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p = 0.38, respectively). Moreover, 
analyses of only high confidence 
states yielded similar results as when 
high- and low- confidence states were 
pooled (see Supplemental Data). 
Together with the numerically large and 
robust difference between expected 
and unexpected percepts in the test 
phase, these observations speak to a 
true perceptual bias rather than a mere 
response bias.

Our work shows that experimentally 
manipulated expectations not only 
affect the perception of pain [1,6] or 
emotion, but can have a more general 
influence on how we experience the 
world, as evidenced by a striking effect 
of expectations on the contents of 
visual awareness. This opens the door 
for studies of how perception and belief
systems are biased by expectation in 
general and in pathological states such 
as delusions.

Supplemental data
Supplemental data are available at http://
www.current-biology.com/cgi/content/
full/18/16/R697/DC1
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Neural basis for 
unique hues

Cleo M. Stoughton  
and Bevil R. Conway

All colors can be described in terms 
of four non-reducible ‘unique’ hues: 
red, green, yellow, and blue [1]. These 
four hues are also the most common 
‘focal’ colors — the best examples 
of color terms in language [2]. The 
significance of the unique hues has 
been recognized since at least the 
14th century [3] and is universal [4,5], 
although there is some individual 
variation [6,7]. Psychophysical linking 
hypotheses predict an explicit neural 
representation of unique hues at 
some stage of the visual system, but 
no such representation has been 
described [8]. The special status of 
the unique hues “remains one of the 
central mysteries of color science” 
[9]. Here we report that a population 
of recently identified cells in posterior 
inferior temporal cortex of macaque 
monkey contains an explicit 
representation of unique hues.

Color in humans and macaque 
monkeys depends on the differential 
responses of the three cone 
types — L, M and S — an operation 
typified by parvocellular neurons 
of the lateral geniculate nucleus 
of the thalamus (LGN). LGN cells 
can be categorized according 
to color preference, but these 
categories do not correspond to 
unique hues [6,10,11]. Instead, 
multi-stage models have been 
developed, locating the essential 
color calculation to brain regions 
subsequent to the LGN in the visual 
processing hierarchy [12,13]. Such 
models describe a recombination 
of the cone signals to produce 
color tuning that corresponds to 
perception, but it is also plausible 
that the LGN output is simply filtered 
so that only that minority of LGN 
cells with appropriate color tuning is 
routed to color-processing regions 
of cortex. In either case, neurons 
downstream of the LGN at the first 
cortical stages of vision (V1 and V2), 
are, however, unlikely to encode 
unique colors [14–17]: like neurons 
in the LGN, color-opponent neurons 
in V1 are tuned to colors lying close 
to the cardinal color axes defined by 
cone opponency: L −M (bluish-red),; 
−L+M (cyan), S −(L+M) (lavender), 
and −S+(L+M) (lime) [15,16,18]. As in 
the LGN, the overwhelming majority 
of color-opponent neurons in V1 are 
tuned along the red-cyan axis [15,16].

Color-tuned neurons have 
recently been found in posterior 
inferior temporal cortex of the 
macaque monkey, clustered within 
millimeter- sized modules dubbed 
globs, downstream from V1 and V2 
[19,20]. We determined the color 
tuning of the population of glob cells 
described in that study (Figure 1). 
Although neurons tuned to all 
directions in color space were found 
[20], the population distribution 
was not uniform, and is markedly 
different from that obtained in LGN 
or V1. The population distribution 
contains three prominent peaks. 
The largest peak aligns with red; 
the second largest, with green; and 
the third, with blue. The distribution 
also includes a bulge that peaks 
in the yellow. These peaks are 
roughly consistent with unique 
colors identified by human subjects 
(symbols, Figure 1). The three 
prominent peaks also correspond 
to the three most saturated colors 
in the stimulus set (see Figure S1 
in the Supplemental data available 
on-line with this issue); and the size 
of each of the peaks corresponds 
to the relative saturations of the 
hues, suggesting that both hue 
and saturation are represented by 
relative number of glob cells. The 
relative size of each of the peaks 
also corresponds to the frequency 
with which these color terms is 
adopted by language: red is adopted 
first, then yellow or green, followed 
by blue [4]. These results extend 
those of Zeki [21] and Komatsu et al. 
[22] and are, to our knowledge, the 
closest explicit neural representation 
of unique colors in the primate brain. 

The stimuli consisted of flashed 
(200 ms ON/200 ms OFF) optimally 
shaped bars surrounded by a 
neutral-adapting gray field. Color 
tuning was assessed by varying 
the color of the bar. Three sets of 
equiluminant colors were used: 
one set was equiluminant with 
the adapting-gray field; one set 
was higher luminance than the 
adapting field; and one set was 
lower luminance than it. The 
population tuning was consistent 
across stimulus sets, except for a 
subtle shift in the location of the 
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peaks, most pronounced for green 
(compare the three plots, Figure 1). 
These shifts were consistent with 
the Bezold-Brücke hue shift — at 
lower luminance, a green stimulus 
must contain more intensity at long 
wavelengths (yellow) to appear 
constant green — providing further 
evidence that this population of cells 
is encoding color experience.

The population of glob cells has a 
strong explicit representation of three 
of the four unique colors; yellow is 
weak. The stimuli were generated 
with a computer monitor, and were 
constrained to be equiluminant; 
thus all colors were limited by the 
maximum luminance of the dimmest 

computer phosphor gun (blue). At 
this luminance, stimuli in the yellow 
region appear ochre, lacking the 
brilliance one associates with focal 
yellow. We interpret the weak yellow 
peak not to a lack of neurons tuned 
to yellow, but rather to a lack of focal 
yellow in the stimulus set. 

Supplemental data
Supplemental data are available at http://
www.current-biology.com/cgi/content/
full/18/16/R698/DC1
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Figure 1. Histogram of optimal color tuning of glob cells recorded in alert macaque monkey 
shown as a polar plot. 

Globs are regions of posterior inferior temporal cortex (including V4, PITd and posterior TEO) 
that show higher fMRI responses to equiluminant color than to black-and-white [19,20]. Single-
unit responses were obtained from two monkeys using microelectrodes targeting globs (for all 
methods and detailed description of the stimuli see [20]). Number of cells tuned to each color 
is indicated by the radius (308 cells; smoothing: 1-bin-wide boxcar). Cells were tested with 
stimuli of optimal spatial configuration, varied only in color (Table S1 in the Supplemental data 
gives C.I.E. values; colors around the perimeter are approximate). Color tuning was assessed 
with three sets of equiluminant colors: one set was equiluminant with the adapting gray field 
(thick dark-gray line); one set was higher luminance than the adapting field (thick light-gray 
line); and one set was lower luminance than the adapting field (thin black line). The location of 
the cardinal color axes is shown, along with the average location of unique colors judged by 
human subjects from two studies (squares, [11]; triangles, [23]).
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