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a b s t r a c t

The refined method of matched asymptotic expansions is used for constructing asymptotic
models for the topological sensitivity of the energy functional with respect to the creation
of several small holes in the geometrical domain.
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1. Introduction

Topological sensitivity analysis [1,2] deals with the asymptotic expansion of a given shape functional J(Ω, v) with respect
to the creation of a small hole ω0

ε with the center at a given point x0 in the geometrical domain Ω . In the case of a Neumann
boundary condition imposed on the boundary ∂ω0

ε of the hole, the topological asymptotics for the energy functional has the
form (see, e.g., [3])

J(Ωε, u
ε) = J(Ω, v0)+ T0

ω(x
0)|ω0

ε | + o(|ω0
ε |).

Here, uε is a solution of the boundary value problem defined on the domain Ωε = Ω \ ω0
ε , |ω0

ε | is the Lebesgue measure of
ω0
ε (area if Ω ⊂ R2 or volume if Ω ⊂ R3), v0 is the solution of the boundary value problem defined on the original domain Ω ,

T0
ω(x

0) is the topological derivative, i.e.,

T0
ω(x

0) = lim
ε→0+

J(Ωε, uε)− J(Ω, v0)

|ω0
ε |

.

The topological derivative T0
ω(x

0) determines whether a change of topology via nucleation of the small hole ω0
ε at the point

x0 in the interior of the domain Ω would result in improving the value of the shape functional J(Ω, v) or not.
The idea of topological sensitivity was introduced in [4] (the so-called characteristic function) in the framework of the

bubble method for topology and shape optimization. The topological derivative concept was generalized for nucleation of
cavities of arbitrary shape as well as for different boundary conditions imposed on ∂ωε(x0) and state differential equations
defined on Ωε ⊂ Rn [2]. Also, various approaches were suggested for calculating the topological derivative [2].

By definition, we put

Tεω(x
0) =

J(Ωε, uε)− J(Ω, v0)

|ω0
ε |

.
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We shall say that Tεω(x
0) is the topological sensitivity of the shape functional J(Ω, v) with respect to the internal topological

variation. The aim of the asymptotic modelling of the topological sensitivity is to obtain an asymptotic representation for
Tεω(x

0). Using asymptotic analysis, we obtain the asymptotic formula
Tεω(x

0) = Sε
ω(x

0)+ o(T0
ω(x

0)), ε→ 0,

where Sε
ω(x

0) is an asymptotic model for the topological sensitivity.
In [5], the case of a finite number of circular holes was treated by means of the so-called topological gradient which

contains the topological derivatives evaluated at the centers of holes. For the modelling of the internal multiple topological
variations in [6] two new approaches were developed using the self-adjoint extensions of differential operators and the
variational formulation with point asymptotic conditions in a functional space with separated asymptotics. A number of
related inverse problems have been considered in [7].

In the present work the third approach based on the refined method of matched asymptotic expansions [8,9] in the
form [9] is proposed. The asymptotic analysis performed in the work is formal. Estimates for the proposed approximations
in weighted Hölder spaces [2] and weighted Sobolev spaces [10] were derived in the context of shape optimization. In
Section 3, the methodology of simultaneous multiple changes of topology is proposed for refinement of the bubble method.
In Section 4, the case of the Dirichlet boundary conditions imposed on the boundaries of cavities is considered with an
example where the optimal solution from the direct optimization algorithm (based on the topological derivative) is known
explicitly. It is shown that the asymptotic model allows us to improve the solution.

2. Multiple changes of the topology class

Let R2
⊃ ωj be a domain on the plane of stretched coordinates (ξ

j
1, ξ

j
2). For sufficiently small ε > 0 it is always possible

for any fixed different points x1, . . . , xN ∈ Ω to remove N small sets ωj
ε(x

j) =
{
x | ε−1(x− xj) ∈ ωj

}
from Ω , obtaining the

N-connected singularly perturbed domain Ωε.
In the domain Ωε we consider the following mixed boundary value problem:
−∆xu

ε(x) = f (x), x ∈ Ωε; uε(x) = 0, x ∈ ∂Ω; (1)

∂nu
ε(x) = 0, x ∈ ∂ωj

ε(x
j) (j = 1, 2, . . . ,N). (2)

Using the refined method of matched expansions in the form [9], we take the sum

Vε(x) = v0(x)+ ε2Cj
αG

(α)(xj, x) (3)
as the outer asymptotic representation of the solution uε(x). Here, the summation is performed over doubly repeated indices
j = 1, 2, . . . ,N and α = 1, 2; G(k)(xj, x) = (xk − xjk)(2π|x − xj|)−2

+ g(k)(xj, x) are singular solutions to the homogeneous
Dirichlet problem in the domain Ω .

The inner asymptotic representations have the form W εj(ξj) = const + εw1j(ξj), where ξji = ε−1(xi− xji) are the stretched
coordinates, while for the function w1j(ξj) we obtain the following refined matching asymptotic condition:

w1j(ξj) = ξj
(
∇xv

0
j + ε

2
∇g(•)

j Cj
+ ε2

∑
m6=j

∇G(•)
mj C

m

)
+ O

(
|ξj|−1

)
. (4)

Here,∇g(•)
j and∇G(•)

mj are the symmetric 2×2 matrices with elements ∂xlg
(k)(xj, xj) and ∂xlG

(k)(xm, xj) (k, l = 1, 2), respectively,
Cj
= (Cj

1, C
j
2)
T; ∇xv0

j = ∇xv0(xj).
According to (4), we obtain

w1j(ξj) =

(
∇xv

0
j + ε

2
∇g(•)

j Cj
+ ε2

∑
m6=j

∇G(•)
mj C

m

)
Yj(ξj). (5)

Here, Yj
= (Y1,j,Y2,j)T, Yl,j(ξj) = ξ

j
l + Yl,j

0 (ξj) are special solutions to the exterior Neumann problem in the domain R2
\ ωj

that admit the expansions Yl,j
0 (ξj) = (2π|ξj|2)−2mj

αlξ
j
α + O(|ξj|−2) as |ξj| → ∞. The symmetric positive definite 2× 2 matrix

mj
= ‖mj

kl‖ is called the polarization matrix of the cavity ωj
ε(x

j) (see, e.g., [11,7]); m̃j
= |ωj

|
−1mj is the reduced polarization

matrix.
As a result of the matching procedure, we obtain the equations (j = 1, 2, . . . ,N)(

I − ε2mj
∇g(•)

j

)
Cj
− ε2

∑
m6=j

mj
∇G(•)

mj C
m
= mj
∇xv

0
j . (6)

Replacing uε(x) with its asymptotic representation (3) in the integral

J(Ωε, u
ε) =

1
2

∫
Ωε

|∇xu
ε(x)|2 dx =

1
2

∫
Ωε

f (x)uε(x) dx,

and denoting v0(xj)f (xj) by f j0, we find

2J(Ωε, uε) = 2J(Ω, v0)− ε2f j0|ω
j
| + ε2

∇xv
0T
j Cj
+ O(ε3). (7)

Eq. (6) is used to determine the columns of coefficients Cj
= (Cj

1, C
j
2)
T.



I.I. Argatov / Applied Mathematics Letters 22 (2009) 19–23 21

3. Asymptotic model for the topological sensitivity

We put
∑

j |ω
j
ε(x

j)| = ε2
|Ω | and introduce the design dimensionless variables χj = |ω

j
||Ω |−1 such that

∑
j χj = 1. By

virtue of (6) and (7), we derive the following asymptotic model for the topological sensitivity of the energy functional with
respect to the multiple variations of the topology:

J(Ωε, uε)− J(Ω, v0)∑
j
|ω

j
ε(xj)|

' Sχ(x
1, . . . , xN), ε→ 0;

2Sχ(x
1, . . . , xN) = −χjf

j
0 +∇xv

0T
j Cj. (8)

The columns Cj are determined from the equations (j = 1, 2, . . . ,N)(
|Ω |−1I − ε2χjm̃

j
∇g(•)

j

)
Cj
− ε2χj

∑
m6=j

m̃j
∇G(•)

mj C
m
= χjm̃

j
∇xv

0
j . (9)

Consider the problem of the simultaneous choice of the optimal topology configuration: For given N ≥ 2, x1, . . . , xN ,
m̃1, . . . , m̃N , and ε ∈ (0, ε0) find

min
χ∈RN

Sχ(x
1, . . . , xN) (10)

subject to the following conditions:

χj ≥ 0 (j = 1, 2, . . . ,N),
N∑

j=1
χj = 1. (11)

Notice that the map of the topology derivative T0
ω(x), x ∈ Ω , (used in the bubble method [4]) does not contain necessary

information for formulating any substantial variational problem of optimal multiple changes of the topology.

Theorem. There exists ε1 > 0 such that, for every real number ε between 0 and ε1, the problem (10) and (11) has a solution.

It is a consequence of the fact that the functionχ 7−→ Sχ(x1, . . . , xN) defined by explicit formulas (8) and (9) is continuous
over the compact subset Σ of RN , defined by the restrictions (11).

From the coefficients of Eq. (9) we set up a 2N × 2N matrix G with diagonal 2 × 2 blocks Gjj = χjm̃j
∇xg

(•)
j and

non-diagonal 2 × 2 blocks (j 6= m) Gjm = χjm̃j
∇xG

(•)
mj . Suppose C and B are columns composed of the columns Cj and

χjm̃j
∇xv0(xj) (j,m = 1, 2, . . . ,N). Then, denoting the 2N × 2N identity matrix by I, we find the solution of the system

(9) in the form C =
(
|Ω |−1I− ε2G

)−1
B. Hence, there exists ε1 > 0 such that the function χ 7−→ C(χ) is continuous on Σ .

Substituting (11) in (8), we establish that the function Sχ(x1, . . . , xN) is also continuous on Σ . To complete the proof it
remains to apply Weierstrass’s theorem. Since Σ is closed and bounded, the set of minima of the function Sχ(x1, . . . , xN)
over Σ is nonempty and compact. �

Observe that the asymptotic model (8) for the topological sensitivity Sχ(x1, . . . , xN) in view of (9) can be regarded as a
Padé approximant. A relation between the Padé approximation and the refined method of matched asymptotic expansions
was established in [9]. This relation explains a surprising increasing of accuracy of such asymptotic representations (see,
e.g., [12]).

4. Asymptotic model in the case of Dirichlet boundary conditions

In the domain Ωε with the inclusions ω1
ε(x

1), . . . ,ωN
ε (x

N) defined in Section 2, we consider the following singularly
perturbed Dirichlet problem:

−∆xu
ε(x) = f (x), x ∈ Ωε; uε(x) = 0, x ∈ ∂Ω; (12)

uε(x) = 0, x ∈ ∂ωj
ε(x

j) (j = 1, 2, . . . ,N). (13)

The asymptotics of uε(x) was obtained in [13], with the help of the method of matched asymptotic expansions. According
to [13,14], we have

2
(
J(Ωε, u

ε)− J(Ω, v0)
)
= cjv

0(xj)+ O(ε| log ε|−1),

where the coefficients cj are determined from the following system of equations:

cj
2π

ln
rj

εrj∞
+
∑
m6=j

cmG(xm, xj) = −v0(xj) (j = 1, 2, . . . ,N). (14)
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Here, G(xj, x) is Green’s function, rj is the harmonic radius of the domain Ω with respect to the point xj, rj
∞

is the outer
conformal radius of the domain ωj [11].

Now, we put

J(Ωε, u
ε)− J(Ω, v0) ' Sε

ω1,...,ωN (x
1, . . . , xN), ε→ 0, (15)

where
2Sε

ω1,...,ωN (x
1, . . . , xN) = cjv

0(xj). (16)

Notice that in this case the variational problem (10) with the dimensional design variables rj
∞

(j = 1, 2, . . . ,N) is
formulated for the singular function (16). This leads to the fact that, in general, the optimal solutions will be positive,
i.e., rj

∞
> 0 (j = 1, 2, . . . ,N). In other words, the inner boundary of the optimal domain Ωε ‘wants’ to have more

small components. Note that this property can be regarded as a consequence of the well known non-existence of optimal
shapes [15].

On the other hand, the topological derivative is defined by (see, e. g., [1])

T0(x1) = lim
ε→0+

J(Ωε, uε)− J(Ω, v0)

2π(log ε)−1 =
1
2

[
v0(x1)

]2
, (17)

whereas formula (16) gives

Sε
ω1(x

1) = −π
[
v0(x1)

]2
(

ln
r1

εr1
∞

)−1

. (18)

Observe that the simple asymptotic model (18) in contrast to (17) provides much more information, since it depends on
the integral characteristic εr1

∞
of the inclusion ω1

ε(x
1) and the characteristic r1 of the location of the point x1

∈ Ω .

5. Example

Let Ω = BR(O) and ωj
= BR(O) be circular domains (j = 1, 2, . . . ,N). For the sake of simplicity, we put f (x) ≡ f0. Then,

v0(|x|) = 4−1f0(R2
− |x|2). We consider the following shape optimization problem: For given N, ωj (j = 1, 2, . . . ,N), and

ε ∈ (0, 1) find

min
x1,...,xN∈Ω

Sω1,...,ωN (x1, . . . , xN) (19)

subject to the following conditions:

B√εR(x
j) ⊂ Ω, B√εR(x

j) ∩ B√εR(x
m) = ∅ (j 6= m). (20)

The statement of the problem (19) and (20) is motivated by optimum design problems concerning the optimal supporting
of a membrane. Note that in the problem (12) and (13) matching regions can be defined as |x− xj| = O(

√
εrj) for sufficiently

small ε.
In view of the symmetry we have the following two admissible configurations for the particular case of four holes (N = 4):

(a) xj1 = ρ cos(jπ/2), xj2 = ρ sin(jπ/2) (j = 1, 2, 3, 4);
(b) xj1 = ρ cos(j2π/3), xj2 = ρ sin(j2π/3) (j = 1, 2, 3), x4

1 = x4
2 = 0.

In the first case, cj = c0 (j = 1, 2, 3, 4), where

c0 = −

(
1

2π
ln

R2
− ρ2

εR2 +
2

2π
ln
√
ρ2 + ρ−2R4
√

2R
+

1
2π

ln
ρ+ ρ−1R2

2R

)−1

v0(ρ). (21)

In the second case, cj = c1 (j = 1, 2, 3) and c4 = c0 are determined from the system
c0

2π
ln

1
ε
+ 3

c1

2π
ln

R

ρ
= −v0(0),

c1

2π
ln

R2
− ρ2

εR2 + 2
c1

2π
ln
√
ρ2 + ρ−2R4 + R2
√

3R
+

c0

2π
ln

R

ρ
= −v0(ρ).

In the first case, substituting (21) for cj in (16), we get

−
4Λ

πf 2
0

Sε
1(ρ) = 1− Λ−1

(3
2

ln Λ+
3
2
+ ln 2−

3
2

ln 3
)
+ O

(
Λ−2 ln2

Λ
)
. (22)

In the second case we obtain

−
4Λ

πf 2
0

Sε
2(ρ) = 1− Λ−1

(3
2

ln Λ+
3
2
−

3
4

ln 3
)
+ O

(
Λ−2 ln2

Λ
)
. (23)

Here, Λ = |ln ε| is a large parameter. Since 4 ln 2 < 3 ln 3, it follows that the first case (22) is better than the second (23).
This result is very important, since by the direct optimization algorithm [1] based on the topological derivative (17) one can
obtain only the symmetric optimal solution with a circular inclusion at the origin.
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