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Introduction 
. . 

Let k be a commutative field of chqr. 0. Let Q be a Lie algebra over k. Let f be a 
k-valued 2-cocycle on the ‘standard com$ex for 0. We set su) = 2(&V, (g), 
where T(g) denotes the tensor algebra of the vector space g and U,@ j the two sided 
ideal of 7%) generated by all elements of the form x @y - y@x - [x, y ] - f(x, y ) 
for x, y E g. It is known [14] that gcf) is a filtered. k-algebra whose associated 
graded is isomorphic to a polynomial algebra over k and that every filtered 
k-algebra with this property is isomorphic to one such. 

In this paper we determine [Section 2, Theorem 2.71 the global dimension of g,(J) 
where g is a finite dimensional solvable Lie algebra over k and deduce some 
interesting results. This paper is a sequel to the autior’s previous paper of the same 
title [2]. 

In Section 1 we prove some results which arc used. in the proof of the main 
theorem. _ _. 
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Let A be a ring land d be a derivation of A. The Qre-extension A[X; d) is the 
ring generated by A and an -indeterminate” X satisfying the relation Xa - uX = 
d(a) for all cz e*A. It is easy to see that anv element b of A[X; d] is of the form 
z Oc(Gn X’ul with& E A and u,, # 0 and that ‘Such expression is unique. We call n to 
be the &gree of b and a,, the leading coefficient of b. 

Now we make following remarks regarding A [X; d]. 

Remark 1. If A is left {(resp. right)%%&ierianthen A [X; d] is also -left (resp. 
right) noetherian. 

1 . I .s 1 

2. A iX; d] is A-free asp a left: as-well as a right module. 
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Remark 3. l.gl.dim A s l.gl.dim A [X; d] G 1+ l.gl.dim A if l.gl.dim A < ‘3 [see 

5, Proposition 31. 

Let T be a multiplicatively closed subset of A contained in its centre such that 
1 E. 7’ and no element of T is a zero divisor in A. Then as a subset of A [X; d], T 
has the properties: 1) no element of T is a zero divisor in A [X; d], 2) 7’ is left (resp. 
right) permutable, i.e. for s E T and b E A [X; d] there exist t E 7’ and c E 
A [X; d] such that SC = bt (resp. cs = tb). 

Therefore f!om [15, Proposition 15.1] it follows that the left ring of’ fractions of 
A [X; d] with respect to T exists and that it is isomorphic to AT [X; d’] where AT is 
the localisation of A with respect to T and d’ is the derivation of AT induced by d. 
We get similar results for the right ring of fractions of A [X; d] with respect to T. 

We denote both the left and right ring of fractions of A [X; d] with respect to T 
by A [X; d]*. Then by Remark 2 it follows that A [X; dir is flat as a left and as a 
right ,4 [X; 6]-module. 

Let a be a left ideal of A. Let for a E A, (u : a) = {b/b E A, bu E a}. Then (a : a) 

is also a ieft ideal of A and (a : Q j = A if and only if u E a. If u is a maximal left 
ideal then so also (a : u) for a e a. Moreover the map 4 : A /(a : u)+ A /a given by 
(p(6) = ba is an isomorphism of A -modules. 

For the sake of simplicity of notation throughout this section we write B (resp. 
BT) for A [X; d] (resp. A[X; d],. 

With the above notation we prove the following 

Proposition 1.1. Let .Q be a ring which contains Q. Let d be u derivation of A. Let a 
be an element of the centre of A such that Aa + Ad(u) = A. Let a’ be u lefi ideal of B 
which contains a. The-t a’ = Ba where a = a’ n A. 

Proof. Since a Cd wc have B a Cd. If Ba # a’ then there exists an element b ? 9’ 

such that b E B Q and ii; of smallest degree with such property. Let b = &rn X’u,, 
a,,# 0. Since every element of Ba is of the form &61~,,,X’cj, q E a for 0 6 j 16; m, by 
choice of b we get a, e I. Since u E a’ we have b’ = (X”a,)u - a &16n X’QI E a’. 

But b’ = X”-‘(nd(a)a, - aa,+ ) + terms of smaller degree. Since degree b’e 
n-Ndegreeb, b’E&a. Therefore nd(u)un-u~,-1E~v But ~Et~=a’flA. 
Therefore nd (a)u, E a, i.e. d(u)u, E a. Since Au + Adu = A there exist c and 
c’E A such that cu + c’d(a) = 1. This shows that u,, = c(ua,)+ C’(d(U)Un)E Up 
which is a contradiction. Therefore Ba = a’. Hence the result, 

Proposition 1.2. Let K be an algebraically closed field of char.0. Let A Be u 

K-algebra. Let d be a K-derivation of A. Let a be an element of the centre of A such 
thatd(a)=l. Let bbeaproperlefti&alofB. Ifforsomeb’~b(b:bt)nK[u]#O 
then there exists be b. such that a - h E (b: 6) for some A E K. 

Proof. d(a) = 1 implies that a is transcendenta r M. Therefore K [a] is a 
polynomial algebra over in one variable. Let 0 Z f E (b: b’) n K[a]. We prove 
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the result by induction on deg f where deg f denotes the degree of f as an element 
of K[a]. 

Since b is a proper left ideal and f# 0, degf 2 1. Let degf = 1. Then f = CYQ + p 
with cy, J3 E K and are 0. Then by taking h = - cu-‘/3 and Ip’ = b we get_ the 
required result; 

Assume the result for degf d m -,I. .Let degf = M 3 1.. Then since -K is 
algebraically closed there exists it E K such’ that f = (a - (~)f’,, f? E K [a] and 
degf’= M. - 1. If f’ftZ (b: 6’) then by taking b =’ f’b’ we get be 6 and 
Q - Q E (b: b). If f’ E (b: b’) then since degf’ = m - 1 by our induction hypothesis 
there exist be b and A E K such that u - h E (b : b). 

This completes the proof of Proposition 1.2. 

Propositioal 1.3. Let A be a ring which is left and right noetherian. Let l.gl.dim A < 
00. Let d be a deri’vation of A. Let a be a left ideal of B such that l.gl.dimB = 
hdBBlaz Let T be a multiplicatively closed subset of A contained in its centre such that 
14 T&p no elemelst of T is & zero divisqr in A. If for every be a (a : b) n T = 8 then 
l.gl.dim B = l.gl.dim B, 

Proof. Since A is left and right noetherian and l.gl.dim A c 00, by our earlier 
remarks, it follows that B as well as BT are left and right noetherian and have finite 
left global ‘dimension. Therefore by [l, Theorem ;] there exists a left ideal b of BT 
such that l.gl.dim BT = hds,BT/b. But since BT is a left ring of fractions of B there 
exists a left ideal ib’ of B such that BT/b = BT& B /b’ as BT-modules. 

For a ring R and< left module N let w.dima N denote the weak dimension of N. 
If 6 is left noetherian and N is finitely ‘generatl:d then hdRN = w.dimn N 13, 
Chapter VI]. Therefore 

l.gl.dim BT = hdB, BT/b = w.dime, Br/lb : = N.dimB, BT& B/b’. 

Since BT is B-flat as a right B-module we get 

w.dims, B, @JB B/V s w. dimEl B/V = hda I:E: /b’ < l.gl.dim B. 

Therefore l.gl.dim BT z l.gl.dim B. 
Now since (a : b) n T = 0 for all be a, the mapping t,Q : B/a+ BT&, B/a given 

by $(x’) = 18 x’ is a monomorphism. Therefore, since l.gl.dimR = hds B/a = 
w.dime B/o we get l.gl.dim B = w.dime BTQDB B/a. But BT is B-flat as a left 
module. Therefore 

w.dima B&& B/a d w.dime, BTQPB B/a = hd,, B&$, B/a G l.gl.dim 8~. 

This shows that l.gl.dim B C l.gl,dim B?, Hence_ the equality. 
This completes the ,proof of’ Proposition 1.3. 

Let g be a Lie algebra over a field k of char.0. Let f be a k-valued 2-cocycle on 
the ‘standard complex” for g [14, p. 5321. Let 8 be an element of Home (g, k ). 
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Dehition. A subalgebra h of g is said to be f-subordinate to 8 if for every 
h,, h2 E h we have O[ht, h2] + f(hI, hz) = 0. 

Remark 4. From the definition it follows that if h is a subalgebra of g then the 
restriction of f to h x h is a coboundary if and only if there exists 8 E HomK g, k) 
such that h is f-subordinate to 6. Therefore if a subalgebra h is f-subordinate to 8 
then h (f) is isomorphic to h (0) [ 14, Theorem 3.11. But h (0) is nothing but the usual 
enveloping algebld of the Lie algebra h. Therefore l.gl.dim h (0) = dimk h [3, p. 283, 
Theorem 8.21. Moreover the map 8 : h -+ k defines an h(f)-module structure 
denoted by k (0, h ) on k such that hd,.u, k (0, h) = dimr, h = l.gl.dim h (f). Since g(f) 
is h @-free as- a right as well as a left module and contains h(f) as a direct 
summa~d, from [8, Lemma 1] it follows that 

l.gl.dimg(f) 3 hdGu, g(f) Qp k (6, h) = hdhtf, k (6, h) = dimk h. 
WI 

On the other hand from [ 13, Theorem l] we get dimk g 2 l.gl.dim g(f). Therefore we 
always have inequality dimk g 2 l.gl.dim g(f) 2 dimk h for a subalgebra h of g for 
which the restriction of f to h X h is a coboundary. 

. 
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We begin this section with the following theorem. 

Theorem 2.1. Let k be an algebraically closed field of char.0. Let g be a finite 
dimensional solvable Lie algebra over k. Let f be a k-valued 2-cocycle on the 
‘standard complex ’ for g. Then there exists 8 in Homk (g, k ) and a subalgebra h of g 
such that 

I) h is f-subordinate to 8 
II) I.gl.dim gcf’) = dimk h. 

For the proof of this theorem we require some lemmas. In the first two lemmas (i.e. 
Lemma 2.2 and Lemma 2.3) k, g, and f are as in the statement of Theorem 2.1. 

Let x E g be such that k l x is an ideal of g. Let g1 = {r/z E g,[x, z] = 0}, 
g’={zIz Eg,f(x,z)=O}. 

Lemma 2.2. If g’ is a subspace of g of codimension 1 then g’ is an ideal of g if 
9’ Ql. 

Proof. It is easy to see that g1 is an ideal of g of codim s 1. If codim gl = 1 then 
since codim g’ = 1, g’ Cgl implies that g’ = gl. Therefore g’ is an ideal of g. 

If codimg, = 0 then g1 = g. This means that x is an element of the centre of g* But 
the:> for any z, w E g we have , 



- f (x9 129 w I) = f(x, [?a 1) + f (w, [x, 21) + f (2, [w, x]) = 0. 

Therefore [g, g] C g’. Hence g’ is an ideal of g . 
This completes the pr_oof of Lemma 2.2. I i,. ,I 

Lemma 2.3. If’ g’ is not an iheat of g then g’ ‘?I gI is an i&:a~ of gl of&dim 1 and 
gl= g’ n 91-e k l w where w E g1 be such that f (w, x) = 1 and the adjoint act&n 9f w 
orb gt is nilpotent. 

Proof. Since g’ is not an ideal of g, by Lemma 2.2 we have g’ f g,. Therefore gl r g 

and g’ n g1 is a subspace of g1 of codim I. Applying Lemma 2.2 again to X, g1 and f 
we get that gl Tt g’ is an ideal of gl of eodim’l. 

Since gl $ g and k . x is an ideal of g, there exists y E g tiuch that g = g1 $ k l y 
and [y, x] = X. Since g’ # g1 there exists w ’ E g1 such that f (w ', x) = I. Therefore 

l=f(w’,X)=f(W’,[y,x])= -f(x~~~‘~Yl)-f~Y,~5~‘l)=f(I~~,yl,~)~ 

Lzt w = [w ‘, y 1. Since gl is an ideal of g of codim 1 [g, g] c gl. Since g is solvable 
and w E [g, g] the adjoint action of w on g and therefore on gl ,is nilpotent. 

Hence the result. 

Remark 5. If g’ is an ideal of g of codim 1 then g’ CgI and g = g’e k . y. Therefore 
x is an element of the centre of g’(f) and g(f) is the Ore-extension of g’(f) with 
respect to. the derivation d induced by y. If ga = g then we can choose y such that 
f(y, X) = 1. Then ,d(x) = 1. If glsg then we can choose y such that [y, x] = x and 
then d&)=x+-A where A =f(y,x). Therefore d(x+h)=x+A. 

Lemma 2.4. Let D be a Dedekind domain of chaq ‘. 0. Let L be its quotient field. Let 
g be a finite dimensional Lie algebra over L with 2 basis (x1, x2,. . ., xn). Let f be a 
L-valued 2-cocycle on the ‘standard complex’ fol * 3. Let 8 E HomL (g, L) and h be a 
subalgebra of g such that h is f-subordinate to 8. 75en there exists a discrete valuation 
ring R with D CR CL such that 

(1) ‘[z, w] e gR for all z, w E gR 
2) fR (Z, W) E R fOt d Z, IV E g, 
3) @(g&R 

where @R = Lien Rxi, fR = f 1 CR x gR* 

Proof. Since L is the quotient field of D and g is finite dimensional over L there 
exists0 f s E D such that s l [xi, xj] E x lclsnDxi,s l f(xi,xj)E D and s - 6(xi)E D for 
all i, j, 1 G i, j 4 < n. Let m be a maximal ideal of D such that se m. Then by taking 
R = D,,, we get the required result. 

Lemma 2.5. Let L, g, f, gR, h, 8 be as in the statement of Lemma 2.4. Let K be 
residue field of R. Let g = R@R $R, 7 = LK@R fR. I;hen there exist 8 E HomK (g, 
and a subalgebra i of g such that 6 is ~-subordinate to 8 and dimK6 = dim= k. 



Proof. Let h’ = gR Cl h. Since h ’ is a R-submodule of gR and R is a discrete 
- valuation ring h ’ is a free R -module of rank r. Since L @R h ’ = h as L-vector spaces 

r = dimL h. 
Let u be the. maximal ideal of R. Then h ’ = gR n h impks ah ’ = dgR n h ‘. This 

shows that the map i; K&Z h ‘*K@Rg#&(=@ given by i(Aqpx)=A@x is a 
monomorphism. We identify K@R h’ with its image in K& g,? under the mapping 
i. Let e’:@K be the map given by #@8x)= AT@(x) wher? q : R +K is the 
canonical map. It is easy to see that 8 is well defined and K-linear. Let 
i = K@R h ‘. -We claim that 6 is f-subordinate to 8 

Let u, v E K Then there exist z, w E h ’ such that u = 1 QQ z, v = 1~ w. Therefore 

= ~f(Z,w)+Ije[t,w]= ~(f(2,w)+e[2,w])=o. 

Thus i is &subordinate to 6. Since h ’ is R-free of rank r we have 
dimK 6( = K@R h ‘j = r = dimL h. Hence the result. 

Thus the proof of Lemma 2.5 is complete. 

Proof of Theorem 2.1. We will prove the result by induction on dimk g. Let 
dimk g = 1. Then g(f) is a polynomial algebra k [x] in one variable over k. Let 
8 : g --+ k be the map given by 0’(x) = 0 where g = k . x. Then g is f-subordinate to 8 
and I.gl.dim g(f) = gl.dim k [x] = 1 = dimk g. 

Assume the result for dimk g G n - 1. Let dim g = 12. 
Since g(f) is left and right noetherian and of finits left global dimension, by [2, 

Proposition 1. I] there exists a maximal left ideal a of g(f) such that l.gl.dim g(f) = 

hhf,g(f)l(~ : a) f or a .l a e a. Since g is solvable and k-algebraically closed there 
exists x E g such that k l x is a non zero ideal of. g. Let g1 = {w/w E g, [x, w] = 0}, 
g’={w/w Eg,f(x,w)=O}. 

We divide the proof in following four cases: 
Case 1: g = g’ = gl. nren x will be an element of the centre of g(f). 

Let A4 = g(f)/a and let I = ann M. Then since M is a simple left gu)-module and 
x an element of the centre of g(f) by [lo, p. 1711 we get x - A E I for some A E k. 

Let fi = g/(x). Let Q! : g -+ k, be the k-linear map given by 

a(xl) = A 

Ql(.Ui)=O, 2s i. ‘II 

where x = x1, x2, x3, . . ., x, is a k-basis of g. Let f : jj x fi + k be the map defined by 

f(&G)I= f(z, w)+a![z, w]. 

Then Q is a solvable Lie algebra, f a k-valued 2-cocycle on the ‘standard complex’ 
for fi such that fief’) = g(j)/(xl - A). 

Since x1 - A E I = ann M9 we can regard M as a fi@)-module. Since x1 - A is an 
element of the centre of g(f) which is neither a unit nor a divisor of zero and 
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l&j M G l.gl.dim h(j) s DimK Q C 00, by Kaplansky’s Theorem f6, p. 172, 
Theorem 31; hd&‘M = h&z) M - I= l.gl.dimgu) - 1. But since l.gl.dim fi @) < 00 
we always have l.gl.dim Q(f) s l.gl.dimgCf) - 1 [6, p. 173, Theorem 41. Therefore 
l.gl.dim $u) = l.gl.dim g(f) - 1.~ (One can easily ‘prove Kaplatisky’s Theorems [6, p. 
172; Theorem 3 and p. 173, Theorem 4]“for an element x - A E gv) which is neither 
a unit nor a divisor of zero and which is such that g(f)& -A) = (x - h)g(f). 
Therefore our cdnclusions rehain valid for such element x - A even though it may 
not be an element of the centre of g(f). This fact we have used in the proof of the 
theorem for case 3). 

Since dimk g = n - 1, by our induction hypothesis there exists a subalgebra 6 of jj 
and an element 8 of Nomk (&, k) -such -that (I) h is f-subordinate to 6, (II) 
l.gl.dim au) = dim, 6. 

Let h be a’subalgebra of g such that x1 E h and h /(xl) = 6. Let 8 : g -+ k be the 
k-linear map such that 8 (x1) = A and 0 (xi) = e’(Zi) for 2 e i G n where x’i denotes 
the image of xr in a( = g/(x1)) under the canonical mapping q : g + Q. 

Then 6 is f-subordinate e’ im@li& that h is f-subordinate to 8 and dimk h = 
dim 6 -+ 1 = l.gl.dim fiti) + 1 = l.gl.dimg@. 
Case 2: g1 = g, g’s g. Then from Lemma 2.2 it foElows that g’ is an ideal of g of 
codim 1. Let g = g’$ ky with y E g be such that f(y, x) = 1. Then gu) is the 
Ore-extension of g’(f) with respect to the derivation d induced by y and x - A is an 
element of the centre of g’cf) with d(x - A) = 1 for every A E k. We claim that 
l.gl.dim g’(f) = l.gl.dim gcf). 

If for some b’e a (g : b’) n k [x] # 0 then by Proposition 1.2 we get an element 
b fZ a and an element A E k such that x - A E (a : b). But then by Proposition 1.1 

we have a” = gcf)o’ where a’ = a” n g’(f) and a” = (a : b). Therefore g(f)la” = 
gu) &,g’Cf)/a’. Since g(f) is g’tfjifree as a left as well as a right module and 
contains g’cf) as a direct summand, from [S, Len,ma 1] it follows that 

l.gl.dim g’v) g l.gl.dim g(f) = h&U, g(,f)/(r* : b) 

= h&f) SW Qp s’(FVa’ G h$sU, g’u)/a’ s l.gl.dim g’v). 
e’(f) . 

Therefore we have l.gl.dim g(f) = l.gl.dim g’(f). 
Suppose for all be a@ : b) n k [x] = 0. Let T = k [x] - (0). Then T is a multip- 

, licatively closed set cont&ned iv the centre of g’i(f) such that no element of T is a 
zero divisor of g’u) (in fact g’cf! itself is without proper divisors of ZWO). Therefore 
from Proposition 1.3 it follows that l.gl.dim gu) = I&dim gv)T = 
I.gl.dim g’(f)= [X; d ‘1 s 1 + l.gl.a;m g’(f)T where d’ is the derivatioa of g’cf)T in- 
duced by the derivation d of g’ ‘f). 

Let x = x1, x2,. . ., 9Cn+ be a k -basis of g’. Let K be the quotient fiel ,I of k [x ] (note 
that since d(x) = I, k [x J is a polynomial algebra over k ). Let g” = K ‘I(x). Let 

fi : g’+ k [x11( = k [xl) be the k-linear map given by 
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p(h) = Xl 

p (Xi) = 09 2SiGr-r1. 

Let f” : g” x g”-+ K be the map defined by 

f”(l~Z,l~~)=f(z,w)+p[t,W]. 

Then 9” is a solvable Lie algebra over K, f” a K-valued 2-cocycle on the ‘standard 

complex’ for g” such that g”(f”) = g’(f)~~ 
Let a be thealgebraic closure of K. Let & = J~@K g”, fi = I&&J’. Then 9: is a 

solvable Lie algebra over fl of dim n - 2, fg a 0 -valued 2-cocycle on tbe ‘standard 
complex’ for g $ such that gL(f$) = a& g”(f”). Since dim0 g&= n - 2, by our 
induction hypothesis there exist a subalgebra h’ of 9: and an element 6% 
Homn (cJ:, 0) such that I) h’ is f$subordinate to 6”, II) l.gl.dimgi(fA) = dim* h’. 
Since g” is finite dimensional over K and f” is completely determined by its values 
on a K-basis of g” x g”> there exist a finite extension L of K and a subalgebra h of 
& such that O(g[) c L and a@, h = h ’ where g[ = L& g” and 8 = 8” 1 g:. This 
implies that h is f$subordinate to 8 where f: = IL&f” and l.gl.dim gi(fZ) = 
dimn h’ = dimL h = l.gl.dim h (‘jl) G l.gl.dim&(fQ. But gZ(fZ) = L@K g”(f”) and L 
is a finite separable extension. Therefore by [4, p. 741 we have l.gl.dimgZ(ft) = 
I.gl.dimg”(f”). Since gi(fi) is g’(f”)-free as a left and a right module and contains 
g’cf”) as a direct summand, by [8, Lemma l] we have l.gl.dim g”(f”) s 
I.gl.dim gG(fi) = dim h ’ = dimLh < I.gl.dim&(f~) = l.gl.dimg’(f”). Therefore 
l.gl.dim g’ (f)T = l.gl.dim g”(f”) = I.gl.dim gL (fz) = l.gl.dim &(ji). 

Let D be the integral closure’of k [x] in L. Then since L is separable over K, D is 
a Dedekind domain. 1’hen by Lemma 2.4 there exists a discrete valuation ring R 
with D CR CL such lhat 1) [u, V] E gg for u, v E gg, 2) fa(u, v) E R, 3) 6(gg)Cl? 

where gi = c 2cicn-1 R (1 mx’i), %i is the image of or in g’/(x) under the canonical 
map q :g’+g’/(x) for 2s i 6 n - 1, f$ = f[ 1 gi x 9:. From the construction of R 
and gZ it follows that the residue field of R is k and gi % R QDk g’/(~y. 

Let jj = kQ& g& f = I,& f g. Then it is easy to see that fi = k & g& = 
k mR R mk g’/(x) = g’/(x) as Lie algebras over k and when we identify Q with g’/(x) 
thenf(Z,@=f(z,w)-tq’p z,w]where/? = 3’ + k [x] is the map as defined above 
and 7 ’ : R + k is the canonical map. From this it follows that a(f) = g’(f)/@ - A) 
where A = q’(x). 

Lemma 2.5 shows that there exists a subalgebra 6 of Q and an element 
g E Homk (6, k) such that h’ is f-subordinate to 8 and dimk 6 = dim= h. Therefore 
we have 

l.gl.dim g’(f)* = l.gl.dim g”(f) = l.gl.dim gz(fz) = dimL h 

l.dim E(f) G l.gl. im S(f) = l:gl.dim g’(f)/(x - A). 

Since l.gl.dim g’ 
which is neither 
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Theorem 4] we have l.gl.dimg’u)/(x - A) 6 l.gl.dim g’(f) - 1< l.gl.dim g’u). This 
shows that 

l.gl.dim g(f) = l.gl.dim gcf)r < 1+ l.gl.dimg’(f)T i 1 + l.gl.dimg’Cf). 

But Gnce gu) is the Ore-extension of g’(f) and l.gl.dimg’(f) < m, by our Remark 3 
we have l.gl.dim g’(f) s l.gl.dim gq). Therefore we get l.gl.dim g’(f j = l.gl.dim g(f). 

Thus our claim that l.gl.dim g(f) = l.gl.dim g’v) if g1 = g and 8’s~ is proved. 
Since dimk g’ = n - 1 by our induction hypothesis there exist a subalgebra h of g’ 

and an element 8% Homk (g’, k) such that I) h is f-subordinate to 8’, II) 

l.gl.dim g’(f) = dimk h. Let 8 = g + k be the k-linear map such that 8(y) = 0 and 
8 1 g’ = 8’. Then it is easy to see that h is f-subordinate to 8 also aind l.gl.dim s(f) = 
l.gl.dim g’(j) = dimk h. 
Case 3 : gl C g’, g1 s g . Then g1 is an ideal of g of codim 1. Let g = gl G k l y where 
y E g be such that [y, X] = X. Let f(x, y ) = A. Then gcf) is the Ore-extenlsion of g1 (f) 
with respect to the derivation d induced by y, x - A an element of the ctintre of 
gl(f) with d(x-Q-x-A. 

If l.gl.dim g(j) = l.gl.dimgl (f) then the proof of the theorem for case; ‘2 shows that 
there exists an element .8 E Homk (g, k) and a subalgebra h od 9 such that I) k is 
f-subordinate to 8, II) l.gl.dim gu) = dimk h. 

If I.gl.dim gcf) > l.gl.dimg, cf) then the proof of the theorem for case 2 and 
Proposition 1.1 shows that there exists an element b E g(f) such that be a and 
x - A E (a : b). Since x - A is an element of the centre of g1 u) and d (x - A) = x - A 
we have gcf)x - A = (x - A)gCf). Therefore x -.A E (a: b) implies that g(f)x 
: A E P where I is the greatest two sided ideal of g(f) contained in (a : b). It is easy 
to see that E is also the greatest two sided ideal of g(f) contained in a and 1 = ann M 
where M = gu)/a. Then the proof of the theorem fo: case 1 shows that there exists 
an element 8 E Homk (g, k) and a subalgebra h of 7 such that I) h is f-subordinate 
to 8, II) l.gl.dimg(f) = dimk h. 
Case 4 : o1 s g, g’s g, g1 # g’. Then g’ is not an ideal of g. Therefore by Lemma 2.3 
we have g1 = g1 n g’$ k l w, f(w,x) = 1 and the Adjoint action of w on ~1 is 
nilpotent. Let g = g1 $ ky with [y, X] = x and f(y, x) = 0. Then sv) is the Ore- 
extension of glcf) with respect to the derivation d of glv) induced by y. 

Let g” = gl n g’. Let d’ be the derivation of s”cf) induced by W. Then gl(f) = 
g”<f)[X, d’]. Since the adjoint. action of w on g” is nilpotent it follows that d’ is a 
locally nilpotent derivation of ~“cf). Since n is an element of the centre g”(f) and 
d’(x) = 1 it follows from [9, p. 78) that there exists an isomorphism 

-- x: 
q(xj) = g @ 1 + d’(x&X, + dt2(xi)@F f l l l for 1 s i s n - 2 

. 
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where x = x1, x2,. . ., x,+ = w is a k -basis of g1 and A,(k) is the Weyl algebra 
k[X1, Y1] of index 1 with coefficients in k, i.e. A,(k) is the k-alg&ra generated by 
X1 and Y, with the relation YIX1 - Xl Yl= 1. 

Let d be the k-derivation of g”(f)/(~) &Al(k) induced by d through the 
isomorphism #. Then s(f) = gl(f)[X; d] = g”(f)/(xl) @k A*(k)[X; a]. NOW every 
element b of g”(f)/(x)&Al(k) has the unique expression of the type 

b= c aii @ XiYi, aii E s”(f)/(x)* 
i+j*O 

We define a k-derivation do on g”cf)/(x) @k Al(k) as follows 

do(agJ)=aw~l if d(a@l)=aM,&+ z aiiaXfY{ 
i+j>O 

&(I COG) = d,(l go Y1) = o. 
Then from [7, Lemma 2.151 it follows that there exists an element g of 

g”(f)l(X ) C% A1 (k ) such that &b)-&(b)= bg -gb for all b Ef(f)/(x)@kAt(k). 
Therefore we have 

= d’cf)/(x)[X; do] @k A,(k). 

Let a E g”(f) then 

ii 

Therefore 
li 

@Jl= 

‘(li@l 

d’(a)x+CkE~CWC+~.~) 
2! 3! 

l 

‘(a)-d(d’(a)x -d’(a)x)+v 
. 

+ dt2(a)x2 + l l . ) 

= 2i;;T~ I+ terms of the type ,+Tti ay @X:Y/,. 

This shows that do(@l)= d(a)Bl. 
It is easy to see that g” is an ideal of g. Let 9 = g”$ k * y. Then Scf) is the 

Ore-extension of s”(f) with respect to the derivation a induced by y. Since 
[y, x] = x, f(y, x) = 0, f induces 2-cocycle f on fi = Ql(x) such that iv) = fiv)l(x) 1 
g”(f)/(x)[X; do]. Let q be an abelian Lie algebra of dim2 over k generated by 
X1, Y1. Let f’ be a 2-cczycle on 7 defined by f’(X,, Y1) = 1, Let jj = # g, 7, f = f@ f’. 
Then one can see that 4 is a solvable Lie algebra over k, f a 2-cocycle on the 
‘standard complex’ for fi such that ii@ &At(k) = S(f). Since X1 is an element of 
the centre of fi and ,!(u, X,) = 0 for all u E Q, the proof of the theorem for case 2 
shows that l.gl.dim fig) = 1+ l.gl.dim~@). Therefore we have ( 

l.gl.dim gcf) = I.gl.dim g”u)&) Q A1 (k)[X; d] 

= l.gl.dim g”(f)l(~)[X; do] Br( A, (k) 

= I.gl.dim @) mlr A1 (k) = l.gl.dim S@) = 1 + I.gl.dim bg). 
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Since dimk 6 r= F -- 3 by induction hypothesis there exist an element 8 E 
Homk (6, k) P;. . i Tubalgebra fi of 6 such that I) hc is j%ubordinate to 8, 
II) l.gl.dim g@) = 2: +\ i,k 6. 

Let 4~ be a subalgcbra of g such that x E fi and&/(x) = d Let 8 : g --) k be tFse 
k-linear map such that e(x) s e(w) = O’and.8 /g/(x) = e” where a-: g/(x)-+ k is the 
map induced by 8. Then it is easy to see that I) h- is f-subordinate to, @, 
II) l.gl.dim g(f) = 14 l.gl.dim fiq) = 1 + dimk d = dimk h. 

Thus the theorem is proved for dimk g = n. 
This completes the proof of ,Theorem 2.1. 
Now we state the main theorem. 

Theorem 2.6. Let k be an algebraically closed field of char. 0. ti,+ g be a finite 
dimensional solvable Lie algebra over k. Let f be a k-valued 2-cocycle 6n the 
‘standard complex’ for g. Let (hj)*eJ be the family of subalgebras cisf g for which the 
restriction of f to hj x hj is a coboundary. Then l.gl.dim g(f) = sq+dimL hi. 

Proof. By Remark 4 it follows that if h is a subalgebra of g such that the 
restriction of f to h x h is a coboundary then dimk h = l.gl.dim h (f) G l.gl.dim g(f). 
Therefore we always have I.$ dim g(f) * supjfJ dimk hp 

Theorem 2.1 shows that there exist a suba$ebra h of g and an element 
8 E Homk (g, k) such that h is f-subordinate to 8 and l.gl.dimg;(f) = dimr, h. But h 
is f-subordinate to 8 implies that the restriction of f to h x %r is a coboundary. 
Therefore l.gl.dimg(f) = dimk h s supjEJ dimk hp Hence the equality. 

This completes the proof of Theorem 2.6. 

Remark 6. The following example shows that ‘RI :orem 2.6 is no longer valid if we 
drop the assumption that k is algebraically closti. 

Example. Let g be the solvable Lie :rlgebra over the field R of real numbers with a 
basis (x, y, z) such that [x, y] = z, [x, t] = - y, ‘[y, z] = 0. Let f be a R-valued 
2-cocycle on the ‘standard complex’ for g such that f (y, z) = 1, f(rc, y ) = f (x, z) = G. 
Then it is easy to prove that l.gl.dimg@ = 2. Let h be a subalgebra of g of dim2 
with a basis (ei, ez). Let el = qx + ply + rlz, e2 = a2x + fi2y + r2.z. Then if .f 1 h x h 
is a coboundary we get either CY~ # 0 or a2 # 0. Assume al # 0. If [el, e2] = 0, then 
f 1 h X h is a coboundary implies that f (e,, e2) = 0 and this in turn will imply that el 
and e2 are linearly dependant which is contradiction. Therefore, [et, ez] # 0. But 
[el, ez] = &y + r3z. Assume pi # 0 and let e: = y + rz, r = /9?r3, Then e: E h. But 
then [el, e:] = cylz -arlry E h and sincecul#Othis wi 1 imply that e5 = z - ry E h. 
Since [e:, e 51 = 0 we get f(e&&)=O. 

But f(el, e4) = 1+ r2. Since 1, r E we get a contradiction showing th ere 

does not exist a subalgebra h of g of dim2 such that f 1 h x h is a coboundary. 
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But for a finite dimensional solvable Lie algebra over an arbitrary field of char. 0 
we have the following 

Theorem 2.7. Let K be a field of char. 0. Let In be its algebraic closure. Let g be a 
finite dimensional solvable Lie algebra over K. Let f be a K-valued 2-ct3cycle on the 
‘standard complex ’ for Q. Then l.gl.dim g(f) = l.gl.dim gn (fn) where gn = fJ& 9, 
fn = L@Kf* 

Proof. Since In is algebraically closed field of char. 0, by Theorem 2.6 we get a 
subalgebra h ’ of gn such that the restriction of fn to h ’ x h’ is a coboundary and 
l.gl.dimga (fn) = dimn h’. Since g is finite dimensional over K and f is completely 
determined by its values on a K-basis of g x g, it follows that there exists a finite 
extension L of K and a subalgebra h of gL such that the restriction of ft to h x h is 
a coboundary and 08, h = h ’ where gt = L@QK g and fe = I.. &fi Therefore we 
have 

I.gl.dim gn ua) = dimn h ’ = dim= h G l.gl.dim gL (fL). 

But gr. &) = LQ& g(f) and L is a finite separable extension of K. Therefore by [4, 
p. 741 we have l.gl.dim gL u=) = l.gl.dim s(f). Therefore l.gl.dim 90 (fn) s 
I.gl.dim g(f). But gn (fn) is g(f)-free as a left and as a right module and contains g(f) 
as a direct summand. Therefore by [8, Lemma l] we have l.gl.dimgCf) s 
l.gl.dim gn ($a). 

Hence the equality. 
This completes the proof of Theorem 2.7. 

Remark 6. The fol owing example shows that Theorem 2.6 is not true if g is not 
solvable. 

Example. Let K be En algebraically closed field of char. 0. Let g be a Lie algebra 
over K of dim 5 such that its radical is abelian and of dim2. Let g = Z $ S be the 
Levi decomposition of 0 where 2 is the radical of g and S is a semisimple 
sub-algebra of g. Let f be a K-valued 2-cocycle on the ‘standard complex’ for g such 
that f IgW =0 and f lZxZ#O. Since dimZ=2, f /ZxZ#O implies Z(f)= 
AI(K). Let us assume that 2 is a simple S-module. Since every element of S 
defines a Lie-algebra derivation of 2 there exists a Lie-algebra homomorphism 
+ : S -+ DerK (Z(f)). S’ mce 2 y) = A #c) and S is semisimple it follows that 
((l(S) CD where D denotes the Lie-algebra of inner derivations of Zy). From this 
it follows that l.gl.dim gcf, = l.gl.dim Z(f) + dimKS = 1+‘3 5 4, 

Let h be a subalgebra of g of dim4. Suppose f 1 h x h is a coboundary it follows 
that dimK h n 2 = 1 and h + 2 = g. From this it follows that h = h n2 $ S’ where 
S’ is a semisimple sub-Lie algebra of g such that S’ = g/Z.’ Therefore g = Z@ S’ is 
another Levi decomposition of g. Let 4 : S --) S’ be a Lie-algebra isomorphism 
defined as follows Q(s) = s9 if s = z -I- s’, z E 2, s’ E S ‘. Then since 2 is abelian, we 
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have for z E 2, s E S, [s, z] -= [+(s), 2). Therefore 2 is a simple S’-module. But 
h f7 2 is an ideal of h and S’C h. Therefore h n 2 is a S’-module, Since 

dimK h fl Z = I we get a proper non zero S’-submodule of 2 which: is acontradic- 
tion, ,b j i ” ., - ..‘ : ; 

This shows that if h is a subalgebra of g scch that ;f 1 Irx‘h, is a*~coboundary 
. . :g#- 

then 
dimK A < 4 = l.gl.dimg(f). 

We refer to [ll] for the definition of K&l dimen&on of a, module over (not 
necessarily commutative) ring. r For a ring A let &Cr.dimA~~ denote the Krull 
dimension of A when A is regardedlas a ieft module &verA. 

We state a result which has been proved by Roos J,E, in [12], 
I 

Theorem c;t Roes, Let A be a filtered noetherian ring whose associated graded ring 
is a commutative regular noethetian ring. 77aen l.Kr.dim A G l.gl.dim A. 

As a consequence of the above theorem and Theorem 2.6 we get the toilowing 
coroiiary. 

Corollary 2.8. Let g, fi K be as given in Theorem 2.6. Then l.gl,dim g(f) = 
l.Kr.dim gcf). 

Proof. By Theorem of Roos we have l.Kr.dim q(f) s l,gl.dimgu). 
By Theorem 2.6 we get a subalgebra h of g such that the restriction off to h x h 

is a coboundary and l.gl.dim g(f) = dimK h. Since h(f) is isomorphic to the usual 
enveloping algebra of the solvable Lie algebra k, by [ 11: P. 713, (9)] we: have 
dimK h G I.Kr.dim h (f). 

But since g(f) is h @free as a right and as a left module and contains h(f) as a 
direct summand, it is easy to see that l.Kr,dim h (’ ) G l.Kr.dim g(f). Therefore we 
have l.gl.dimg(f) = dimK h G l.Kr.dim h.(f) G l.K-. lim g(f). 

Hence the equality. 
This completes the proof of Corollary 2.8. 
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