply the
finite dimensional procedure with such μ fixed.



A. Pomponio / J. Differential Equations 227 (2006) 258–281 279
We will treat only the case of minima, being the other one similar. We set Y = {Q ∈ Xδ:
Aε(Q) � c0(a + b)/2}, being c0 defined in (4.5). By (4.4) it follows that there exists ε̄ > 0 such
that

X ⊂ Y ⊂ Xδ, (5.1)

provided ε ∈ (0, ε̄). Moreover, if Q ∈ ∂Xδ then Γ (Q) � b and hence

Aε(Q) � c0Γ (Q) + o
(
ε1/4) � c0b + o

(
ε1/4).

On the other side, if Q ∈ Y then Aε(Q) � c0(a + b)/2. Hence, for ε small, Y cannot meet ∂Xδ

and this readily implies that Y is compact. Then Aε possesses at least cat(Y,Xδ) critical points
in Xδ . Using (5.1) and the properties of the category, one gets

cat(Y,Y ) � cat(X,Xδ).

Moreover, by Lemma 4.1, we know that to critical points of Aε there correspond critical points
of fε and so solutions of (2.1). Let Qε ∈ X be one of these critical points, if Q′

ε = Qε + √
εe1,

then

(
uQε

ε , vQε
ε

) = (
UQε/ε + w(ε,Qε),VQ′

ε/ε
+ w′(ε,Qε)

)
is a solution of (2.1). Therefore

uQε
ε (x/ε) � UQε/ε(x/ε) = UQε

(
x − Qε

ε

)
,

vQε
ε (x/ε) � VQ′

ε/ε
(x/ε) = V Qε

(
x − Q′

ε

ε

)

is a solution of (Pε) and also the concentration result follows. �
Let us now give a short proof of Theorem 1.5.

Proof of Theorem 1.5. We need only to observe that, in this case, the solutions of (P̄ε) will be
found near (ŪQ, V̄ Q), properly truncated, where ŪQ is the unique solution of

⎧⎨
⎩

−Δu + J1(Q)u = J2(Q)u2p−1 in R
N,

u > 0 in R
N,

u(0) = maxRN u,

and V̄Q is the unique solution of

⎧⎨
⎩

−Δv + K1(Q)v = K2(Q)v2p−1 in R
N,

v > 0 in R
N,

v(0) = maxRN v,

for an appropriate choice of Q ∈ Ω̄0. It is easy to see that
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ŪQ(x) = (
J1(Q)/J2(Q)

)1/(2p−2) · W̄ (√
J1(Q) · x)

,

V̄ Q(x) = (
K1(Q)/K2(Q)

)1/(2p−2) · W̄ (√
K1(Q) · x)

,

where W̄ is the unique solution of

⎧⎨
⎩

−Δz + z = z2p−1 in R
N,

z > 0 in R
N,

z(0) = maxRN z.

At this point, we can repeat the previous arguments, with suitable modifications. �
Remark 5.2. Of course, the analogous of Theorem 5.1 holds also for problem (P̄ε).
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