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SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are the
core machinery of membrane fusion. Vesicular SNAREs (v-SNAREs) interact with their target SNAREs
(t-SNAREs) to form SNARE complexes which mediate membrane fusion. Here we review the basic
properties and functions of the v-SNARE TI-VAMP/VAMP7 (Tetanus neurotoxin insensitive-vesicle
associated membrane protein). TI-VAMP interacts with its t-SNARE partners, particularly plasma-
lemmal syntaxins, to mediate membrane fusion and with several regulatory proteins especially
via its amino-terminal regulatory Longin domain. Partners include AP-3, Hrb/(Human immunodefi-
ciency virus Rev binding) protein, and Varp (Vps9 domain and ankyrin repeats containing protein)
and regulate TI-VAMP’s function and targeting. TI-VAMP is involved both in secretory and endocytic
pathways which mediate neurite outgrowth and synaptic transmission, plasma membrane remod-
eling and lysosomal secretion.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Membrane fusion is implicated in several important functions
of mammalian cells including hormone and neurotransmitter re-
lease, membrane receptors recycling, and viral infection. It is a
highly regulated mechanism which enables the merger of two dif-
ferent cellular membrane compartments and the pooling of their
contents. SNARE proteins constitute the core machinery of mem-
brane fusion: vesicular SNAREs (v-SNAREs), localized on vesicles,
interact with their target SNAREs (t-SNAREs) partners, localized
on intracellular membranes, to form a membrane-bridging SNARE
complex, responsible for membrane fusion.
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1.1. Identification of SNARE proteins

The first SNARE complex was identified in brain extracts [1].
Rothman and coworkers identified the synaptic SNARE complex
composed of the t-SNAREs SNAP-25 and syntaxin 1 and the
v-SNARE synaptobrevin2/VAMP2. Since this characterization, a
very large number of studies have shown the fundamental role
played by SNARE proteins in many membrane fusion events in
eukaryotes. The SNARE family is composed of about 36 members
in human, 25 in the yeast Saccharomyces cerevisiae and 54 in the
plant Arabidopsis thaliana. SNARE proteins are short proteins of
100–300 amino acids, with a highly conserved SNARE domain,
directly responsible for the formation of SNARE complexes. Most
of them are anchored to membranes via a transmembrane domain
located at the C-terminal end of the protein.

Because the general mechanism of SNARE-mediated membrane
fusion has been recently described in several reviews [2,3], we will
emphasize here on the role of the Tetanus neurotoxin insensitive
v-SNARE TI-VAMP (Tetanus neurotoxin insensitive-vesicle associ-
ated membrane protein) also called VAMP7, in cell morphogenesis
and remodeling. We will first describe the interacting proteins of
TI-VAMP and the cargos transported by TI-VAMP vesicles, and
finally we will discuss the function of TI-VAMP in the secretory
and endocytic pathways.
lsevier B.V. All rights reserved.
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2. TI-VAMP

2.1. Gene and protein

V-SNAREs are defined by two main subfamilies: the ‘‘Brevin”
family, which includes short v-SNAREs (represented by synaptob-
revin2/VAMP2, cellubrevin/VAMP3 and endobrevin/VAMP8) and
the ‘‘Longin” family, characterized by an N-terminal extension
called the Longin domain, as in the case of TI-VAMP/VAMP7,
Sec22, Ykt6 and the yeast protein Nyv1p [4,5].

TI-VAMP is derived from the SYBL-1 (Synaptobrevin-like 1)
gene, localized in the pseudoautosomal region at the termini of
the long arm of the X chromosome (XqPARp) [6]. SYBL-1 gene is
ubiquitously expressed (http://www.genecards.org/cgi-bin/card-
disp.pl?gene=VAMP7) and is extremely conserved. Homologues
were identified in rat, mice, non human primates, and also in
plants and flies. SYBL-1 undergoes X inactivation but it is also
transcriptionally inactive on the Y chromosome [6], due to epige-
netic mechanisms [7]. SYBL-1 encodes a 2576 bp cDNA, generating
a protein of 220 amino acids and approximately 25 kDa. In contrast
to VAMP2 and VAMP3, TI-VAMP is resistant to clostridial neurotox-
ins such as tetanus and several isotypes of botulinum (B, D, F and
G) neurotoxins. The insensitivity to botulinum neurotoxin B is
due to at least 12 amino acids changes from the sequence of
VAMP2 [8,9]. TI-VAMP is also characterized by an amino-terminal
extension of 120 amino acids called the Longin domain [4]. Re-
cently, the corresponding mRNA has been found in pseudopodia
of murine fibroblasts responding to migratory stimuli, thus sug-
Fig. 1. Partners of TI-VAMP. The different known partners of TI-VAMP are represented.
SNAP-25 and syntaxin 3 and SNAP-23 to form SNARE complexes in the brain and in ep
structure, represented here by in silico prediction. Via its Longin domain, TI-VAMP inter
endosomal localization of TI-VAMP. Via its cytosolic domain, TI-VAMP interacts with Hrb
ArfGAP domain localized at the N-terminal end of Hrb has been predicted from in silico
interact with clathrin (pink), AP-2 (brown) and Eps15 via its NPF repeats (Asp-Pro-Phe, i
composed of a Vps9 domain (blue) that it is responsible for the GEF activity of the protei
[13,33]. TM: transmembrane domain.
gesting that TI-VAMP could be synthesized in pseudopodia of
migrating cells [10]. SYBL-1 is composed of eight exons and the
corresponding protein TI-VAMP is composed of three domains
(Fig. 1): the Longin domain, that plays a regulatory role as we will
describe later, a SNARE domain, directly involved in the formation
of SNARE complex, and a tail-anchor transmembrane domain.

The Longin domain adopts a globular ‘‘profilin-like” structure,
similar to the profilin domain of the human SEDL protein [4]. Inter-
estingly, the Longin domain of Ykt6 can adopt a closed conforma-
tion similar to that of syntaxins, and the Longin domain of Ykt6
folds back onto its SNARE domain to prevent the formation of
SNARE complexes [11]. A similar mechanism has recently been ob-
served for the Longin domain of Sec22 [12] and suggested for that
of TI-VAMP [13]. The Longin domain of TI-VAMP plays an impor-
tant role in both the localization and function of the protein. In-
deed, it has an inhibitory action on the formation of SNARE
complexes composed of TI-VAMP and its t-SNAREs partners [14].
Furthermore, its interaction with the d subunit of the adaptor
AP-3, is responsible for the correct targeting of TI-VAMP to late
endosomes in non-neuronal cells [14] and to presynaptic sites of
mossy fibers (MF) in hippocampus [15]. Interestingly, some
splicing isoforms of TI-VAMP have been described. One of them,
TI-VAMPc is deleted from approximately one-third of its Longin
domain [4], and does not interact with the d delta subunit of
AP-3 [14]. This short Longin domain, however, still inhibits the
interaction with t-SNARE partners like the full-length one. There-
fore, the AP-3 dependent targeting and the auto-inhibitory SNARE
interaction functions of the Longin domain of TI-VAMP appear
Via its SNARE domain, TI-VAMP interacts with its t-SNARE partners syntaxin 1 and
ithelial cells, respectively. The Longin domain of TI-VAMP adopts a ‘‘profilin-like”

acts with the d subunit of the adaptator AP-3 and this interaction regulates the late
and Varp. Hrb regulates TI-VAMP’s endocytosis in a clathrin-dependent pathway. An
analysis (orange). In addition to its interacting domain with TI-VAMP (ID), Hrb also
n gray). Varp regulates neurite outgrowth in association with TI-VAMP. Varp is also
n for Rab21 and of 11 ankyrin repeats (pink). For Hrb, the ID has been deduced from
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largely independent from each other [14]. Other Longin domains
are also important for the correct subcellular localization of SNARE
proteins [16,17].

2.2. TI-VAMP partners and cargos

2.2.1. Partners
TI-VAMP interacts with several partners. Most of them have

been identified in yeast-two-hybrid screens and confirmed by bio-
chemical experiments. TI-VAMP interacts with several t-SNAREs
(depending upon the cell/tissue type) and with several proteins in-
volved in its regulation (Fig. 1).

2.2.1.1. t-SNAREs. TI-VAMP interacts with both plasma membrane
and endosomal t-SNAREs. In neurons, TI-VAMP interacts with syn-
taxin 1 and SNAP-25 [14,18]. In fibroblasts, TI-VAMP interacts with
syntaxin 4 and SNAP-23 [14,19]. The calcium-sensor protein syn-
aptotagmin VII likely interacts with the resulting SNARE complex
in a calcium-dependent manner [19]. TI-VAMP also forms stable
complexes with syntaxin 4 and SNAP-23 at the plasma membrane
of human mastocytes [20], with syntaxin 3 in rat mastocytes [21],
and with syntaxin 3 and SNAP-23 at the apical side of the epithelial
Caco2 cells [8]. Finally, TI-VAMP also interacts with the endosomal
t-SNARE complex composed of syntaxin 7, syntaxin 8 and vti1b in
fibroblasts and brain extracts [18,22,23].

2.2.1.2. d AP-3. Yeast two hybrid screens proved to be particularly
efficient to identify TI-VAMP partners, particularly the d subunit
of the clathrin adaptor AP-3 via its interaction with the Longin do-
main [14]. This finding was confirmed by Luzio and coworkers
[13]. The molecular coat AP-3 is expressed in endosomes and is in-
volved in the biogenesis of specialized lysosomes related compart-
ments such as melanosomes, platelet granules, or azurophilic
granules as well as in the biogenesis of synaptic vesicles (see
[24] for review).

AP-3 is composed of four subunits: d, b3, l3 and r3. There are
two isoforms of b3, l3 and r3 called A and B. b3B and l3B are spe-
cifically expressed in neurons and neuroendocrine cells, and define
the AP3-B complex. An ubiquitous AP3-A, composed of b3A and
l3A also exists. Interestingly, although the clathrin binding domain
of the b3 subunit is conserved, it is not yet clear whether b3 binds to
clathrin in vitro [25,26]. AP-3 is localized in early endosomes de-
rived tubules [27] and is involved in the traffic through late endo-
somes and lysosomes [28]. AP-3 depleted cells show defects in the
sorting of several lysosomal proteins such as LAMP-1, -2 and -3/
CD63 and LIMP-2 [27,29,30].

In non-neuronal cells, the interaction of TI-VAMP with AP-3 is
responsible for the correct subcellular localization of TI-VAMP in
late endosomes, where TI-VAMP colocalizes with CD63 [14] and
LAMP-1 [31]. In mocha cells, which don’t express the d subunit of
AP-3, TI-VAMP is abnormally retained in early and recycling endo-
somes, but it reaches its correct localization following re-expres-
sion of the d subunit [14]. An important role of AP-3 in the
regulation of synaptic vesicles exocytosis in hippocampal mossy fi-
bers terminals has been proposed from electrophysiological
recordings of spontaneous and evoked release in mocha hippocam-
pal slices [15]. The interaction between TI-VAMP and AP-3 there-
fore appears as a prototypical example of SNARE-adaptor
interactions similar to that observed between VAMP4 and AP-1
[32]. The generality of such mechanism for v-SNARE targeting re-
mains however to be demonstrated.

2.2.1.3. Hrb: Human immunodeficiency virus Rev Binding protein. Our
yeast-two hybrid screens [14] also revealed that TI-VAMP interacts
with Hrb, also called hRIP for human Rev Interacting Protein or RAB
for Rev/Rex Activation-domain Binding protein [33] as was also
found by Pryor et al. [13]. Hrb was first identified as a cellular
cofactor of the Rev viral protein [34,35]. Structurally, from the N-
terminal to the C-terminal end of the protein, Hrb is composed of
(i) an in silico ArfGAP predicted domain (Fig. 1), (ii) domains medi-
ating interactions with the endocytic proteins clathrin and AP-2
[13], (iii) four NPF repeats, responsible for the interaction of Hrb
with Eps15 [36,37] and (iv) several FG repeats, classically found
on nucleoporins. Despite being an important potential function of
Hrb, the ArfGAP activity still remains to be experimentally demon-
strated. Hrb has also been characterized for its role in the fusion of
Golgi-derived vesicles to form the acrosome during spermiogene-
sis. Male mice lacking Hrb were sterile because vesicles were not
able to fuse, resulting in spermatozoids lacking acrosome [38].
Hrb is expressed in different cell types and in brain during devel-
opment. In HeLa cells, Hrb is expressed in the nucleus and in the
cytoplasm where it shows a vesicular pattern, and colocalizes with
clathrin, AP-2 and Eps15. Hrb thus appears as a component of
clathrin-coated structures [33]. The interaction of Hrb and TI-
VAMP is labile and of weak affinity [13,33] thus it is likely to be
transient. RNAi experiments showed that Hrb is involved in the
endocytosis of TI-VAMP [13,33]. It is also of interest to note that
a role of AP-2 in TI-VAMP subcellular localization was further
found in Dictyostelium [39]. Hrb is more generally involved in
clathrin-dependent endocytosis. In fact, we have observed an inhi-
bition on transferrin endocytosis in Hrb silenced cells [33], that de-
pends on the level of expression of Hrb, further demonstrating that
Hrb is a regulator and not an indispensable factor of clathrin-
dependent endocytosis, in agreement with the viability of Hrb �/�
mice. A competition between the SNARE domain and Hrb for bind-
ing to the Longin domain of TI-VAMP has been proposed because
the same amino acids of the Longin domain would be involved in
both interactions [13]. According to this model, the interaction of
Hrb with TI-VAMP would be possible only when TI-VAMP is
already complexed with its t-SNARE partners, thus exposing the
Longin domain and allowing it to interact with Hrb [13]. We found
however Hrb in yeast two hybrid screens and GST-pull down
experiments using the whole cytoplasmic domain of TI-VAMP as
well as the Longin domain alone [33]. Therefore, an alternative
hypothesis would be that Hrb interacts with TI-VAMP cis-multi-
mers in which Longin domains are also exposed. In any case, the
role of Hrb in clathrin-dependent endocytosis of TI-VAMP and that
of AP-3 in TI-VAMP sorting further supports the notion that molec-
ular coats and their regulators play a role in SNARE targeting.

2.2.1.4. Varp: Vps9 domain and ankyrin repeats containing protein. In
addition to AP-3 [14] and Hrb [33], we also found the Varp protein
(for Vps9 domain and ankyrin repeats containing protein) in our
yeast two hybrid screens, using the full cytoplasmic domain of
TI-VAMP as a bait [40]. Varp is a Guanine Exchange Factor (GEF)
for Rab21 [41] and shows a ubiquitous pattern of expression. As
TI-VAMP, Rab21 is involved in phagocytosis, cell migration, mitosis
[42–44] and neurite growth [40]. Interaction between Varp and
TI-VAMP was confirmed by biochemical experiments in vitro and
in vivo [40]. The interaction domain of Varp with TI-VAMP is local-
ized within a region containing ankyrin repeats [45], downstream
of the Vps9 domain which is responsible for the GEF activity of
Varp for Rab21 (see Fig. 1). Interestingly, Rab21 and TI-VAMP colo-
calize in the Trans Golgi Network (TGN), suggesting that Varp
could regulate a functional link between TI-VAMP and Rab21 at
the exit of the TGN [40]. Indeed, silencing the expression of Varp
by siRNA leads to a decrease of the colocalization of TI-VAMP
and Rab21 in this perinuclear area. Live cell imaging experiments
further suggest a co-transport of Varp and TI-VAMP in the same
vesicles in the neurites of mouse hippocampal neurons [40]. There-
fore the TI-VAMP/Varp interaction could regulate vesicular trans-
port from the soma to growing neurites. Furthermore, silencing
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the expression of Varp, or expressing solely its domain of interac-
tion with TI-VAMP results in decreased neurite and axonal growth
in cultured PC12 cells and mouse hippocampal neurons, respec-
tively [40]. Thereby, Varp is, like TI-VAMP, an important regulator
of neurite growth. Since Varp is also an effector of Rab32 and
Rab38 [46,47], it appears as a molecular adaptor connecting sev-
eral Rab proteins (Rab 21, 32, 38) with the v-SNARE TI-VAMP.

Altogether, yeast two hybrid screens enabled us to establish
molecular links between TI-VAMP and molecular coats (directly
with AP-3 and through Hrb with AP-2) as well as between TI-VAMP
and Rab proteins (through Varp). This is particularly interesting be-
cause SNAREs, coats and Rabs constitute some of the crucial ele-
ments in vesicular trafficking [48].

2.3. Cargos

2.3.1. L1-cam
The Cell Adhesion Molecule (CAM) L1 is involved in axonal

growth and cell motility [49]. During axonal growth, L1 is actively
recycled at neuronal plasma membrane [50]. The formation of L1-
dependent homophilic contacts depends on both lateral diffusion
of L1 molecules pre-existing at the cell surface, and transport of
new molecules from an endosomal pool [51]. In embryonic rat
brain and PC12 cells, L1 colocalizes with TI-VAMP. In PC12 cells,
there is a pool of L1 localized in vesicular structures where TI-
VAMP is also expressed, in the cell body as well as at the tip of
growing neurons. In addition, in antibody uptake experiment of
Fab directed against L1, it has been shown that the endocytosed
L1 fraction is localized in a perinuclear structure where TI-VAMP
is also present [18]. Finally, in primary neurons cultures, the endo-
cytosed L1 fraction colocalizes with TI-VAMP structures along the
axon. Altogether, these results show that L1 is a cargo of TI-VAMP,
specifically endocytosed in TI-VAMP compartments. It is also
important to note that a strong functional link between both pro-
teins exists because silencing the expression of TI-VAMP leads to a
defect in cell adhesion, due to a specific lack of L1- but not N-cad-
herin-dependent contact formation [18].

2.3.2. MT1-MMP
The proteolytic degradation of extracellular matrix is an intrin-

sic property of metastatic cells. This process involves actin en-
riched protrusions localized at the plasma membrane called
invadopodia [52]. MT1-MMP (for Membrane Type 1-Matrix
Metalloproteinase Protein) is one of the proteases that allow the
invadopodia to degrade the matrix and thereby cell colonization
of other tissues (see [53,54] for reviews). MT1-MMP colocalizes
with TI-VAMP in late endocytic and lysosomal structures and is
carried by TI-VAMP vesicles to degradation sites [55]. Silencing
the expression of either MT1-MMP or TI-VAMP in different cell
types inhibits the degradation capacity of these cells on extracellu-
lar matrix [55]. Finally, TI-VAMP is also involved in a positive feed-
back on the invadopodia formation by regulating the transport and
the exocytosis of MT1-MMP that is also involved in the formation
and in the maturation of invadopodia [55].

2.3.3. LewisX
LewisX (LeX) is a fucosylated carbohydrate synthesized by the

fucosyltransferase IX [56] and it is one of the most abundant carbo-
hydrates expressed in human brain. Its expression is temporally
and spatially regulated during development of the central nervous
system and LeX is involved in neuronal adhesion and neurite out-
growth [57,58]. In neuronal NT2N cells, its expression is enhanced
during neuronal differentiation and LeX is expressed at the cell sur-
face, in lysosomes, and in a TI-VAMP positive compartment. In rat
hippocampal neurons, LeX is found in TI-VAMP structures after 7
days in vitro (div). Later, at 14 div, it appears in synaptic and extra-
synaptic sites of glutamatergic and GABAergic neurons, respec-
tively. In these neurons, LeX colocalizes with TI-VAMP in the
soma, and most extensively in punctate structures along the neu-
rites. A colocalization of LeX and TI-VAMP has also been reported
to a lesser extent, in the growth cone. These results suggest that
LeX is carried by one or several cargos of TI-VAMP [59].

2.3.4. CD82
The tetraspanin CD82, also known as KAI-1, is a wide-spectrum

tumor metastasis suppressor [116]. Expression of this gene has
been shown to be down regulated in the progression of human tu-
mors, and the loss of expression of CD82 is associated with poor
survival for prostate cancer patients [117,118]. CD82 is localized
at the plasma membrane, interacts with other tetraspanins and
associates with proteins involved in cell migration, such as cell
adhesion molecule, growth factor receptors, and signaling mole-
cules. CD82 directly associates with the EGF receptor (EGFR)
[119]. We find that depletion of TI-VAMP is correlated with de-
creased amounts of CD82 at the plasma membrane, with increased
endocytosis of EGFR, and impaired signaling of MAPK. Fast confocal
video microscopy indicates that TI-VAMP positive vesicles colocal-
ize in time and space with CD82 molecules suggesting that they are
transported by the same vesicles [60].

We do not have a full view of TI-VAMP cargos at this point but it ap-
pears, from the above cited studies, that they include molecules which
are involved in, or regulate cell adhesion and signaling at the cell sur-
face. This further indicates that TI-VAMP is primarily a secretory v-
SNARE, and suggests important connections to cell signaling.
3. TI-VAMP pathways

3.1. TI-VAMP distribution in intracellular compartments

At the optical level, TI-VAMP was shown to colocalize with late
endosome/lysosomal markers (CD63 and LAMP-1, respectively),
and to slightly colocalize with early endosomes, labeled with the
Transferrin Receptor (TfR) in HeLa and NIH3T3 cells [14,31]. How-
ever, the localization of TI-VAMP shift to TfR positive compart-
ments when the Longin domain of TI-VAMP was deleted,
suggesting a role of the Longin domain in TI-VAMP localization
[14]. Accordingly, in mocha cells lacking AP-3d, TI-VAMP is retained
in an early endosomal compartment indicating that TI-VAMP
needs to interact with the adaptor complex AP-3 to reach late
endosomes [14,24]. TI-VAMP immunogold labeling was detected
in tubulovesicular structures of 20–50 nm in diameter (60.8% of
the labeling), in LDCVs (Large Dense Core Vesicles, 31.0% of the
labeling), and occasionally on Golgi stacks in PC12 cells [61]. With-
in the endosomal compartments, TI-VAMP localizes mainly in late
endosomes (50%), and also in early endosomes (5%) and lysosomes
(5%) [31]. In both studies, Golgi stacks staining was detected in a
proportion of 8%, but Advani and coworkers [31] also reported a
30% of labeling within the TGN region.

In PC12 cells, TI-VAMP shows a punctate pattern in the cyto-
plasm, colocalizing with the lysosomal marker CD63. After nerve
growth factor (NGF) treatment, it is found in neuritic extensions.
In primary hippocampal cultures of neuronal cells, TI-VAMP local-
izes in vesicles in the axonal and dendritic compartments and is
mainly expressed at the tip of the growth cone after 2 div [61].
The localization of TI-VAMP in the actin-rich region of growth
cones is regulated by Cdc42 [62], a key player in neuronal cell
polarity (see [63] for review).

After the onset of synaptogenesis, TI-VAMP is mainly found at
extrasynaptic sites in the somatodendritic compartments of pyra-
midal cells [15]. In contrast, the protein was expressed at the pre-
synaptic level in cultured granules neurons of the dentate gyrus,
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indicating that its localization can vary from one neuronal type to
another [15]. In the adult brain, TI-VAMP is widely distributed, and
mainly somatodendritic. However, here again, a subset of neuronal
cell types express TI-VAMP in axonal compartments and presynap-
tic sites [64]. Four distinctive populations of labeled axon terminals
were identified: (i) the hippocampal mossy fibers (MF) of the gran-
ule cells of the dentate gyrus, (ii) the striatal peridendritic terminal
plexuses in the globus pallidus (GP), substantia nigra pars reticula-
ta (SNr), (iii) the peridendritic plexuses in the central nucleus of
the amygdala, and (iv) the primary sensory afferents in the dorsal
horn of the spinal cord. Interestingly, we found that in mocha mice,
the synaptic localization of TI-VAMP in MF is lost. Indeed, TI-VAMP
was blocked in the peri-Golgi region of the granule cells [15,24].
These results are reminiscent from the one in fibroblasts, where
TI-VAMP is blocked in the early endososomes in the absence of
AP-3 [14]. Altogether, these results indicate that AP-3 is important
for the targeting of TI-VAMP in different compartments, depending
upon cell types, which are late endosomes in epithelial cells, and
synaptic vesicles in certain neuronal cells. The potential relation-
ship between non-neuronal late endosomes and neuronal synaptic
vesicles is still unclear at this point.

Overall, TI-VAMP localizes into different post-Golgi compart-
ments and its subcellular localization varies in different cell types.
Further studies at the ultrastructural level and in live cells are re-
quired to further understand the life cycle of TI-VAMP.

3.2. TI-VAMP dependent membrane trafficking pathways

3.2.1. Prechylomicron trafficking
TI-VAMP has been shown to be expressed in the endoplasmic

reticulum (ER) in rat enterocytes, whereas it is absent in ER of liver
or kidney [65]. The brush border of intestinal cells is dedicated to
the absorption of lipids and nutrients. Tri-acyl glycerol (TAG) is ab-
sorbed and reaches the ER of enterocytes. TAG is then incorporated
into lipoproteins, called chylomicrons. The chylomicrons then exit
the ER in specialized vesicles (PCTV, prechylomicron transport ves-
Fig. 2. TI-VAMP routes. The main TI-VAMP routes are represented. TI-VAMP is involved in
pairing with its t-SNAREs at the plasma membrane, TI-VAMP is endocytosed in a clath
structures. In early endosomes, TI-VAMP interacts with AP-3 to reach late endosome
reticulum, TGN: trans-Golgi Network, Lys: lysosome, EE: early endosome, LE: late endos
icle) which travel to the cis-Golgi by anterograde transport.
TI-VAMP has been shown to be concentrated in PCTVs and to
colocalize with ER proteins like Sar1 and rBet1. Anti-TI-VAMP
antibodies reduce the transfer of TAG from the ER to the Golgi by
85%. The SNARE complex associated to PCTV docked on cis-Golgi
was shown to contained TI-VAMP, Syntaxin 5, Vti1a and rBet1
[66]. This function of TI-VAMP appears very specific of enterocytes
but it is puzzling in the context of post-Golgi roles in most other
cell types.

3.2.2. Golgi to cell surface
As discussed above, TI-VAMP is present mainly in the Golgi

apparatus (40%), and in late endosomes/lysosomes (55%) in most
cells. Thus one could envision that TI-VAMP may have a role both
in trafficking to and/or from the Golgi apparatus and also in the
endocytic pathway (Fig. 2). The mammalian post-Golgi system in-
volves at least five v-SNAREs: VAMP2, VAMP3, VAMP4, TI-VAMP,
and VAMP8. VAMP3 localizes to early and recycling endosomes
and is involved in plasmalemma receptor recycling [67–69].
VAMP4 localizes to the TGN and is involved in early endosome to
TGN transport [70,71], and possibly in homotypic fusion of early
endosomes [72]. VAMP8 is involved in secretory mechanisms in
specialized cells as well as in the endosomal system [73–76].

One model used to study VAMP post-Golgi trafficking has been
the insulin-stimulated translocation of the facilitative glucose
transporter (GLUT4) from intracellular vesicular compartments to
the plasma membrane in myocytes [77] or adipocytes [78]. At ba-
sal state, the glucose transporter is mainly located in intracellular
compartments. Upon stimulation by insulin, there is a marked in-
creased exocytosis of GLUT4 at the plasma membrane, allowing
glucose to be internalized more efficiently [79,80]. Insulin and
hypertonicity each increase the content of GLUT4 glucose trans-
porters at the surface of muscle cells. GLUT4 has been shown to
be solicited by insulin and hypertonicity to recruit overlapping
but distinct sources defined by VAMP2 and TI-VAMP, respectively
[81,82]. Requirement of VAMP2 and TI-VAMP for insulin and os-
the transport from the Golgi to the cell surface. After mediating exocytic events via
rin-dependent manner by interacting with Hrb, to be included in clathrin-coated
s and lysosomes. Then, TI-VAMP mediates lysosomal secretion. ER: endoplasmic
ome.
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motic shock respectively was confirmed in adipocytes [78]. More-
over, VAMP4 was required for the initial biosynthetic entry of
GLUT4 from the Golgi apparatus into the insulin-responsive vesicle
compartments, VAMP8 for plasma membrane endocytosis, and
VAMP2 for sorting to the specialized insulin-responsive compart-
ment after plasma membrane endocytosis. TI-VAMP was also
shown to mediate constitutive exocytosis of growth hormone from
Golgi apparatus in human parotid epithelial HSY cell line [83].

Recently, we showed that TI-VAMP is necessary for the general
exocytosis from the Golgi apparatus to the cell surface in HeLa
cells. We used the VSVG-GFP thermosensitive mutant and we
showed that the appearance of vesicular stomatitis virus G-protein
(VSVG) at the cell surface is significantly delayed upon depletion of
TI-VAMP by siRNA. These results suggest that TI-VAMP may medi-
ate a fusion process between secretory vesicles derived from the
Golgi apparatus and the plasma membrane [60]. TI-VAMP deple-
tion thus leads to decreased cell surface expression of proteins
including the tetraspanin CD82 and the CAM L1. TI-VAMP was also
shown to mediate the direct apical delivery of both raft- and non-
raft-associated proteins in epithelial polarized cells, whereas
VAMP8 was involved in the transcytotic pathway sorting [84]. Fi-
nally, pHluorin imaging experiments showed that TI-VAMP medi-
ated exocytosis is positively regulated by Cdc42 and actin
dynamics [62].

3.2.3. Endocytic pathway: from late endosomes to lysosomes
TI-VAMP was previously proposed to mediate the transport

from endosomes to lysosomes on the basis of the 25% inhibitory ef-
fect of anti-TI-VAMP polyclonal antibodies on EGF degradation in
permeablized cells [31]. From in vitro studies, it was proposed that
TI-VAMP mediates heterotypic fusion between endosomes and
lysosomes, whereas VAMP8 mediates homotypic fusion [23,85].
In our hands, TI-VAMP depletion by siRNA in HeLa cells enhances
EGF endocytosis but only slightly delay degradation of the EGFR,
suggesting that EGFR is still able to reach the lysosomal degrada-
tive compartments in the absence of TI-VAMP. These results seem
to indicate that, if TI-VAMP mediates the fusion between endo-
somes and lysosomes as suggested by in vitro experiments
[23,31], TI-VAMP’s function may be redundant in this pathway
(possibly with VAMP8), thus enabling EGF to still reach lysosomes
in the absence of TI-VAMP in vivo.

3.2.4. From late endosome to the Golgi apparatus
TI-VAMP was also shown to co-immunoprecipitate with syn-

taxin 7 in neurons [18], in melanoma cells [86] and in solubilized
rat liver membranes [23]. Syntaxin 7 is part of a t-SNARE complex
comporting also syntaxin 8 and vti1b [87]. Interestingly, a role for
syntaxin 8 in the early endosomes to the late endosome transport
was suggested by the effect of anti-syntaxin 8 antibodies on EGFR
trafficking in Streptolysin-O permeabilized HeLa cells [88]. More-
over, syntaxin 8 has been localized mainly in the TGN and in late
endosomes and lysosomes [88]. From this, it was conceivable that
TI-VAMP might mediate TGN-endosome transport. However no
data so far support this hypothesis. Mannose-6–phosphate recep-
tors (M6PR) are transported from endosomes to Golgi after deliver-
ing lysosomal enzymes to the endocytic pathway. This pathway
has been recently shown to require SNARE complexes composed
of syntaxin 10, 16, Vti1a and VAMP3. Soluble syntaxin 5, 6, 11,
13, Vti1b, TI-VAMP and VAMP8 were without effect on in vitro
transport reaction recapitulating this route [89]. These data sug-
gest that TI-VAMP may not be implicated in M6PR retrograde
transport. Moreover TI-VAMP transport vesicles examined by elec-
tron microscopy were previously shown to be devoid of mannose
M6PR [31]. In mammalian cells, two SNARE complexes have been
implicated in the transport of Shiga toxin from early and/or recy-
cling endosomes to the TGN. The first one is composed of GS15
(Golgi SNARE of 15 kDa), syntaxin 5, GS28 (Golgi SNARE of
28 kDa) and Ykt6 [90]. The second one is composed of the v-
SNAREs VAMP4 or VAMP3 and the t-SNAREs syntaxin 16, syntaxin
6 and Vti1a [70]. Syntaxin 6/syntaxin 16/Vti1a interacts with
VAMP3 and VAMP4, but not with TI-VAMP or VAMP8. VAMP3
and VAMP4 have been suggested to form separate molecular com-
plexes. Thus, we can conclude that TI-VAMP does not participate to
retrograde transport of M6PR or Shiga toxin toward the TGN.
Therefore, only a redundant function with VAMP8 in late endo-
some to lysosome transport could be assigned to TI-VAMP in the
late endosomal system.

3.2.5. Lysosomal secretion
TI-VAMP has also been implicated in lysosomal secretion in dif-

ferent cell types. For example, TI-VAMP has been involved in fusion
of vesicles with plasma membrane necessary for phagocytosis [91]
and in lysosomal and granule secretion in polarized cells
[83,84,92–96]. TI-VAMP is also involved in secretion in more spe-
cialized cells (see Section 4.3).

Overall, TI-VAMP appears mainly as a secretory v-SNARE and it
may function in a redundant manner in other pathways, particu-
larly with VAMP8 in the endosomal system.
4. Cellular functions

By silencing experiments using RNA-mediated interference or
by using the expression of its Longin domain as a dominant nega-
tive, multiple roles of TI-VAMP in different cell types have been de-
duced (Fig. 3). Molecular mechanism involved in the inhibitory
action of an exogenous Longin domain is not yet known but it
could result from the trapping of partners like AP-3, Hrb and other
still unknown partners, or from its binding to endogenous TI-VAMP
itself.

4.1. Apical transport

Composition and function of apical and basal plasma membrane
of polarized epithelial cells are different and maintained by specific
apical and basolateral transport routes (see [97] for review). A role
for TI-VAMP in the apical transport has been reported in Caco-2
and MDCK cells. In polarized Caco-2 cells, TI-VAMP forms SNARE
complexes with its t-SNAREs partners syntaxin 3 and SNAP-23
[8], and antibodies against TI-VAMP inhibit transport to the apical
surface in polarized MDCK cells [98]. More recently, it has been
shown by RNAi experiments that the knock-down of TI-VAMP
results in the mislocalisation to the basolateral side of several
GPI-anchored proteins which are normally expressed at the apical
surface [84].

4.2. Neuronal outgrowth and synaptic transmission

Consistent with its localization in neuronal growth cones,
TI-VAMP plays a role in neurite outgrowth. Indeed, the expression
of exogenous Longin domain of TI-VAMP has a dominant negative
effect on neuritogenesis, contrary to a mutant deleted from the
Longin domain which overexpression enhances neurite outgrowth
in PC12 cells [94]. Finally, these mutants affect the outgrowth of
both axons and dendrites in rat hippocampal neurons cultures.
These results indicate that TI-VAMP is involved in neurite out-
growth and that its Longin domain plays a regulatory function in
this process. This is further confirmed by the effect of the silencing
of TI-VAMP by RNAi, which result in a decreased neurite outgrowth
in both PC12 cells and in rat hippocampal neurons [18]. Quantita-
tive analysis and mathematical modelisation of vesicular transport
in growing neurites showed that the flux of TI-VAMP but not that



Fig. 3. Cellular functions of TI-VAMP. Depending on the considered cell type, TI-VAMP is involved in different cellular functions. TI-VAMP is involved in plasma membrane
remodeling with a role in phagocytosis in macrophages (1), in neurite outgrowth in neurons and PC12 cells (2), in apical transport in epithelial cells (3) and in lysosomal
secretion, particularly in cell migration (4).
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of VAMP2 accounted for the extent of growth [99]. Synaptotagmin
VII, a partner of TI-VAMP [19], involved in lysosomal secretion in
non-neuronal cells [100] is also involved in neurite growth, at least
in cultured neurons [101]. A function of syntaxin 3 but not syn-
taxin 1 in neurite growth has also been proposed [102]. Therefore,
TI-VAMP could operate in this pathway together with syntaxin 3 as
t-SNARE and synaptotagmin VII.

As previously discussed, TI-VAMP is expressed in granule cells
of rodent dentate gyrus. In wild-type mice, which express AP-3,
TI-VAMP is concentrated in nerve terminals contacting CA3 pyra-
midal cells (the so-called MF terminals). Thus MF synaptic vesicles
(SVs) contain two v-SNAREs, VAMP2 and TI-VAMP. In mocha mice,
TI-VAMP is blocked in the soma of granule cells and is absent from
MF SVs. We thus proposed that AP-3 is necessary for the export of
TI-VAMP from the soma to the SVs present in the axon terminal.

Using mocha mice, we identified an asynchronous release that
can be evoked at hippocampal MF synapses and which is resistant
to tetanus neurotoxin [15]. Since these results are correlated with a
loss of the presynaptic localization of TI-VAMP, whereas the local-
ization of VAMP2 is unaffected, we proposed the implication of
TI-VAMP in this particular regulation. In addition, quantal release
in mocha cultures is more frequent and more sensitive to sucrose.
Therefore, we proposed that the presence of TI-VAMP in MF SVs
provides a regulation affecting both basal and evoked release. Since
TI-VAMP has a lower capacity to assemble into SNARE complexes
than VAMP2 [14], this could explain, at least in part, the weaker
docking capacity of control SVs and lead to smaller Readily Releas-
able Pool (RRP) in control MF terminals [24].

Altogether, these data suggest that TI-VAMP plays a role in both
developing and mature neurons.
4.3. Lysosomal secretion

Conventional lysosomes are major organelles of the calcium-
dependent exocytosis. In NRK cells, TI-VAMP interacts with the
calcium-sensor protein synaptotagmin VII and forms SNARE
complexes with syntaxin 4 and SNAP-23 following an elevation
of the intracellular calcium concentration. In these cells, overex-
pression of the SNARE domain of both TI-VAMP and syntaxin 4 is
responsible for an inhibition of the secretion of the enzyme b-hex-
osaminidase [19].

Membrane contribution is required at the leading edge of
migrating cells. VAMP3 is directly involved in cell migration of
MDCK cells [103–106] but interestingly, TI-VAMP is also expressed
in the lamellipodia of these cells. It has been shown that the over-
expression of the Longin domain in MDCK cells inhibits the veloc-
ity of migrating cells, due to an effect on lysosomal secretion [107].
Finally, VAMP3 is necessary for fusion between autophagosomes
and multivesicular bodies (MVBs) whereas TI-VAMP is needed
for fusion of autophagosomes with lysosomes and for the release
of exosomes [108].

Recently, more and more studies have focused on the role of
SNARE proteins in immunology. TI-VAMP has been involved in lo-
cal inflammatory responses mediated by specialized cells such as
mastocytes, basophils, eosinophils or neutrophils. These cells con-
tain granules that secrete histamine, serotonin, or other inflamma-
tory mediators by exocytic events. For example, rat or human
mastocytes expressed the t-SNAREs syntaxin 2, 3 and 4 and
SNAP-23 and the v-SNAREs TI-VAMP and VAMP8 [20,109]. In these
cells, TI-VAMP is localized in intracellular compartments, partially
colocalizing with CD63 [21], thus in good agreement with a late
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endosomal/lysosomal origin of these compartments and the fact
that TI-VAMP is localized in lysosomes in other cell types
[19,91,110,111]. TI-VAMP plays also a role in regulated exocytosis
in human neutrophils and eosinophils [92,96], in which VAMP8 is
also involved; each SNARE playing specific roles in the secretion of
inflammatory mediators by specific granules. Finally, TI-VAMP is
also involved in the secretion of natural killer (NK) cells that con-
tain secretory lysosome-related granules, responsible for the secre-
tion of lytic enzymes like perforine and granzyme B [93].

Altogether, these results suggest that TI-VAMP is a v-SNARE of
lysosomal secretion in different cell types.

4.3. Plasma membrane remodeling

TI-VAMP also plays a role in membrane remodeling at the cell
surface, in phagocytosis, and in mitosis [91,112] for instance.
Phagocytosis implies the formation of plasma membrane exten-
sions at the phagocytic site. These extensions, called pseudopods,
depend on actin polymerization and membrane contribution dur-
ing the formation of the phagocytic cup [113]. The addition of tet-
anus neurotoxin, which cleaves VAMP2 and VAMP3, inhibits
phagocytosis [114] but it has been shown that silenced macro-
phages for the expression of VAMP3 were still able to phagocyte
latex beads [115]. Niedergang and coworkers have shown that
TI-VAMP is localized in a late endocytic compartment in macro-
phages at steady state and is recruited to phagosomes during Fc
mediated phagocytosis. Furthermore, phagocytosis is inhibited by
silencing TI-VAMP expression by RNAi, or by overexpressing its
Longin domain. Finally, TI-VAMP silencing is also responsible for
an inhibition of the exocytosis of late endosomal compartments
derived vesicles, resulting in an early blocking of pseudopods
extension [91].

Similarly, during mitosis, cells change their shape. Kirchhausen
and its coworkers have correlated plasma membrane surface mod-
ifications and dynamics of exocytosis and endocytosis during the
different stages of cell division [112]. During mitosis, endocytosis
is not affected but recycling of internalized membrane is consider-
ably slow down at the beginning of mitosis and reaches its normal
rate at anaphase, due to a fusion of endosomes with the plasma
membrane [112]. The expression of dominant negative forms of
cellubrevin and TI-VAMP inhibits respectively the reappearance
of TfR and LAMP-1 at cell surface [112], showing a role of both v-
SNARE in this plasma membrane remodeling process.

Therefore, the TI-VAMP compartment is mobilized to the cell
surface when rapid expansion and remodeling of plasma mem-
brane is needed.

5. Conclusion

In conclusion, TI-VAMP is an original v-SNARE involved in
secretion. It is ubiquitously expressed, and is involved in many cel-
lular functions. TI-VAMP is present both in the Golgi apparatus and
in the endosomal system, and is thus at the cross-roads of various
secretory and endocytic pathways. The function of TI-VAMP is par-
ticularly important in dynamic cellular processes which involve
plasma membrane growth and remodeling. Of notes, TI-VAMP-
mediated exocytosis is needed during morphogenesis in epithelial
cell migration, phagocytosis, as well as neurite outgrowth. While
its SNARE domain mediates membrane fusion through interactions
with plasma membrane and endosomal t-SNAREs, its Longin do-
main plays a crucial role in the regulation of TI-VAMP, through
both intra and intermolecular interactions with AP-3 and Hrb. Its
interaction with Varp connects TI-VAMP to several Rab proteins,
particularly Rab21, which is also involved in epithelial cell migra-
tion, phagocytosis and neurite outgrowth. In vitro approaches will
be required to understand the molecular functions and the regula-
tion of TI-VAMP and its partners. More in vivo experiments will be
also necessary to determine the importance of the vesicular traf-
ficking pathway involving TI-VAMP at the level of the organism.
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