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The Euler–Lehmer constants γ (a,q) are defined as the limits

lim
x→∞

( ∑
n�x

n≡a (mod q)

1

n
− log x

q

)
.

We show that at most one number in the infinite list

γ (a,q), 1 � a < q, q � 2,

is an algebraic number. The methods used to prove this theorem
can also be applied to study the following question of Erdös. If
f : Z/qZ → Q is such that f (a) = ±1 and f (q) = 0, then Erdös
conjectured that

∞∑
n=1

f (n)

n
�= 0.

If q ≡ 3 (mod 4), we show that the Erdös conjecture is true.
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1. Introduction

Euler’s constant γ , is defined as the limit:

γ := lim
x→∞

(∑
n�x

1

n
− log x

)
= 0.577215 . . . .

It is unknown at present, whether γ is transcendental or even irrational. There are numerous infinite
series expressions for γ in the literature. From the plethora of such results, we give two examples:

γ =
∞∑

n=2

(−1)n ζ(n)

n
,

where ζ(s) denotes the Riemann zeta function [5], and

γ =
∞∑

n=1

(−1)n [log n]
n

,

where [x] denotes the greatest integer less than or equal to x [17]. In 1975, Lehmer [8] defined
generalized Euler constants as follows. Fix a natural number q � 1. For each a satisfying 0 � a < q,
the limit

lim
x→∞

( ∑
n�x,

n≡a(mod q)

1

n
− log x

q

)
,

exists and is denoted as γ (a,q) by Lehmer. These constants satisfy several properties and we record
some of them here. These are easily verified. However, if the reader wishes, the reader may consult
[8] for details and proofs. We have

γ (0,q) = γ − log q

q
;

q−1∑
a=0

γ (a,q) = γ .

If gcd(a,q) = d, then

qγ (a,q) = q

d
γ (a/d,q/d) − log d. (1)

It follows easily that γ (2,4) = γ /4. The transcendence of each γ (a,q) is unknown at present. In [10],
we showed that for each q > 1, the finite list of ϕ(q) + 1 numbers:

γ , γ (a,q), 1 � a < q, gcd(a,q) = 1 (2)

contains at most one algebraic number. In this paper, we prove:

Theorem 1. At most one number in the infinite list of numbers

γ (a,q), 1 � a < q, q � 2,

is an algebraic number. Further, if γ is algebraic, then only the number γ (2,4) = γ /4 from the above list is
algebraic.
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The method of proof has an interesting consequence which is of independent interest. In [10], the
focus of interest was the digamma function ψ(x) which is the logarithmic derivative of the classical
gamma function Γ (x) of Euler. Thus, an immediate consequence of the theorem is:

Corollary 2. As x ranges over all rational numbers with 0 < x � 1, at least one of Γ (x),Γ ′(x) is transcendental,
with at most one possible exceptional x.

Presumably, the main assertion of the corollary is true for all rational x with 0 < x � 1. We refer
to [6] for more results in this direction.

From these results, a natural question arises. Are the elements of the above set of Theorem 1 all
distinct numbers? One can show that if any two elements above are equal, then γ is a Baker period,
that is, an element of the Q-vector space spanned by 1 and logarithms of algebraic numbers. This is
probably not the case though we have no proof of this at present. Indeed, Kontsevich and Zagier [7]
have conjectured that γ is not even a period, much less a Baker period. In this context, we are able
to show the following.

Theorem 3. Let q1,q2, . . . be a sequence of mutually coprime numbers. The list of numbers consisting of γ
and

γ (a,qi), 1 � a � qi, gcd(a,qi) = 1, i � 1,

contains at most one pair of repetitions.

If we normalize our Euler constants by setting

γ ∗(a,q) = qγ (a,q),

then we can show:

Theorem 4. All of the numbers in the listing

γ , γ ∗(a,q), 1 � a < q, q � 2, (a,q) �= (2,4)

are distinct.

The method used to prove these theorems was nascent in two of our earlier papers [11] and [12].
In this paper, we bring it to the foreground and show that it has other applications. Most notably, we
will apply it to prove the following theorems which have origins in a question of Chowla [3] and the
work of Baker, Birch and Wirsing [2]. Given a function f : Z/qZ → C, Chowla introduced the Dirichlet
series

L(s, f ) =
∞∑

n=1

f (n)

ns
.

One can show that this series admits an analytic continuation to the entire complex plane (see [10])
with a simple pole at s = 1 with residue

1

q

q∑
a=1

f (a).

Thus, L(s, f ) extends to an entire function if and only if the above sum is zero.
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Theorem 5. Let f : Z/qZ → Q be an algebraic-valued function not identically zero and ζ a primitive q-th
root of unity. Suppose further that

q∑
a=1

f (a) = 0. (3)

If

f (q)

2q
+ 1

q

q−1∑
b=1

f (b)

1 − ζ b
�= 0,

then, the number

∞∑
n=1

f (n)

n
,

is transcendental.

As a corollary, we deduce

Corollary 6. If

q−1∑
b=1

f (b) cot
πb

q
�= 0,

then L(1, f ) �= 0.

Erdös conjectured (see [9]) that if f : Z/qZ → Q with f (a) = ±1 and f (q) = 0, then

∞∑
n=1

f (n)

n
�= 0.

In 1973, Baker, Birch and Wirsing [2], using Baker’s theory of linear forms in logarithms, proved
a theorem which settles a conjecture of Chowla (see Lemma 12 below). We can apply their result to
see that the conjecture of Erdös holds if q is a prime number. Their result is, however, not general
enough to deal with the case q is composite. In 1982, Okada [13] showed that the conjecture of Erdös
is true if 2ϕ(q)+1 > q. Thus, if q is a prime power or a product of two distinct primes, the conjecture
is true. Subsequently, Saradha [14] extended this work. Tijdeman [16] showed that the conjecture is
true if f is periodic and completely multiplicative (see Theorems 9 and 10 of [16]). The conjecture is
also true if f is periodic and multiplicative with | f (pk)| < p − 1 for every divisor p of q and every
positive integer k (see Corollary 2 of [15]). In this paper, one of our goals is to prove the conjecture
of Erdös under the assumption that q ≡ 3 (mod 4).

Using these results, we can establish the following.

Theorem 7. If q ≡ 3 (mod 4), then the Erdös conjecture is true.
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In [10], we proved this theorem with the additional condition that f is an odd-valued odd func-
tion. Let us note that if q is even and

∞∑
n=1

f (n)

n
= 0,

then (3) holds. Looking at this equation mod 2 gives a contradiction when q is even. Thus, the only
case of the Erdös conjecture that is open is when q ≡ 1 (mod 4).

2. Preliminary lemmas

We record in this section several results essentially established in [10] that will be needed in the
proofs.

Lemma 8. For 1 � a < q, we have

qγ (a,q) = γ −
q−1∑
b=1

e−2π iba/q log
(
1 − e2π ib/q). (4)

Proof. Let ψ(x) denote the logarithmic derivative of the gamma function. By Theorem 7 of [8], we
have

γ (a,q) = −1

q

(
ψ(a/q) + log q

)
.

By Lemma 21 of [10],

−ψ(a/q) − γ = log q −
q−1∑
b=1

e−2π iba/q log
(
1 − e2π ib/q). (5)

Putting these formulas together gives us the stated result. (We take this opportunity to point out
a typo on p. 312 of [10]. In the formula at the bottom of the page, the summation is from b = 1 to
b = q − 1.) �

We also record for future use the celebrated formula of Gauss [4] discovered by him in 1813: for
1 � a < q,

ψ(a/q) + γ = − log 2q − π

2
cot

πa

q
+ 2

∑
0< j�q/2

(
cos

2πaj

q

)
log sin

π j

q
. (6)

In fact, this formula is easily obtained from (5) by equating the left hand side to the real part of the
right hand side. Since the left hand side of (5) is real, we deduce that (5) and (6) are equivalent.
Another simplified proof can be found in the paper of Lehmer [8]. (We alert the reader to a misprint
in [8]. The term log(k/2) in the displayed formula after (20) should be log 2k.) Thus, for 1 � a < q, we
have

qγ (a,q) = γ + log 2 + π

2
cot

πa

q
− 2

∑
0< j�q/2

(
cos

2πaj

q

)
log sin

π j

q
. (7)
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A pivotal role is played by the fundamental theorem of Baker concerning linear forms in loga-
rithms. We record this as:

Lemma 9. If α1, . . . ,αn ∈ Q\{0} and β1, . . . , βn ∈ Q, then

β1 logα1 + · · · + βn logαn

is either zero or transcendental. The latter case arises if logα1, . . . , logαn are linearly independent over Q and
β1, . . . , βn are not all zero.

Proof. This is the content of Theorems 2.1 and 2.2 of [1]. Let us note that here and later, we interpret
log as the principal value of the logarithm with the argument lying in the interval (−π,π ]. �

An important consequence of Lemma 9 will now be isolated as a separate lemma, as it will be the
essential tool in many of our results below.

Lemma 10. Let α1, . . . ,αn be positive algebraic numbers. If c0, c1, . . . , cn are algebraic numbers with c0 �= 0,
then

c0π +
n∑

j=1

c j logα j

is a transcendental number and hence non-zero.

Proof. We first choose a maximal set T of linearly independent numbers from the set

logα j, 1 � j � n.

Thus, for some set S ,

T = {logα j: j ∈ S}.
We first multiply our sum by i and rewrite it as

Λ := c0π i +
∑
j∈S

d j logα j,

with d j algebraic numbers. If the sum in question is zero, then by Baker’s theorem we have that

log(−1), logα j, j ∈ S,

are linearly dependent over Q. Thus, there are integers b0,b j with j ∈ S , not all zero, such that

b0π i =
∑
j∈S

b j logα j .

But the right hand side is real. The left hand side is purely imaginary, unless b0 = 0, in which case,
we have ∑

j∈S

b j logα j = 0.
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By the linear independence of the elements of T , we deduce b j = 0 for all j ∈ S . Thus, Λ �= 0 and by
Baker’s theorem, it is transcendental. This completes the proof. �

Our earlier work was partially motivated by a question of Chowla [3] and we record below some
of the results that we will need later to prove our theorem. Let f : Z/qZ → C be a complex valued
function. One can show that

∞∑
n=1

f (n)

n

converges if and only if
∑q

a=1 f (a) = 0. The value of the series can be written in terms of generalized
Euler constants.

Lemma 11. If f is as above and

q∑
a=1

f (a) = 0,

then

∞∑
n=1

f (n)

n
=

q∑
a=1

f (a)γ (a,q).

Proof. This is contained in [10] and can be derived from Theorem 16 of that paper, as indicated in
Section 7 there. �

In the special case that f is rational-valued and q is a prime, we have by [2], the following result.

Lemma 12 (Baker, Birch and Wirsing). If f is rational-valued on the residue classes mod q and not identically
zero, then

∞∑
n=1

f (n)

n
�= 0,

provided that f (a) = 0 whenever 1 < gcd(a,q) < q.

For the benefit of the reader, we recall the notion of S-units in an algebraic number field. If K is
an algebraic number field and S is a finite set of rational primes, an algebraic integer α ∈ K is said to
be an S-unit if every prime ideal occurring in the prime ideal decomposition of (α) lies above some
prime of S .

3. Proof of Theorem 1

Suppose that the list contains at least two algebraic numbers. Assume first that one of these is
γ (2,4) = γ /4 and the other one is γ (a,q) for some q. If gcd(a,q) = 1, then by (2) (see also Theorem 8
of [10]), we derive a contradiction. If gcd(a,q) �= 1, then writing gcd(a,q) = d, a simple calculation
shows that (see formula (1))

qγ (a,q) = q1γ (a1,q1) − log d,
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where da1 = a and dq1 = q. Using (7), we see that

qγ (a,q) − 4γ (2,4) = log 2 − log d + π

2
cot

πa1

q1
− 2

∑
1� j�q1/2

cos
2πa1 j

q1
log sin

π j

q1
.

Since the left hand side is algebraic, we conclude that the right side is algebraic. Noting that cosπx
and sinπx are algebraic for rational values of x, we see by Lemma 10 that cotπa1/q1 = 0. This means
that a1 = 1 and q1 = 2 since gcd(a1,q1) = 1. Thus,

qγ (a,q) − 4γ (2,4) = log 2 − log d.

This can be algebraic only if d = 2. Therefore, a = 2 and q = 4, contrary to our hypothesis. Hence, we
may suppose that there are two algebraic numbers in the listing of the form γ (A1, Q 1) and γ (A2, Q 2)

and these are different from γ (2,4). Writing d1 = (A1, Q 1) and d2 = (A2, Q 2), we see that

Q 1γ (A1, Q 1) − Q 2γ (A2, Q 2) = q1γ (a1,q1) − q2γ (a2,q2) − log d1 + log d2, (8)

is algebraic, where we have written Q 1 = d1q1, A1 = d1a1 and Q 2 = d2q2, A2 = d2a2. If

cot
πa1

q1
�= cot

πa2

q2
,

we again have a contradiction by Lemma 10. So, by the monotonicity of the cotangent function in
[0,1], we may suppose that a1/q1 = a2/q2. Since (a1,q1) = (a2,q2) = 1, this implies a1 = a2 and
q1 = q2. Thus, q1γ (a1,q1) = q2γ (a2,q2) and from (8), we deduce that

− log d1 + log d2

is algebraic. That is, log d2/d1 is algebraic. By Lindemann’s theorem, this means that d1 = d2. Hence,
A1 = A2 and Q 1 = Q 2. This completes the proof.

4. Proof of Corollary 2

As remarked earlier, the method of proof of Theorem 1 allows us to deduce Corollary 2 asserting
that apart from one possible rational number 0 < x � 1, we have that at least one of Γ (x) or Γ ′(x) is
transcendental.

Suppose that there are two rationals x1 and x2 with x1 �= x2, 0 < xi � 1, i = 1,2 such that both
Γ (xi),Γ

′(xi) are algebraic for i = 1,2. Let xi = ai/qi , i = 1,2. Since ψ(x) = Γ ′(x)/Γ (x), we get

ψ(ai/qi) is algebraic for i = 1,2. (9)

Witout loss of generality we may assume that gcd(ai,qi) = 1 as we deal with values of Γ,Γ ′ and ψ

at ai/qi . We shall use the following result from [10] that at most one of the numbers

γ , ψ(a/q), (a,q) = 1, 1 � a � q,

is algebraic. Suppose a1/q1 = 1. Then ψ(1) = −γ and a2/q2 �= 1. Hence we use the above result with
q = q2, a = a2 to get a contradiction to our assumption (9). Suppose now both a1/q1 and a2/q2 are
unequal to 1. Since

ψ(a/q) + log q = −qγ (a,q)
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we find that

log q1 + q1γ (a1,q1) and log q2 + q2γ (a2,q2)

are both algebraic. Now we apply Lemma 10 to the difference of these two numbers and conclude as
in the proof of Theorem 1 that

a1 = a2 and q1 = q2,

again a contradiction. This completes the proof.

5. Proof of Theorem 4

As the proof proceeds along the same lines as the proof of Theorem 1, we will be brief. Using the
notation of the earlier proof, suppose that γ ∗(A1, Q 1) = γ ∗(A2, Q 2). Then,

q1γ (a1,q1) − q2γ (a2,q2) − log d1 + log d2 = 0.

By the formula (7) of Gauss and Lemma 10, we deduce that

cot
πa1

q1
= cot

πa2

q2
.

As before, we conclude that a1 = a2 and q1 = q2. Consequently, d1 = d2. This means that (A1, Q 1) =
(A2, Q 2).

6. Proof of Theorem 3

We first write each qiγ (ai,qi) − γ as a linear form in logarithms of algebraic numbers. Clearly,
by (4), we may write this as

q jγ (a j,q j) − γ =
∑
h∈H

β jh log
(
1 − ζ h

q j

)
,

with H a set of positive integers such that

(
1 − ζ h

q j

)
, h ∈ H,

is a multiplicatively independent set and the β jh are algebraic numbers. Now suppose the theorem
is false and that γ (a1,q1) = γ (a2,q2) and γ (a3,q3) = γ (a4,q4). We may suppose that q1 �= q2, for
otherwise if q1 = q2 = q (say), then γ (a1,q) = γ (a2,q) implying γ ∗(a1,q) = γ ∗(a2,q). By Theorem 4,
this is not possible. (We could have also deduced this as follows. Choosing f (a1) = 1 and f (a2) = −1,
with f (a) = 0 for the remaining residue classes mod q gives us a contradiction to the non-vanishing
theorem of Lemma 12.) Similarly, we may suppose that q3 �= q4. From the first equation γ (a1,q1) =
γ (a2,q2), we deduce that (q2 −q1)γ is a Baker period. From the second equation γ (a3,q3) = γ (a4,q4)

we deduce that (q4 − q3)γ is a Baker period. By eliminating γ we derive a vanishing linear form in
logarithms. By Baker’s theorem, these logarithms must be linearly dependent over Q. First suppose
that {q1,q2} is disjoint from {q3,q4}. Exponentiating the linear form, we deduce that a product of
S1-units in Q(ζq1 , ζq2 ) with S1 = {q1,q2} is equal to a product of S2-units in Q(ζq3 , ζq4 ) with S2 =
{q3,q4}. Since q1,q2,q3,q4 are mutually coprime by assumption, these fields are disjoint (that is,
their intersection is Q), and hence each of the products must be a rational number. On one hand, this
rational number can only be divisible by prime divisors of q1q2. On the other hand, it can only be
divisible by prime divisors of q3q4. Since gcd(q1q2,q3q4) = 1, we deduce that the product must be ±1.
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Now examine each of these products. By similar reasoning, we deduce that this product leads to an
equality of two products, one being in Q(ζq1 ) and the other being in Q(ζq2 ). Again, since these two
fields are disjoint, we deduce that each of the products must be ±1. Finally, looking at the products
and noting that each is a product of a multiplicatively independent set of numbers, we derive a
contradiction. Now suppose that {q1,q2} is not disjoint from {q3,q4}. Without loss of generality, we
may assume that q2 = q3. Arguing as before, we deduce that a non-trivial multiplicative relation exists
between certain S3-units in Q(ζq1 , ζq4 ), with S3 = {q1,q4} and S-units in Q(ζq2 ) with S = {q2}. Since
the field Q(ζq1 , ζq4 ) is disjoint from Q(ζq2 ) (simply by ramification considerations), we deduce that
the product must be a rational number, divisible on one hand by primes dividing q1,q4 and on the
other hand, by primes dividing q2. This forces the rational number to be ±1. Again, by considering
the product containing the S3-units, and arguing as before, we deduce a contradiction. This completes
the proof.

7. Proof of Theorem 5

By Theorem 19 of [10], we have

L(1, f ) =
∞∑

n=1

f (n)

n
= −

q−1∑
a=1

f̂ (a) log
(
1 − ζ a),

where ζ = e2π i/q . Changing a to −a and writing

1 − ζ−a = ζ−a/2(ζ a/2 − ζ−a/2),
we get

log(1 − ζ−a) =
(

1

2
− a

q

)
π i + log

(
2 sin

πa

q

)
.

Inserting this into the above expression shows that

L(1, f ) = −π i

( q−1∑
a=1

f̂ (−a)

(
1

2
− a

q

))
−

q−1∑
a=1

f̂ (−a) log

(
2 sin

πa

q

)
.

If the coefficient of the term involving π i is non-zero, by Lemma 10, we are done. Hence, we are led
to analyze the coefficient of π i. It is equal to

1

q

q−1∑
a=1

(
1

2
− a

q

) q∑
b=1

f (b)ζ ba = 1

q

q∑
b=1

f (b)

q−1∑
a=1

(
1

2
− a

q

)
ζ ba. (10)

When b = q, the inner sum is easily seen to be zero. Thus, the sum over b ranges from 1 to q − 1.
Since

q−1∑
a=1

ζ ba = −1,

we may re-write our coefficient as

1

q

q−1∑
f (b)

(
−1

2
− 1

q

q−1∑
aζ ba

)
.

b=1 a=0
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The innermost sum can be evaluated as follows. Observe that

q−1∑
a=0

xa = xq − 1

x − 1
.

Differentiating both sides and putting x = ζ b leads to

q−1∑
a=0

aζ ba = q

ζ b − 1
.

Inserting this into (10), we get that the coefficient of π i is

f (q)

2q
+ 1

q

q−1∑
b=1

f (b)

1 − ζ b
. (11)

As noted earlier, when the expression in (11) does not vanish, L(1, f ) is transcendental. This com-
pletes the proof.

8. Proof of Corollary 6

To deduce the corollary, we observe that

cot
πa

q
= i

eπ ia/q + e−π ia/q

eπ ia/q − e−π ia/q
= i + 2i

ζ a − 1
,

by an easy computation. Thus,

1

ζ a − 1
= 1

2i

(
cot

πa

q
− i

)
.

Inserting this expression into our theorem yields the corollary.

9. Proof of Theorem 7

To prove Theorem 7, we use Theorem 5 and work modulo 2O K where K = Q(ζ ). Modulo 2, the
second sum in Theorem 5 is congruent to

q−1∑
b=1

1

1 − ζ b
.

We evaluate this sum. Notice that

1 + x + x2 + · · · + xq−1 =
q−1∏
b=1

(
x − ζ b).

Logarithmically differentiating this expression and setting x = 1 gives

q−1∑
b=1

1

1 − ζ b
= q − 1

2
.

If q ≡ 3 (mod 4), then this sum is 1 (mod 2O K ). This proves the theorem.
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