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Introduction

Letk bea commutatxve ﬁeld of "har 0. Let g be a L1e algebra over k.Let fbea
k-valued 2-cocycle on the standard co nplex for g We set g(f) T(g)/ U, (3),
where T'(g) denotes the tensor algebra of tl : vector space g and U \8) the two sided
ideal of T(~) generated by all elements of the form x ®y -y ‘®x =[x y]-f(x,y)
for x,y €g. It is known [14] that g(f) is a ﬁltered k-algebra whose associated
graded is isomorphic to a polynomlal algebrt over k and that every filtered
k-algebra with this property is 1somorph1c to one such.

In this paper we determine [Section 2, Theorem 2 7] the global dimension of a(f)
where g is a finite dimensional solvable Lie algebra over k and deduce some
interesting results. This paper isa sequel to the aut..or’s prevnous paper of the same
title [2].

In Section 1 we. prove some: results whlch -are used in the proof of the main
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Let A be a ring and d be a denvatlon of A. ’Ii‘he Ore-extensmn A[X d} is the
ring generated by A and an indeterminate X' satisfying the: relation Xa — aX =
d(a) for all a €A. Itis éasy to see that any element b of A[X;d] is of the form
2o<i<a X'a; with'a; € A and a, # 0 and that such expression is umque We call n to
be the degree of b and a, the leading coefficient of b. :

Now we make following remarks regarding A{X;d}.

Remark 1. If A isleft’

' oethenan then A[X . d] is also left (resp.
: nght) noethenan o :

Remark 2. A[X d] is. Af-free asa eft as well as a nyht module.
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Remark 3. lgldimA <lgldimA[X;d]<1+1lgldimA if LgldimA << [see
5, Proposition 3].

Let T be a multiplicatively closed subset of A contained in its centre such that
1€ T and no element of T is a zerc divisor in A. Then as a subset of A[X;d], T
has the properties: 1) no element of T is a zero divisor in A [X; d],2) T is left (resp.
right) permutable, i.e. for s€T and b€ A[X;d] there exist tET and c €
A[X;d] such that sc = bt (resp. cs = tb).

Therefore from [15, Proposition 15.1] it follows that the left ring of fractions of
A[X; d] with respect to T exists and that it is isomorphic to Ar [X; d'] where Ay is
the localisation of A with respect to T and d' is the derivation of Ay induced by d.
We get similar results for the right ring of fractions of A [X; d] with respect to T.

We denote both the left and right ring of fractions of A[X; d] with respectto T
by A[X; d]+. Then by Remark 2 it follows that A[X; d]r is flat as a left and as a
right A[X; d]-module.

Let a be a left ideal of A. Let for a € A, (a: a) = {b/b € A, ba € a}. Then (a: a)
is also a left ideal of A and (a:a)= A if and only if a € a. If a is a maximal left
ideal then so also (a: a) for a & a. Moreover the map ¢ : A/(a: a)— A/a given by
¢ (b) = ba is an isomorphism of A -modules.

For the sake of simplicity of notation throughout this section we write B (resp.
Br) for A[X;d] (resp. A[X;d]r

With the above riotation we prove the following

Proposition 1.1. Let.A be a ring which contains Q. Let d be a derivation of A. Leta
be an element of the centre of A such that Aa + Ad(a) = A. Let o’ be a left ideal of B
which contains a. The o' = Ba where a=a'N A.

Proof. Since a Ca’ we have BaCa'. If Ba # a’ then there exists an element b = a
such that b& Ba and is of smallest degree with such property. Let b = Zoci<a X'a;,
a. # 0. Since every element of Ba is of the form Zoe;<m X'c;, ¢; Eafor 0 < j < m, by
choice of b we get a,# 1. Since a € a’ we have b’ =(X"a,)a — a Zoci<n X'a, E0'.
But b'= X""'(nd(a)a. — aa.-,)+terms of smaller degree. Since degree b'=<
n—1<degreeb, b'€ Ba. Therefore nd(a)a, —aa,.,€a. But a€a=a'NA.
Therefore nd(a)a. € a, i.e. d(a)a. € a. Since Aa + Ada = A there exist ¢ and
c¢'€ A such that ca +c'd(a)= 1. This shows that a, = c(aa,)+c'(d(a)a,) € a,
which is a contradiction. Therefore Ba = a'. Hence the result.

Proposition 1.2. Let K be an algebraically closed field of char.0. Let A be a
K-algebra. Let d be a K -derivation of A. Let a be an element of the centre of A such
that d(a) = 1. Let b be a proper left ideal of B. If for some b’ &b (b: b')N K[a] #0
then there exists b b. such that a — A € (b: b) for some A € K.

Proof. d(a)=1 implies that a is transcendental over K. Therefore K[a] is a
polynomial algebra over K in one variable. Let 0 # f € (b: b’)N K[a]. We prove
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the result by induction on deg f where deg f denotes the degree of f as an element
of K[a].

Since b is a proper left xdeal and f#0,degf=1.Letdegf=1.Thenf=aa + 8
with @, €K and a#0. Then by takmg A= —a ‘B and b'—b we get the
required result.

Assume the result for deg f =m —1 Let deg f ‘m >1 Then since:- K is.
algebraically closed there exists @ € K- such that f=(a—a)f, f'€ K{a] and
degf'=m—1. If f'&(b:b’) then by taking b=fb' we get bZb and
a-a€(b:b). If f'€(b: b’) then since deg f' = m — 1 by our induction hypothesis
there exist bZband A EK such that a—A € (b:b). .

This completes the proof of Proposition 1.2,

Proposition 1.3. Let A be a ring which is left and right noetherian. Let 1.gl.dim A <
®. Let d be a derivation of A. Let a be a left ideal of B such that 1.gl.dimB =
hdsB/a. Let The a mulnphcanvely closed subset of A contained in its centre such that
1€ Tand no element of T is a zero dw:sor inA. If for every bZa(a:b)NT =@ then
lgl dimB =gl dim Br.

Proof. Since A is left and right noetherian and l.gl.dim A <o, by our earlier
remarks, it follows that B as well as By are left and right noetherian and have finite
left global dimension. Therefore by [1, Theorem :] there exists a left ideal b of By
such that 1.gl.dim Br = hdgs, Br/b. But since By is a left ring of fractions of B there
exists a left ideal b’ of B such that Br/b= Br®sB /b’ as Br-modules.

For a ring R and a left module N let w.dimg N denote the weak dimension of N.
If R is left noetherian and N is ﬁnitals;‘-generated then hdz N = w.dims N (3,
Chapter VI]. Therefore

l.gl.dim By = hdg, Br/b = w.dimg, By/b:: v.dims, Br@sB/V'.
Since Br is B-flat as a right B-module we get
w.dims, B,@»s B /0’ < w.dimp B/b’ = hds J/ /b’ < l.gl.dim B.

Therefore l.gl.dim Br <l.gl.dim B.

Now since (a: b)N T =@ for all b&Z a, the mappmg ¢ : Bla— Br&s B/a given
by ¢(¥)=1® X is a monomorphism. Therefore, since l.gl.dimB =hdsB/a=
w.dimpB/a we get l.gl.dimB = w.dims Br@sB/a. But Br is B-flat as a left
module. Therefore

w.dimg Br®s B/a < w.dimp, Br&s B/a = hds, By®s B/a < .gl.dim Br.

This shows that 1.gl.dim B <1l.gl.dim BT Hence the equallty
This completes the proof of Proposmon 1. 3

Let g be a Lie algebra over a field k of char.0. Let f be a k-valued 2-cocycle on
the ‘standard complex’ for g [14, p. 532). Let 6 be an element of Hom, (g, k).
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Definition. A subalgebra h of g is said to be f-subordinate to 8 if for every
hi, h. € h we have 8[h,, h;] + f(hi, h2)=0.

Remark 4. From the definition it follows that if h is a subalgebra of g then the
restriction of f to h X h is a coboundary if and only if there exists § € Homg g, k)
such that h is f-subordinate to 6. Therefore if a subalgebra h is f-subordinate to 8
then h(f) is isomorphic to h (0) [14, Theorem 3.1]. But h (0} is nothing but the usual
enveloping alzebia of the Lie algebra h. Therefore l.gl.dim 4 (0) = dim. A [3, p. 283,
Theorem 8.2]. Moreover the map 6 :h — k defines an h(f)-module structure
denoted by k (8, h) on k such that hd. k (6, h) = dim, h = 1.gl.dim h (f). Since g(f)
is h(f)-free as a right as well as a left module and contains h(f) as a direct
summand, from [8, Lemma 1] it follows that

1gldlm g(f) = hds(f) g(f) % k (0, h ) = hdh(f) k (0, h) = dim, h.

On the other hand from [13, Theorem 1] we get dim, g = 1.gl.dim g(f). Therefore we
always have inequality dim, g =1.gl.dimg(f) = dim.h for a subalgebra h of g for
which the restriction of f to h X h is a coboundary. '

We begin this section with the following theorem.

Theorem 2.1. Let k be an algebraically closed field of char.0. Let g be a finite
dimensional solvable Lie algebra over k. Let f be a k-valued 2-cocycle on the
‘standard complex’ for g. Then there exists 0 in Hom, (g, k) and a subalgebra h of g
such that

I) h is f-subordinate to 6

II) l.gl.dimg(f) = dimn, h.

For the proof of this theorem we require some lemmas. In the first two lemmas (i.e.
Lemma 2.2 and Lemma 2.3) k, g, and f are as in the statement of Theorem 2.1.

Let x €g be such that k -x is an ideal of g. Let g,={z/z €g,[x,z] =0},
a'={z/z €g,f(x,2)=0}.

Lemma 2.2. If g' is a subspace of g of codimension 1 then g’ is an ideal of g if
g'Cgi.

Proof. It is easy to see that g, is an ideal of g of codim < 1. If codimg, =1 then
since codimg’ =1, g’ Cg, implies that g’ = g,. Therefore g’ is an ideal of g.

If codim g, = 0 then g, = g. This means that x is an element of the centre of g. But
then for any z, w € g we have
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Sflz,wD=fx[2. w )+ f(w, [x, 2D+ f(z,[w, x]) = 0.

Therefore [g,8] Cg’. Hence g’ is an ideal of g.
This complctes the pIZO,Of Of “L\emma 2-2,- I

Lemma 2. 3. If g’ is not an zdeal of g then g’ n gl zs an iizal of of cod1m1 and
g=g 'n g1k -w where w € g, be such that f(w, x) 1 and the ad]omt acno::
on g, is nilpotent.

nfw

el

Proof. Since g’ is not an ideal of g, by Lemma 22 we have g ;Zgl Therefore 81 ‘,-Eg
and g’ N g, is a subspace of g, of codim 1. Applymg Lemma 2.2 again to x, g, and f
we get that g; N g’ is an ideal of g, of ecodim1. -

Since g: S g and k - x is an ideal of g, there exists y € g such that g=g, @k -y
and [y,x] = x. Since g’ # g there exists w'€E€ g; such that f(w',x)= 1. Therefore

1=fw'x)=fw"ly,xD= - flx,[w,yD- f(}',[x,W]) fdw',y} x).

Lot w =[w’, y]. Since g, is an ideal of g. of codlm 1 [g,8] Cg:. Smce g is solvable
and w € [a,g] the adjoint action of w on g and therefore on g, is nilpotent.
Hence the result.

Remark 5. If g’is an ideal of g of codim 1 then ¢’ Cg, and g =g’ @ k - y. Therefore
x is an element of the centre of g'(f) and g(f) is the Ore-extension of g'(f) with
respect to, the derivation d induced by y. If g: = g then we can choose y such that
f(y,x)=1. Then d(x) = 1. If g, g then we can chcose y such that [y, x] = x and
then d(x)=x + A where A = f(y, x). Therefore d(x + A)=x + A.

Lemma 2.4. .Let D be a Dedekind domain of cha . 0. Let L be its quotient field. Let
g be a finite dimensional Lie algebra over L with 1 basis (X1, %2, ..., x,). Let fbe a
L-valued 2-cocycle on the ‘standard complex fo:3.Let6 €Hom, (g,L) andhbe a
subalgebra of g such that h is f- subordmate 1o 0. Tren there extsts a discrete valuation
ring R with D CR CL such that

(1) [z,w] Egx for all z,w € gr

2) fr(z,w)ER for all z,w Egr

3) (gr)CR
where gr = Zi<in R, fr = f |62 ¥ 8.

Proof. Since L is the quotient field of D and g is finite dimensional over L there
exists0 # s € D such that s « [x,, x,] € Z1<i<sDxi,s - f(x,x,) € D and s - 0(x;) € D for
all i,j, 1=<i, j < n. Let m be a maximal ideal of D such that s& m. Then by taking
R = D we get the requxred -result.

Lemma 25. LetL,g,f gr, h 0 be as in the statement of Lemma 2.4. Let K be the
residue field of R. Let § = K@z 8r, _f_ Il(®n fr. Then the:e exist§ € i-_Iomx 3, K)
and a subalgebra h of § such that h is f-subordinate to 6 and dimgxh = dim.h.
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Proof. Let h'=gr Nh. Since h' is a R-submodule of gr and R is a discrete
valuation ring h’ is a free R -module of rank r. Since L ®xh' = h as L -vector spaces
r= dlmL h. ’

Let a be the maximal ideal of R. Then h’' =gz N h implies ah’' = age N h'. This
shows that the map i; KQrh'— KQr gr (=8) given by i(A®x)=A®x is a
monomorphism. We identify K@ h' with its image in K@r g.» under the mapping
i. Let 8:3— K be the map given by 6(A @ x) = An0(x) whers n : R - K is the
canonical map. It is easy to see that § is well defined and K-linear. Let
h = KQgh'.-We claim that & is f-subordinate to 6.

Let u, v € h. Then there exist z, w € h' such that u = 1® z, v = 1 ® w. Therefore

fu,v)+8luv]=Flezleow)+0[lez,1owi=18f(z,w)+ 0z, w]
= nf(z, w)+ n0[z,w] = n(f(z, w)+ 0[2,w])=0.

Thus h is f-subordinate to 6. Since h’' is R-free of rank r we have
dimx h (= K®xh')=r = dim_h. Hence the result.
Thus the proof of Lemma 2.5 is complete.

Proof of Theorem 2.1. We will prove the result by induction on dim, g. Let
dim, g = 1. Then g(f) is a polynomial algebra k[x] in one variable over k. Let
0 : g— k be the map given by 6(x) = 0 where g = k - x. Then g is f-subordinate to 0
and lLgl.dimg(f) = gl.dimk[x] =1 = dim, g.

Assume the result for dim, g<n — 1. Let dimg = n.

Since g(f) is left and right noetherian and of fini:= left global dimension, by [2,
Proposition 1.1] there exists a maximal left ideal a of g(f) such that l.gl.dimg(f) =
hd,,8(f)/(a: a) for al a€ a. Since g is solvable and k-algebraically closed there
exists x € g such that k - x is a non zero ideal of g. Let g, ={w/w € g,[x,w] =0},
g'={w/weg,f(x,w)=0}

We divide the proof in following four cases:

Case 1: g =g'=g,. Taen x will be an element of the centre of g(f).

Let M = g(f)/a and let I = ann M. Ther since M is a simple left g(f)-module and
x an element of the centre of g(f) by [10, p. 171] we get x — A € I forsome A € k.

Let 3=g/(x). Let a :g— k, be the k-linear map given by

a(x))=A

a(x)=0, 2<i 'n
where x = Xy, X, Xs,.. ., X, is a k-basis of g. Let f : § X §— k be the map defined by
f(Z,w)=f(z,w)+a[z,w].

Then § is a solvable Lie algebra, f a k-valued 2-cocycle on the ‘standard complex’
for § such that §(f) = g(f)/(x:— A).

Since x, — A € I = ann M, we can regard M as a §(f)-module. Since x, — A is an
element of the centre of g(f) which is neither a unit nor a divisor of zero and
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hdypy M <lgldimg(f)<Dimg§<x, by Kaplansky’s Theorem [6, p. 172,
Theorem 3}; hd;5) M = hd,(,,M 1=1gl.dimg(f)— 1. But since l.gl.dim§(f) <o
we always have l.gl. dlmg(f)<lgl dimg(f) -1 [6 p- 173, Theorem 4]. Therefore
L.gldim§(f) = L.gl.dimg(f) - L. (One can easﬂy prove Kaplansky s Theorems [6, P
172, Theorem 3 and p. 173, Theorem 4)for an element x — A € a(H whlch is neither
a unit nor a divisor of zero and which is such that g(f)(x A)= (x A)s(f).
Therefore our conclusions remain valid for such element x — A even though it may
not be an element of the centre of g(f). Thxs fact we have used in the proof of the
theorem for case 3).

Since dim, § = n — 1, by our induction hypothesis there exists a subalgebra A of §
and an element 6 _of Hom, (,k) such that (I) h is f—subordinate to 8, (I
Lgl.dim §(f) = dim, h.

Let h be a'subalgebra of g such that x,E h and h/(x,) = h. Let 6 :g— k be the
k -linear map such that 8(x,) = A and 0(x;) = 6(%) for 2<i <n where % denotes
the xmage of x; in §(= g/(x,)) under the canonical mapping n :g— 4.

Then h is f-subordmate 6 implies that h is f-subordinate to @ and dimh =

dimh +1=1gldim§(f) + 1 = Lgl.dimg(f).
Case 2: g,=g¢, g'Eg. Then from Lemma 2.2 it follows that g’ is an ideal of g of
codiml. Let g=g'®@ky with y €Eg be such that f(y,x)=1. Then g(f) is the
Ore-extension of g'(f) with respect to the derivation d induced by y and x — A is an
element of the centre of g'(f) with d(x —A)=1 for every A € k. We claim that
l.gl.dimg’(f) = 1.gl.dimg(f).

If for some b'& a {a: b’)N k[x] # 0 then by Proposition 1.2 we get an element
b& a and an element A € k such that x — A € (a: &). But then by Proposition 1.1
we have a”"=g(f)a’ where o' =a"Ng'(f) and a’=(a:b). Therefore g(f)/a"=
a(f) R a'(f)/a’. Since g(f) is a'(f)-free as a left as well as a right moduie and
contains g'(f) as a direct summand, from (8, Len.ma 1] it follows that

1.gl.dimg'(f) < 1.gl.dim g(f) = hd,, g(f)/(r: b)
= hdsr 8(f) ﬁ% g'(F)/a’ <hdy,g'(f)/a’ <1Lgl.dimg'(f).

Therefore we have l.gl.dim g(f) = l.gl.dim g'(f).

Suppose for all bZ a(a:b) Nk {x]=0.Let T = k[x]- {0}. Then T is a multip-
licatively closed set contained ir the centre of g'(f) such that no element of T is a
zero divisor of g'(f) (in fact g'(f} itself is without proper divisors of z=ro). Therefore
from Proposition 13 it follows that lgldimg(f)=lgldimg(f)r =
Lgldimg'(f)r[X;d'}<1+1glaimg/(f)r where d’ is the derivaticn of g'(f)r in-
duced by the derivation d of g'f).

Let x = Xy, X2, ..., X»—1 be a k-basis of g’. Let K be the quotient fiel.i of k [x] (note
that since d(x) = 1, k[x] is a polynomial algebra over k). Let " = Q. g'/(x). Let
B :g'— k[x:](= k[x]) be the k-linear map given by
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B(x1) = x,
B(x:)=0, 2<isn-1.

Let f":g"xg"— K be the map defined by
fflez,1ew)=f(z,w)+Blz,w].

Then g” is a solvable Lie algebra over K, f” a K-valued 2-cocycle on the ‘standard
complex’ for g” such that g"(f")=g'(f)r- :

Let 0 be the algebraic closure of K. Let go= 2Q« g", fo = In@« f". Then gaisa
solvable Lie algebra over 2 of dimn — 2, f; a £2-valued 2-cocycle on the ‘standard
complex’ for go such that ga(fn) = 2R« ¢"(f"). Since dimpga=n—2, by our
induction hypothesis there exist a subalgebra h' of go and an element 6"€
Hom, (g, £2) such that I) h' is fg-subordinate to 8, II) l.gl.dimga(fa) = dima h'.
Since g¢" is finite dimensional over K and f" is completely determined by its values
on a K-basis of g" X g, there exist a finite extension L of K and a subalgebra h of
af such that (g/)CL and Q®.h =h’ where gf =L®xg¢" and 0 = 0",9}',. This
implies that h is f{-subordinate to @ where fi =1, Q«f" and l.gl.dimga(fa)=
dimph' = dim, h = 1.gl.dim h (f7) <l.gl.dimgi(f). But a7 (fi)=L®«x ¢"(f") and L
is a finite separable extension. Therefore by [4, p. 74] we have l.gl.dimg; (f7) =
L.gl.dimg"(f"). Since ga(fa) is g"(f")-free as a left and a right module and contains
g"(f") as a direct summand, by [8, Lemma 1] we have lgldimg"(f")<
l.gl.dimga(fe) =dimh’=dim.h <l.gl.dimg; (f7) = l.gl.dimg" (f"). Therefore
Lgl.dimg'(f)r = l.gl.dimg"(f") = l.gl.dimg, (f7) = Lgl.dim g&(f2).

Let D be the integral closure of k[x] in L. Then since L is separable over K, D is
a Dedekind domain. Then by Lemma 2.4 there exists a discrete valuation ring R
with D CR CL such that 1) [u, v] € gk for u, v € gk, 2) fr(u,v) ER, 3) 8(gr)CR
where gk = 2s<i<n-1 R(1® %), % is the image of x; in g'/(x) under the canonical
map n:g'—g'/(x) for2<i<n-1, fr= ﬁlgﬂx gr. From the construction of R
and gg it follows that the residue field of R is k and gk = R®. ¢'/(X).

Let §=kQ=rgk, f=LQrfr Then it is easy to see thai §=k Rrgh=
k ®r R@: g'/(x)=g'/(x) as Lie algebras over k and when we identify § with g'/(x)
then f(Z, W) = f(z,w)+ 1'B[z, w] where P = g'— k[x] is the map as defined above
and n': R — k is the canonical map. From this it follows that §(f)=g'(f)/(x — A)
where A = n'(x).

Lemma 2.5 shows that there exists a subalgebra h of § and an element

0 € Hom, (§, k) such that k is f-subordinate to 8 and dim, & = dim, h. Therefore
we have ‘

Lgl.dimg'(f)r = l.gl.dimg"(f") = l.gl.dimgf (f7) = dim_h
= dim A = Lgl.dim A (f) <1.gl.dim§(f) = L.gl.dimg'(f)/(x — A).

Since 1.gl.dimg'(f)/(x — A)<dim§ < and x — A is an element of the centre of g'(f)
which is neither a unit nor a divisor of zero, by Kaplansky’s Theorem [6, p. 173,
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Theorem 4] we have i.gl.dimg'(f)/(x — A)<l.gl.dimg'(f)— 1 <lgl.dimg'(f). This
shows that

L.gl.dimg(f) = 1.gl.dimg(f)r <1+ 1.gl.dimg'(f)r <1+ Lgl.dimg'(f).
But since g(f) is the Ore-extension of g'(f) and l.gl.dim g’ (f) < =, by our Remark 3
we have 1.gl.dim g’ (f) < 1.gl.dim g(f). Therefore we get 1.gl.dimg'(f) = Lgl.dim g(f).

Thus our claim that 1.gl.dimg(f) = 1.gl.dimg’(f) if g. =g and ¢'&g is proved.

Since dim, g’ = n — 1 by our induction hypothesis there exist a subalgebra h of ¢’

and an element 6'€ Hom. (¢’, k) such that I) h is f-subordinate to 6’, II)
l.gl.dimg'(f) = dim, k. Let 8 = g— k be the k-linear map such that 8(y) =0 and
0 |g' = 0'. Then it is easy to see that h is f-subordinate to 8 also and 1.gl.dim g(f) =
L.gl.dimg'(f) = dimy h. ‘
Case 3: ¢:Cg’, 6:Zg. Then g, is an ideal of g of codim1. Let g=g,® k - y where
y € g be such that [y, x] = x. Let f(x, y) = A. Then g(f) is the Ore-exteasion of g, (f)
with respect to the derivation d induced by y, x — A an element of the ccntre of
g:(f) with d(x —A)=x—A.

If 1.gl.dim g(f) = 1.gl.dim g, (f) then the proof of the theorem for casc 2 shows that
there exists an element 6 € Hom, (g, k) and a subalgebra h of 3 such that I) h is
f-subordinate to 6, II) l.gl.dimg(f) = dim, h.

If L.gl.dimg(f) >l.gl.dimg,(f) then the proof o/ the theorem for case 2 and

Proposition 1.1 shows that there exists an element b € g(f) such that b& a and
x — A €(a:b). Since x — A is an element of the centre of g, (f) and d(x —~A)=x — A
we have g(f)x — A =(x —A)g(f). Therefore x —A € (a:b) implies that g(f)x
— A € I where I is the greatest two sided ideal of g(f, contained in (a: b). It is easy
to see that I is also the greatest two sided ideal of g(f) contained in a and I = ann M
where M = g(f)/a. Then the proof of the theorem fo: case 1 shows that there exists
an element 6 € Hom, (g, k) and a subalgebra h of 1 such that I) h is f-subordinate
to 6, II) 1.gl.dimg(f) = dim, h.
Case 4:9:5 9, 8' S8, 81 # ¢'. Then g’ is not an ideal of g. Therefore by Lemma 2.3
we have g, =¢:Ng’'@k -w, f(w,x)=1 and the idjoint action of w on g, is
nilpotent. Let g =g,@ky with [y,x]=x and f(y,x)=0. Then g(f) is the Ore-
extension of g,(f) with respect to the derivation d of g,(f) induced by y.

Let g"=g,Ng'. Let d' be the derivation of g"(f) induced by w. Then g.(f) =
g"(f)[X, d']. Since the adjoint action of w on g" is nilpotent it follows that d'is a
locally nilpotent derivation of g"(f). Since x is an element of the centre g"(f) and
d'(x)=1 it follows from [9, p. 78] that there exists an isomorphism

¥ :6:1(f)— ¢"(f)/(x) @u Ar(k)

— _ X
U(x)=xl+d'(x)eX,+ d",(xi)®—2!-l+ ce-forlsisn-2

g(xn-) =19 Y,

.
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where x = xy,Xs,...,X,-1=w is a k-basis of g, and A,(k) is the Weyl algebra
k[X,, Yi] of index 1 with coefficients in k, i.e. A,(k) is the k-algzora generated by
X: and Y, with the relation Y, X,- X,Y,=1.

Let d be the k-derivation of g"(f)/(x:)®xAi(k) induced by f'l through the
isomorphism ¢. Then g(f) = g:(f)[X; d] = g"(f)/(x1) @r Ax(k)[X; d]. Now every
element b of g"(f)/(x) @« Ai(k) has the unique expression of the type

b= Z ai; XY} a; €g"(H/(x).

i+j>0

We define a k-derivation d, on g"(f)/(x) @« Ai(k) as follows

dfa®1)=an®l ifda®l)=awel+ 20 a; @ X\Y!
i+j>
d0(1®X1)= do(1® Y1)=O.

Then from [7, Lemma 2.15] it follows that there exists an element g of

8"(f)/(x) @i Ai(k) such that d(b)— do(b)= bg — gb for all b € g"(f)/(x) D« A: (k).
Therefore we have

8(f) = 8" (f)/(x) ®u Ai (k)[X, d] = g" (F)/(x) ®u Ai (k)[X ; do]
=g"(F)(x)[X; do] @i A (k).
Let a € g"(f) then
i®l= ¢(a — d'(a)x + d'z(z‘f)xz_ d"g‘:)"’+ . )
Therefore ) : 2 ,
d(@®1)=u(d(a)-d(d'(a)x - d'(a)x)+4@42!gm+ d”(a)x*+--+)

=d(a)®1+terms of the typc > a;@X\Y}.
i+]>0

This shows that dy(@®1) = cT(?f)@ 1.

It is easy to see that g” is an ideal of g. Let §=g"@®k -y. Then 3(f) is the
Ore-extension of g"(f) with respect to the derivation d induced by y. Since
[y, x]=x, f{y,x) =0, f induces 2-cocycle f on § = §/(x) such that g(f) = §(f)/(x) =
8"(f)/(x)[X; do]. Let n be an abelian Lie algebra of dim2 over k generated by
X1, Y. Let f’ be a 2-cccycle on 1 defined by f'(X,, Y.)=1.Letg=gon f=fof.
Then one can see that § is a solvable Lie algebra over k, f a 2-cocycle on the
‘standard complex’ for § such that §(f) ®. Ai(k) = §(f). Since X is ar element of
the centre of § and f(u, X,) = 0 for all u € §, the proof of the theorem for case 2
shows that l.gl.dim§(f) = 1 + L.gl.dim §(f). Therefore we have *

L.gl.dimg(f) = L.gl.dim g"(f)/(x,) @« A, (k)[ X ; d]
= Lgl.dimg"(f)/(x:)[X; do] @i A: (k)
= 1.gL.dim §(f) @« A (k) = L.gl.dim §(f) = 1 + L.gLdim §(f).



Filtered algebras (II) 11

Since dim.g=7: --? by induction hypothesis there exist an element 6 €
Hom, (§,k) o:.-. . -ubalgebra h of § such that I) k is f-subordinate to 6,
II) Lgl dlmg(f\ = ; D

Leth be a subalgﬂbra of g such that x E h and h/(x) h Let @:g—>k bethe
k-linear map such that 6(x) = 8(w)=0and 6 1 8/(x)= 6 where 8-:g/(x)— k is the
map mduced by 6. Then it is easy to see that'I) h is f-subordinate to 9,
II) lgl dimg(f)=1+1gl dlmg(f) 1+ dimi A = dim, h.

Thus the theorem is proved for dim, g = n.

This compietes the proof of Theorem 2.1.

Now we state the main theorem. -

Theorem 2.6. Let k be an algebraically closed field of char.0. Le: g be a finite
dimensional solvable Lie algebra over k. Let f be a k-valued 2-cocycle on the
‘standard complex’ for g. Let (h;);e; be the family of subalgebres of g for which the
restriction of f to h; X h; is a coboundary. Then 1.gl.dimg(f) = sup,e,dim, h,.

Proof. By Remark 4 it follows that if h is a subalgebra of g such that the
restriction of f to h X h is a coboundary then dim, h = l.gl.dim h (f) < L.gl.dim g(f).
Therefore we always have 1.5l.dim g(f) = sup;<, dimy h;.

Theorem 2.1 shows that there exist a subaigebra h of g and an element
6 € Hom, (g, k) such that h is f-subordinate to 6 and l.gl.dimg(f) = dim. k. But h
is f-subordinate to 6 implies that the restriction of f to h X & is a coboundary.
Therefore l.gl.dimg(f) = dimi b < sup;e; dimy h;. Hence the equality.

This completes the proof of Theorem 2.6.

Remark 6. The following example shows that Th :orem 2.6 is no longer valid if we
drop the assumption that k is algebraically closed.

Example. Let g be the solvable Lie algebra over the field R of real numbers with a
basis (x,y,2z) such that [x,y]=2z, [x,z]= -y, [y,z] =0. Let f be a R-valued
2-cocycle on the ‘standard complex’ for g such that f(y, z) =1, f(x,y) = f(x,z) =C.
Then it is easy to prove that lgl dimg(f) = 2. Let h be a subalgebra of g of dim2
with a basis (e;, €2). Let e, = ayx + B1y + 11z, e: = a.x + B2y + r.z. Then if .f l hxh
is a coboundary we get either a; # 0 or a, # 0. Assume a;, # 0. If [e,, e2] = 0, then
f|h x h is a coboundaty implies that f(el, ¢,) = 0 and this in turn will imply that e,
and e, are hnearly dependant which is contradiction. Therefore, [e;, e2] # 0. But
[ei, e2] = Bsy + rsz. Assume B; #0 and let e5 =y +rz, r = B3'r;. Then e;€ h. But
then [e;,e5] = a1z — a,ry € hand since o 74 0 this w111 imply thates=2z —ry Eh.
Since [e},e5] =0 we get fles, ed)=0.

But f(e, es)=1+r’ Since 1,r ER we get a contradiction showing that there
does not exist a subalgebra h of g of dim2 such that f|h X h is a coboundary.
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But for a finite dimensional solvable Lie algebra over an arbitrary field of char. 0
we have the following

Theorem 2.7. Let K be a field of char.0. Let {2 be its algebraic closure. Let g be a
finite dimensional solvable Lie algebra over K. Let f be a K-valued 2-cocycle on the
‘standard complex’ for g. Then l.gl.dimg(f) = l.gl.dimgqs (fo) where go = 2@« g,
fn =1I, ®K f

Proof. Since (2 is algebraically closed field of char.0, by Theorem 2.6 we get a
subalgebra h’ of go such that the restriction of fo to A’ X h' is a coboundary and
l.gl.dimgq (fa) = dima h'. Since g is finite dimensional over K and f is completely
determined by its values on a K-basis of g X g, it follows that there exists a finite
extension L of K and a subalgebra h of g such that the restriction of f. to h X h is
a coboundary and 2@, h = h' where g. = L@« g and f; = I, @« f. Therefore we
have

l.gl.dimga (fo) = dima b’ = dim. h <1.gl.dimg. (f.).

But g, (f.) = L@« g(f) and L is a finite separable extension of K. Therefore by [4,
p- 74] we have lgldimg, (f.)=1gldimg(f). Therefore lgl.dimga(fa)=<
1.gl.dim g(f). But ga (f2) is g(f)-free as a left and as a right module and contains g(f)
as a direct summand. Therefore by [8, Lemma 1] we have l.gl.dimg(f)<
l.gl.dimga (fa).

Hence the equality.

This completes the proof of Thecrem 2.7.

Remark 6. The fol owing example shows that Theorem 2.6 is not true if g is not
solvable. '

Example. Let K be zn algebraically closed field of char.0. Let g be a Lie algebra
over K of dim5 such that its radical is abelian and of dim2. Let g=Z @ S be the
Levi decomposition of g where Z is the radical of g and S is a semisimple
sub-algebra of g. Let f be a K-valued 2-cocycle on the ‘standard complex’ for g such
that f|gx S =0 and f|Z x Z#0. Since dimZ =2, f| Z x Z#0 implies Z(f) =
Ay(K). Let us assume that Z is a simple S-module. Since every element of S
defines a Lie-algebra derivation of Z there exists a Lie-algebra homomorphism
¢ : S — Derk (Z(f)). Since Z(f)= A\(k) and S is semisimple it follows that
¢(S)CD where D denotes the Lie-algebra of inner derivations of Z(f). From this
it follows that l.gl.dimg(f) = Lgl.dim Z(f) + dimx S = 1+3 =4,

Let h be a subalgebra of g of dim4. Suppose f | A X h is a coboundary it follows
that dimgh N Z =1 and h + Z = g. From this it follows that h = h T Z & S’ where
S’ is a semisimple sub-Lie algebra of g such that S’ = g/Z. Therefore g=Z @S’ is
another Levi decomposition of g. Let ¢ : S— S’ be a Lie-algebra isomorphism
defined as follows ¢ (s) = s'if s = 2z + 5', z € Z, s' € §'. Then since Z is abelian, we
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have for z € Z, s €S, [s, z] = [¢(s), Z]. Therefore Z is a simple S’-module. But
hNZ is an ideal of h and S'Ch. Therefore h N Z is a S’-module. Since
dimkhNZ =1we get a oroper non zero S ’-submodgle of Z which is a contradic-
tion. .- ‘ ' ;
This- shows tha’ if h isa subalgebra of g st.ch th
dimg h <4-1gl dimg(f). hE
We refer to [11] for the deﬁmtxon of Krull dlmen.,lon‘ of a module over (not
necessarily commutative) ring. For a- nng A let 1 Kr d:mAz.«' denote the Krull
dimension of A when A is regarded as‘a left module Q.VCI' A
We state a result which has been proved by Roos J.E. in. [12]

Theorem ¢t Roos. Let A be a filtered noethenan nnTg whose assoc;ated graded ring
is a commutative regular noetherian ring. Then 1. Kr.dim A <l.gl.dim A.

As a consequence of the above theorem and Theorem 2.6 we gct the tollowing
coroliary.

Corollary 2.8. Let g, f, K be as given in Theorem 2.6. Then l.gldimga(f)=
1.Kr.dim g(f).

Proof. By Thecrem of Roos we have L.Kr.dim ¢(f) < 1.gl.dimg(f).

By Theorem 2.6 we get a subalgebra h of g such that the restriction of f to h X h
is a coboundary and l.gl.dim g(f) = dimx h. Since h(f) is isomorphic to the usual
enveloping algebra of the solvable Lie algebra k, by [11, P. 713, (9)] we have
dimg h < LKr.dim h(f).

But since g(f) is h (f)-free as a right and as a left module and contains h(f) as a
direct summand, it is easy to see that LKr.dimh (') <1.Kr.dimg(f). Therefore we
have l.gl.dimg(f) = dimg b <LKr.dimh(f) <LK~ lim g(f)

Hence the equality.

This completes the proof of Corollary 2 8.

References

[1] M. Auslander, On the Dimension of Modules and algebras (III). Global dimension, Nagoya Math.
1. 9 (1955) 67-77.

[2] S.M. Bhatwadekar, On the Global Dimension of some Filtered Algebras, to appear in the J. of the
London Math. Soc.

[3] H. Cartan and S. Eilenberg, Homologxcal Algebra (Princeton University Press, 1956).

[4] S. Eileaberg, A. Rosenberg and D. Zelinsky, On the Dimension of Modules ar:d Algebras, VIII,
Nagoya Math. J. 12 (1957) 71-93.

[5] K.R. Goodearl, Global dimension of differential operator rings, Proc. Amer. Math. Soc. 45 (1974)
315-322.

[6] Irving Kaplansky, Fields and Rings, Chicago Lectures in M. thematics (Chicago University Press,
1969).



14 S.M. Bhatwadekar

[7] 3.C. McConneli, Representations of Sblvable Lie algébras and the Gel and-Kirillov Conjucture, to
appear.
[8] M.P. Murthy and R. Sridharan, On the Global Dimension of some Algebras, Math. Zeitschr. 81
{1963) 108-111.
[9] Y. Nouaze’ and P. Gabriel, Algebras de Lie Nilpotentes, J. of Algebra 6 (1967) 77-79.
[10] D. Quillen, On the Endomorphism Rings of a Simple Module over an Enveloping Algebra, Proc.
Amer. Math. Soc. 21 (1969) 171-172.
[11] R. Rentschler and P. Gabriel, Sur la dimension des anneaux et ensembles Ordonnes, C.R.Acad.
Sci. Paris 265, Ser. A (1967) 712-715.
f12] J.E. Ross, The Weyl algebras are Gorenstein rings, Generalisations and applications, to appear.
{13] Amit Roy, A note on filtered rings, Archiv der Mathematik 26 (1965) 421-427.
{14] Sridharan, Filtered Algebras and representations of Lie algebras, Trans. Amer. Math. Soc. 100
(1961) 530-550.
[15] B.O. Stenstérm, Ring and Modules of Quotients (Springer, Berlin, 1971).



