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Gap-closing electrostatic actuators are inherently nonlinear and their dynamic range is often limited by
the pull-in instability. To overcome this, we propose a nonlinear spring that counteracts the nonlinear
effects of electrostatic attraction. The nonlinear spring is designed to extend the stable range of the actu-
ator and to enforce a linear electromechanical response. We present a method for designing elastic
springs with monotonically increasing stiffness. The mechanism we propose is effective shortening of
a straight clamed-guided beam flexure, by wrapping it over a cam. We consider two specific cases. The
first case assumes the wrapped section of the beam flexure fully conforms to the cam shape. The second
case assumes that there is a single contact point between the beam flexure and the cam. To validate the
concept we have designed and measured the response of a nonlinear spring with a prescribed force–
displacement law. Experimental measurements of a macro-scale spring are in good agreement with
the model predictions.

� 2012 Elsevier Ltd. All rights reserved.
1. Motivation

Electrostatic actuators are prevalent in MEMS because they are
efficient at the micro-scale and because they are compatible with
microfabrication technology (Liu, 2006; Madou, 2011; Maluf and
Williams, 2004). The simplest electrostatic actuator is the gap-clos-
ing parallel-plates actuator, schematically illustrated in Fig. 1a. A
variable capacitor is constructed from a movable plate-electrode
of area A which is suspended on an elastic spring with stiffness k
over a fixed electrode. The movable plate-electrode has a single de-
gree-of-freedom D, and the initial gap between the plates is g. The
top electrode is subjected to a driving voltage V and the bottom
plate is grounded.

Ignoring fringing fields, the equilibrium equation of the system
is (Elata, 2006)

fm ¼
1
2

e0A

ðg � DÞ2
V2 ð1Þ

where fm is the mechanical restoring force in the elastic spring and
e0 is the permittivity of free-space. The stiffness of the system is gi-
ven by

K ¼ k� e0A

ðg � DÞ3
V2 ð2Þ
ll rights reserved.
where k ¼ dfm=dD. In many mechanical systems elastic springs are
intended to be linear (i.e., k ¼ const:) but inevitable nonlinearities
often result in unexpected effects (e.g. (Osterberg and Senturia,
1997; Younis and Nayfeh, 2003)). If indeed we assume a linear
spring in the system described in Fig. 1a, then the equilibrium
equation and system stiffness (at equilibrium) are given by

kD ¼ 1
2

e0A

ðg � DÞ2
V2 ð3Þ
K ¼ k
g � 3D
g � D

ð4Þ

The equilibrium response curve is plotted in Fig. 1b. Equilibrium
displacement is evidently a nonlinear function of the driving
voltage and the system becomes unstable (i.e., K < 0) when the dis-
placement exceeds a critical value (i.e., D > g/3). This critical point is
the pull-in point of the system, and the pull-in voltage associated
with that point is the maximal voltage that can be applied to the
system before it loses its stability (Elata, 2006).

Quite a few provisions for extending the stability range of gap-
closing electrostatic actuators have been proposed over the years
(e.g. power-law springs (Burns and Bright, 1997), leveraged bend-
ing (Hung and Senturia, 1999), stress stiffening (Deutsch et al.,
2003), charge-control actuation (Nadal-Guardia et al., 2003,
2002) and piecewise stiffening springs (Cortopassi and Englander,
2001)). But these provisions could not eliminate the nonlinear
nature of the response.
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Fig. 2. A clamped-guided beam spring.

Fig. 1. (a) Schematic view of the parallel-plates electrostatic actuator. (b) The
equilibrium response of the system is nonlinear; it is stable up to D = g/3 and is
unstable beyond that displacement.
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A linear response curve is always coveted because calibration of
linear systems is straightforward. Moreover, if the system response
is linear, this linearity is often unaffected by ambient conditions
(e.g. changes in temperature) although the calibration factor may
be affected.

Seemingly, the ultimate solution for extending the dynamic
range of electrostatic actuators is the comb-drive actuator (Tang
et al., 1989). Furthermore, a double-sided comb-drive actuator
with a specific driving strategy will result in a linear response
(Marxer et al., 1999).

The motivation to this work is finding a way to enforce a linear
response of the gap-closing parallel-plate actuator. Specifically, in
view of Eq. (1), if we could find a way to produce an elastic suspen-
sion in which the mechanical restoring force takes the form

fm ¼
bD2

ðg � DÞ2
ð5Þ

where b is a constant, then equilibrium Eq. (1) will become

bD2

ðg � DÞ2
¼ 1

2
e0A

ðg � DÞ2
V2 ð6Þ

It is evident that in this case, displacement is linearly proportional
to the driving voltage! For the force–displacement law (5), the stiff-
ness is a monotonically increasing function of displacement (see Eq.
(23) in the following).

The key question which is addressed in this paper is how to pro-
duce an elastic suspension with a monotonically increasing stiff-
ness. The answer we propose is using cams of specific shape
which effectively shorten the length of flexures as load is in-
creased. In the past, we have used a similar concept to measure
the strength of brittle microbeams without measuring any forces
or displacements (Elata and Hirshberg, 2006).

In the next section we revisit the mechanical response of an
elastic beam, which will serve as background. Two different design
methodologies are presented in Sections 3 and 4. Application of
these methodologies to the force–displacement law specified
above is presented in Section 5, followed by experimental verifica-
tion in Section 6.

2. Beam theory

In this work we consider suspensions that are constructed from
straight elastic beams that have a rectangular cross-section. These
beams are considered to deform in a given plane due to external
loads, and their deflection is given by the elastica equation (Love,
1944)

E�I
dh
ds
¼ MðsÞ ð7Þ
Here h is the angle between the beam and its initial orientation in
the plane, and s is a measure of distance along the beam
(0 6 s 6 L where L is the beam length). I ¼ 1

12 bh3 is the second mo-
ment of the cross-section, where b is the beam width and h is the
beam height. It is tacitly assumed that the beam is slender (i.e.,
h� L and b� L). The effective elastic modulus for wide beams
(i.e., b� h) is E� ¼ Eð1� vÞ2 where E is the Young modulus of the
elastic material and v is its Poisson ratio. Finally, M(s) is the resul-
tant bending moment at cross-section s.

For cases in which the angle of the bent beam is well in the
range �p=2; p=2ð Þ Eq. (7) can be written in the form

E�I
y00ðxÞ

ð1þ ðy0ðxÞ2Þ3=2 ¼ MðxÞ ð8Þ

where the fixed coordinate x is used instead of distance s along the
curved beam. If the beam deflection is further limited to small an-
gles, Eq. (8) can be further simplified to the Euler–Bernoulli beam
equation

E�Iy00ðxÞ ¼ MðxÞ ð9Þ

For example, consider the clamped-guided beam illustrated in
Fig. 2, which is subjected to a transverse edge force F. The edge of
the beam deflects without rotation and is therefore suitable as a
spring for the parallel-plates actuator. However, the guided edge
does not constrain axial or transverse motion of the beam edge.
The beam deflection is given by

y ¼ F
E�I

Lx2

4
� x3

6

 !
ð10Þ

The edge deflection is D ¼ yðLÞ ¼ FL3=12E�I, and the flexure has a
constant stiffness

k ¼ dF
dD
¼ 12E�I

L3 ð11Þ

To achieve a suspension in which the edge deflection is a prescribed
function of force, we have to modify at least one of the variables E�,
I, or L, as function of the edge deflection. Since it seems impractical
to continuously modify E� or I, we will modify the effective length of
the beam as it bends, as presented in the next section.

3. Cam-wrapping - a mechanism for enforcing beam shortening

In order to shorten the beam as its edge displacement increases,
we wrap it over a cam of a prescribed profile, while maintaining
the guided end condition. In this section we show how the cam
profile can be derived in order to achieve a specific force–displace-
ment curve with monotonically increasing stiffness.

The beam of length L is initially in contact with the cam at its
left edge. To facilitate the analysis, we describe the cam and the
wrapped section of the beam with coordinate system (x,y) with
origin at the initial contact point. The non-wrapped section of
the beam is described in coordinate system (n,g) with origin at
the guided end of the beam (Fig. 3).



Fig. 3. Schematic model of a clamped-guided beam which is wrapped over a cam,
with detail of the non-wrapped section.

Fig. 4. Schematic model of a clamped-guided beam bent over a cam which has a
single contact point (xc ; ŷc) (beside the contact at the clamped edge).
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When the beam is wrapped over the cam the last point of con-
tact is xc, and up to that point the beam is assumed to conform to
the cam profile ŷðxÞ (the possibility of disconnection in the
wrapped section will be discussed later). The length of the un-
wrapped section of the beam is therefore L � xc. At the guided
end, the beam is subjected to a transverse force F and a reactive
moment M0 which is required to constrain rotation.

The deflections along the unwrapped section of the beam can be
determined by solving the Euler–Bernoulli beam equation (9), or
alternatively if the developing deflection angles are large, the elas-
tica equation (7) may be solved.

In either case, the boundary conditions at the guided end are

g n ¼ 0ð Þ ¼ 0 ;
dg
dn

����
n¼0
¼ 0 ð12Þ

The continuity conditions at the last point of contact are

dŷ
dx

����
xc

¼ dg
dn

����
xc

and
d2ŷ

dx2

�����
xc

¼ �d2g
dn2

�����
xc

ð13Þ

The second condition in (13) indicates that no external concen-
trated bending moment is applied at xc. The minus sign on the right
hand side of the second condition in (13) correlates the beam cur-
vature expressed by the two coordinate systems used on the two
sides of xc.

For any value of xc, the edge deflection D can be expressed as
the sum of the height of the cam at xc and the deflection of the
non-wrapped section of the beam,

D xcð Þ ¼ ŷ xcð Þ þ g xcð Þ ð14Þ

Solving Eqs. (9)–(14) we find expressions for the edge force F and
edge deflection D as functions of the point of contact for any given
state of wrapping

F xcð Þ ¼ 2
E�I

L� xcð Þ2
dŷ
dx

����
xc

þ d2ŷ

dx2

�����
xc

L� xcð Þ
( )

ð15Þ

D xcð Þ ¼ ŷ xcð Þ þ
2
3

dŷ
dx

����
xc

L� xcð Þ þ 1
6

d2ŷ

dx2

�����
xc

L� xcð Þ2 ð16Þ

Since we are only interested in suspensions with monotonically
increasing stiffness, we may assume that both force (15) and edge
displacement (16) are monotonically increasing functions of xc.
Therefore, we can compute the suspension stiffness using the chain
rule

k ¼ dF
dD
¼

dFðxcÞ
dxc

dDðxcÞ
dxc

¼ 12E�I

L� xcð Þ3
ð17Þ

which is compatible with (11) with the exception that the effective
length of the beam is L � xc.

Eqs. (15) and (16) are each a linear, second-order non-homoge-
nous differential equation for the cam profile ŷðx̂Þ. In Eq. (15), ŷ
does not appear explicitly, and F(xc) can be derived from the known
relations of F(D) and Eq. (17) which relates dFðDÞ=dD to the vari-
able xc. Eq. (16) contains both ŷ and its derivatives and the left-
hand side can once again be deduced from (17). For some functions
F = F(D), solving Eq. (15) may be simpler than solving (16), whereas
for others it may be harder. Nevertheless, both equations yield the
same solution (once the initial conditions for integration have been
set).

After the cam shape has been obtained, there are three things
that have to be verified. The first verification is ensuring that the
maximal stress induced in the flexure does not exceed a permissi-
ble value (i.e., measure of strength). The second verification is that
the Euler–Bernoulli approximation is sufficient (i.e., dŷ=dx; << 1).
This issue may be cleared by either simulating the wrapping using
the elastica equation (7), or alternatively by using the elastica
equation at the outset to design the cam (this option is not dis-
cussed in the present work).

Finally the third verification is that when the beam is fully
wrapped and conforms to the cam profile, there is no region along
the contact where the fourth derivative of the beam deflection is
positive

d4ŷ

dx4 � 0 must hold for 0 � x � L ð18Þ

This condition ensures that no tensile contact tractions are required
to ensure the beam is conformal with the cam shape (reactive com-
pressive contact tractions may be applied by the cam). If indeed it is
found that condition (18) is not satisfied then a different design
strategy should be used, as described in the next section.

4. Cam-guiding - when the beam has a single contact point with
the cam

In this section we analyze the response of a cantilever beam
with a guided end, which is bent over a curved cam such that it
has a single tangential contact point (xc; ŷc) (beside the contact at
the clamped edge), as illustrated in Fig. 4. In this sense the cam
constrains and guides the deflection of the flexure.

The deflection curve of the beam is given by

y ¼

x2 3L� 2xð Þ � x2

xc
6Lxc � 3x2

c � 2Lx
� �

3L�2xc
4L�3xc

� �h i
F

12E�I

þ 6Lxc � 3x2
c � 2Lx

� � x2 ŷc

x3
c 4L�3xcð Þ 0 � x � xc

x2 3L� 2xð Þ � xc 6Lx� 3x2 � 2Lxc
� �

3L�2xc
4L�3xc

� �h i
F

12E�I

þ 6Lx� 3x2 � 2Lxc
� � ŷc

xc 4L�3xcð Þ xc � x � L

8>>>>>>><
>>>>>>>:

ð19Þ

The slope at x ¼ 0 and x ¼ L vanishes and there is continuity of slope
and displacement at the contact point xc where the two domains
meet.

By setting x ¼ L we find the transverse force F as a function of
the edge deflection D ¼ yðx¼LÞ and the deflection yc at the contact
point



Fig. 6. Predicted voltage-displacement relation for various values of D0.
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F ¼ 3E�I

ðL� xcÞ3
4L� 3xc

L
D� 1

xc

3L� 2xc

ðL� xcÞ3
3E�Iŷc ð20Þ

Clearly, when xc ¼ 0 this relation reduces to F ¼ 12E�ID=L3 which is
compatible with (10). The stiffness of the guided end when the
beam leans on the cam at point ðxc; ŷcÞ is

k ¼ @F
@D
¼ 3E�I

ðL� xcÞ3
4L� 3xc

L
ð21Þ

Here we assume that the variation of ŷc=xc due to small varia-
tions in D is negligible (this holds for shallow cams with
dŷc=dxc << 1). The functional form of the stiffness (21) reflects
the fact that the beam is clamped at its origin, and indeed when
xc ¼ 0 the stiffness reduces to that of a cantilever beam (Eq. (11)).

For a desired functional form of force FðDÞ, we can use Eq. (21)
to derive the guided-edge deflection as function of the contact
location DðxcÞ, and then use Eq. (20) to derive the cam profile ŷcðxcÞ.

As in the case of the cam-wrapping design method (Section 3),
there are three issues that have to be cleared. The first two are the
issues of strength and the validity of the Euler–Bernoulli beam the-
ory. The third essential verification is that throughout the loading
process the beam is never predicted to penetrate the cam.

In the next section we try both design methods (i.e., cam-wrap-
ping and cam-guiding) to design a cam that linearizes the response
of the gap-closing parallel-plates actuator.

5. Specific cam design

We now present the design of a cam-wrapping suspension that
will reconstruct the force–displacement law (5), which is rewritten
here

FðDÞ ¼ bD2

ðg � DÞ2
ð22Þ

This force–displacement law is plotted as a solid line in Fig. 5. The
stiffness associated with this force–displacement law is

k ¼ dF
dD
¼ 2bgD

ðg � DÞ3
ð23Þ

Evidently, for very small loading the stiffness vanishes, which
means that initially the beam has to have infinite length. Since this
is not possible, we will pre-load the system with a constant stiffness
(dashed line in Fig. 5) up to a specific point D0 on the force–
displacement curve. Since we already know that with a linear
spring the system will lose its stability when the displacement
reaches a third of the gap (i.e., D ¼ g=3), we will choose D0 < g=3.

The response of the parallel-plates actuator for which we design
this nonlinear suspension, is illustrated in Fig. 6. Up to the edge
Fig. 5. Illustration of the force–displacement law (22) for the case D0 = g/4. The
inset is an enlargement of the linear pre-loading response.
displacement of D0 the voltage will be given by (3) (curved solid
line in Fig. 6), and from this edge-deflection on, the voltage will
be linearly proportional to the displacement (oblique straight solid
lines for various values of D0=g).

Consider the linear pre-loading up to edge-deflection D0 (inset
of Fig. 5). Up to this point the stiffness of the suspension is given by

k0� ¼
F0

D0
¼ bD0

ðg � D0Þ2
¼ 12E�I

L3 ð24Þ

From which we deduce that

b ¼ 12E�I

L3

ðg � D0Þ2

D0
ð25Þ

From this point on, the required stiffness is given by (23) and there-
fore further loading from edge-deflection D0 must occur with
stiffness

k0þ ¼
2bgD0

ðg � D0Þ3
¼ 2g
ðg � D0Þ

12E�I

L3 ð26Þ
5.1. Cam-wrapping design

Comparing the desired initial wrapping stiffness (26) with (17),
it follows that when D ¼ D0 the beam has to be instantaneously
shortened from its initial unwrapped length L, to a length of

L0 ¼ L� xc0 ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1� D0

g

� 	
3

s
ð27Þ

Since D0 < g=3, we find that xc0=L � 1�
ffiffiffiffiffiffiffiffi
1=33

p
� 0:307.

To design a specific spring for a given parallel-plate actuator
with a given gap g, we begin by setting the length of the un-
wrapped beam, which we expect to be much larger than the gap
(L >> g). We next choose the desired initial loading point D0

(D0 < g=3) on the equilibrium curve shown in Fig. 6, and determine
the point xc0 from Eq. (27). Based on the mechanical restoring force
F0 we desire at this point (e.g. Eq. (1)), we use Eq. (24) to determine
the second moment of the beam cross-section. Once this has been
set, we can substitute xc0, F0, and E�I in Eq. (10) and determine the
beam deflection-curve up to point xc0. For elegance, we may decide
that the cam will be in contact with the beam in this entire region.
Accordingly the cam profile in the region 0 � x � xc0 is given by

ŷðxÞ ¼ F0

E�I
Lx2

4
� x3

6

 !
¼ D0 3

x2

L2 � 2
x3

L3

� 	
ðfor0 � x � xc0Þ ð28Þ

And the cam height and slope at xc0 are therefore

ŷ0 ¼ D0 3
x2

c0

L2 � 2
x3

c0

L3

� 	
ð29Þ

ŷ00 ¼ 6
D0

L
xc0

L
� x2

c0

L2

� 	
ð30Þ



Fig. 7. The macro-scale test device. Two beams with a rigid edge connector were
used to ensure a guided-edge condition.

Table 1
Material and geometrical parameters of the test device.

E ¼ 70:3 � 109 Pa½ 	 Young’s modulus of the beams

ryield ¼ 214 � 106 Pa½ 	 Tensile Yield Strength

m = 0.33 Poisson’s ratio of the beams

g ¼ 7:5 � 10�2 m½ 	 Initial gap

D0 = g/4 Initial loading

L ¼ 30 � 10�2 m½ 	 Beam length

h ¼ 9:15 � 10�4 m½ 	 Beam height

w ¼ 2 � 10�2 m½ 	 Beam width
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Notice that for F ¼ F0 the beam is in contact with the cam in the re-
gion 0 � x � xc0 but no contact traction is applied between the
beam and cam.

From this point on we proceed with the cam design using
numerical computation. First though, we can derive an analytic
expression for the edge deflection as function of the point of last
contact xc. Substituting the desired stiffness (23) with b given by
(25) into (17), yields a cubic equation for DðxcÞ. Two solutions of
this cubic equation are non-physical (i.e., D > g), and the one phys-
ically meaningful solution is

DðxcÞ
g
¼ 1þ 1

3
Z�1=3

1 C2
1 1� xc

L

� �2
� C1 1� xc

L

� �
Z1=3 ð31Þ

where

Z ¼ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

27
C3

1 1� xc

L

� �3
r !

; C1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ð1� D0=gÞ2

D0=g
3

s
ð32Þ

We can now substitute DðxcÞ from (31) into Eq. (16) which is rewrit-
ten in the form

d2ŷ

dx2

�����
xc

¼ 6

L� xcð Þ2
D xcð Þ � ŷ xcð Þ �

2
3

dŷ
dx

����
xc

L� xcð Þ
 !

ð33Þ

This second order differential equation can be integrated with ini-
tial conditions (29) and (30).

5.2. Cam-guiding design

Substituting the desired stiffness (23) with b given by (25), into
the stiffness of the cam-guided beam (21) yields

8g
D
D0

ðg � D0Þ2

ðg � DÞ3
¼ L2 4L� 3xc

ðL� xcÞ3
ð34Þ

This bi-cubic equation may be solved for xcðDÞ or solved for DðxcÞ.
Solving (34) for xcðDÞ yields two complex solution which are not
physical (i.e., xc > L) and one physically meaningful solution

xc ¼ L 1� Z2

2C2
� 2

Z2

� 	
ð35Þ

where

Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

C2

s !
4C2

2

3

vuut ; C2 ¼ 8
D
D0

ð1� D0=gÞ2

ð1� D=gÞ3
ð36Þ

By setting D ¼ D0 this equation can be used to determine the initial
contact point xc0 (notice that this initial contact point is not the
same as for the cam-wrapping design). As in the previous subsec-
tion, for elegance, we may decide that in the region 0 � x � xc0

the cam will have the same profile as the beam, that is will be given
by Eq. (28).

As for the profile of the guiding cam beyond this point (i.e.,
x > xc0), solving (34) for DðxcÞ yields two complex solutions which
are not physical (i.e., D > g) and one physically meaningful
solution

D ¼ g 1þ Z3

6C3
� 2

Z3

� 	
ð37Þ

where

Z3 ¼ 3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

27C3

s !
4C2

3

3

vuut ; C3 ¼
D0=g

8ð1� D0=gÞ2
4� 3xc=L

ð1� xc=LÞ3

ð38Þ
We can now substitute DðxcÞ from (37) into (20), and with (22) and
(25) get an equation that yields the cam profile ŷcðxcÞ

ŷc ¼ DðxcÞ
xc

3L� 2xc

4L� 3xc

L
� 4
ðL� xcÞ3

L3

DðxcÞ
D0

ðg � D0Þ2

g � DðxcÞð Þ2

 !
for

xc > xc0 ð39Þ
6. Experimental validation

A macro scale test device was manufactured to verify the theo-
retical analysis, as shown in Fig. 7. To implement a guided end con-
dition, two identical cams were stacked, and two identical beams
were connected at their far edge to a rigid connector. The beams
and cams were bolted together and fastened to a thick plate which
was used to clamp the device to an Instron test machine.

The cams and connector were machined from 6061 aluminum,
and the beams were cut from a thin 5052 aluminum sheet. The
mechanical properties of the beams and the geometrical parame-
ters of the test device appear in Table 1.

The load was applied to the rigid connector at the guided edge
with an intermediating steel bearing-ball to relieve axial loads on
the beams (Fig. 8). The beam ends were connected to the load cell
in a way that enabled to apply negative loads necessary to com-
pensate for sagging due to the beam and connector weight (this
sagging is visible in Fig. 7).

The cams shown in Fig. 7 were designed assuming conformal
wrapping of the beams. Namely, using the parameters in Table 1.,
from Eq. (27) it was found that the initial contact point is at
xc0 ¼ 8:37 � 10�2 m½ 	. So the cam profile up to this point is given
by Eq. (28). The cam profile from this point on was computed by
integrating Eq. (33) with initial conditions (29) and (30).

However, verification revealed that condition (18) is not satis-
fied and in fact, there must be disconnection between the cams
and wrapped beams. Conformal wrapping would have required
that the cam applies a tensile traction of up to 32.5 kPa to the
wrapped beam. This traction is small in comparison to the stresses
induced by bending in the beam, but it is nonetheless not physical.
We have verified that a cam that would have been designed
according to Eq. (39) would have satisfied the conditions detailed



Fig. 8. The test device under loading. A steel bearing-ball was introduced between
the parallel flat surfaces connector and load cell to relieve axial loads on the beam.
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at the end of Section 4, and therefore would have been a perfect
cam.

However, we had already fabricated the cams according to the
cam-wrapping design, so we decided to proceed and test them.
Though the design of these cams was not perfect for linearizing
the response of the gap-closing parallel-plates actuator in a micro-
system, they may nevertheless be used to demonstrate the concept
of using a cam and beam structure to achieve a nonlinear spring
with increasing stiffness.

To theoretically predict the experimental measurements we
computed the force–displacement relation for these cams assum-
ing the beam flexures are guided by them, with a single point of
contact between each cam and beam. To this end, we computed
the slope of the beams by differentiating (19) with respect to x.
Then we set x ¼ xc in this derivative to obtain the slope ŷ0c at the
contact point, which was given as function of xc , ŷc , and F. From
this we extracted the force F as function of xc , ŷc , and ŷ0c , which
were all known for the fabricated cams. Next, we substituted this
force into (20) and extracted the edge displacement D as function
of xc , ŷc , and ŷ0c . It was verified that the fabricated cams may indeed
serve as guides for the flexures without any predicted overlaps be-
tween cam and beam. This was very fortunate, for if the verifica-
tion failed, it is not at all clear that the design problem has a
solution, and in any case a third and different design methodology
had to be developed.

Fig 9 presents typical experimental measurements (measure-
ments were recorded through 20 cycles of loading and unloading
with no observable hysteresis). Since it was difficult to accurately
determine when the beam was perfectly straight, the measured
load and displacement were each shifted by a constant so that
the kink in the measured curve fits its predicted location.

During the experiments the computed maximal stresses in the
loaded spring were lower than the yield stress of the beam.
Fig. 9. Typical force–displacement measurements. No hysteresis was observed
during 20 cycles of loading/unloading.
Overall, the measurements are in good agreement with the
model predictions, and we consider this as confirmation of the de-
sign concept of nonlinear springs.
7. Summary and discussion

We have proposed a method for designing nonlinear elastic
springs with monotonically increasing stiffness. The necessity in
such nonlinear springs is motivated by the nonlinear response of
electrostatic gap-closing actuators. The specific spring considered
in this work is intended to increase the dynamic range of the par-
allel-plates electrostatic actuator and furthermore to force a linear
relation between applied voltage and resulting displacement.
Proof of concept micro devices are currently in production.

Two methods were presented to design cams assuming two
possible scenarios. The first scenario assumes that the wrapped
section is in full contact with the cam, and the second scenario as-
sumes that there is a single contact point between the beam flex-
ure and the cam. In either case, the validity of the proposed
solution must be a posteriori verified. In the case of conformal
wrapping it must be verified that tensile reactive contact tractions
are not necessary to hold the beam in contact with the cam. In the
later case it must be verified that none of the predicted deformed
shapes of the beam intersects the cam.

Due to the complexity of the design process it is impossible to a
priori know which case is relevant for a given desired force–
displacement law. In fact, it may be that for a specific desired
spring with a specific desired force–displacement law, each of
these scenarios will be applicable to a distinctively different do-
main of the response. Furthermore, it may be that both design
methods would fail to produce a desired nonlinear spring (e.g.
verifications of both considered methodologies fail). Since we
had a specific type of nonlinear response in mind, and since for this
response the cam-guiding design is applicable, we have not consid-
ered other cases. We consider the good agreement between exper-
iments and model prediction as validation of the design concept of
nonlinear springs.
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