ON THE GLOBAL DIMENSION OF SOME FILTERED ALGEBRAS (II)

S.M. BHATWADEKAR
Tata Institute of Fundamental Research, Homi Bhabha Rd., Colaba, Bombay, India

Communicated by H. Bass
Received 14 April 1976

Introduction

Let k be a commutative field of char. 0 . Let g be a Lie algebra over k. Let f be a k-valued 2-cocycle on the 'standard complex' for g. We set $g(f)=T(g) / U_{f}(g)$, where $T(g)$ denotes the tensor algebra of the vector space g and $U_{i}(g)$ the two sided ideal of $T(\%)$ generated by all elements of the form $x \otimes y-y \otimes x-[x, y]-f(x, y)$ for $x, y \in g$. It is known [14] that $g(f)$ is a filtered k-algebra whose associated graded is isomorphic to a polynomial algebra over k and that every filtered k-algebra with this property is isomorphic to one such.

In this paper we determine [Section 2, Theorem 2.7] the global dimension of $g(f)$ where g is a finite dimensional solvable Lie algebra over k and deduce some interesting results. This paper is a sequel to the aut,or's previous paper of the same title [2].

In Section 1 we prove some results which ars used in the proof of the main theorem.

1

Let A be a ring and d be a derivation of A. The Ore-extension $A[X ; d]$ is the ring generated by A and an indeterminate X satisfying the relation $X a-a X=$ $d(a)$ for all $a \in A$. It is easy to see that any element b of $A[X ; d]$ is of the form $\Sigma_{0<i<n} X^{\prime} a_{1}$ with $a_{i} \in A$ and $a_{n} \neq 0$ and that such expression is unique. We call n to be the degree of b and a_{n} the leading coefficient of b.

Now we make following remarks regarding $A[X ; d]$.
Remark 1. If A is left (resp. right) noetherian then $A[X ; d]$ is also left (resp. right) noetherian.

Remark 2. $A[X ; d]$ is A free as a left as well as a rig, ht module.

Remark 3. 1.gl.dim $A \leqslant 1$. gl.dim $A[X ; d] \leqslant 1+1$. gl.dim A if $1 . g l . \operatorname{dim} A<\omega$ [see 5, Proposition 3].

Let T be a multiplicatively closed subset of A contained in its centre such that $1 \in T$ and no element of T is a zere divisor in A. Then as a subset of $A[X ; d], T$ has the properties: 1) no element of T is a zero divisor in $A[X ; d], 2) T$ is left (resp. right) permutable, i.e. for $s \in T$ and $b \in A[X ; d]$ there exist $t \in T$ and $c \in$ $A[X ; d]$ such that $s c=b t$ (resp. $c s=t b$).
Therefore from [15, Proposition 15.1] it follows that the left ring of fractions of $A[X ; d]$ with respect to T exists and that it is isomorphic to $A_{T}\left[X ; d^{\prime}\right]$ where A_{T} is the localisation of A with respect to T and d^{\prime} is the derivation of $A_{\boldsymbol{T}}$ induced by d. We get similar results for the right ring of fractions of $\boldsymbol{A}[\boldsymbol{X} ; d]$ with respect to T.
We denote both the left and right ring of fractions of $\boldsymbol{A}[\boldsymbol{X} ; \boldsymbol{d}]$ with respect to T by $A[X ; d]_{T}$. Then by Remark 2 it follows that $A[X ; d]_{T}$ is flat as a left and as a right $\boldsymbol{A}[\boldsymbol{X} ; d]$-module.
Let a be a left ideal of A. Let for $a \in A,(a: a)=\{b / b \in A, b a \in a\}$. Then ($a: a)$ is also a left ideal of \boldsymbol{A} and $(a: a)=\boldsymbol{A}$ if and only if $a \in a$. If a is a maximal left ideal then so also ($a: a$) for $a \notin a$. Moreover the map $\phi: A /(a: a) \rightarrow A / a$ given by $\phi(\bar{b})=\overline{b a}$ is an isomorphism of A-modules.
For the sake of simplicity of notation throughout this section we write B (resp. B_{T}) for $A[X ; d]$ (resp. $A[X ; d]_{r}$.
With the above notation we prove the following
Proposition 1.1. Let A be a ring which contains Q. Let d be a derivation of A. Let a be an element of the centre of A such that $A a+\operatorname{Ad}(a)=A$. Let a^{\prime} be a left ideal of B which contains a. The $\mathfrak{r} a^{\prime}=B a$ where $a=a^{\prime} \cap A$.

Proof. Since $\mathfrak{a} \subset \mathfrak{a}^{\prime}$ wt have $B \mathfrak{a} \subset \mathfrak{a}^{\prime}$. If $B a \neq \mathfrak{a}^{\prime}$ then there exists an element $b \approx \mathfrak{a}^{\prime}$ such that $b \notin B a$ and is of smallest degree with such property. Let $b=\sum_{0<i \leqslant n} X^{\prime} a_{\text {}}$, $a_{n} \neq 0$. Since every element of $B a$ is of the form $\Sigma_{0 \sigma, j<m} X^{\prime} c_{,}, c_{1} \in \mathfrak{a}$ for $0 \leqslant j \leqslant m$, by choice of b we get $a_{n} \notin \mathrm{i}$. Since $a \in \mathfrak{a}^{\prime}$ we have $b^{\prime}=\left(X^{n} a_{n}\right) a-a \Sigma_{0<1<n} X^{\prime} a_{i} \in a^{\prime}$. But $b^{\prime}=X^{n-1}\left(n d(a) a_{n}-a a_{n-1}\right)+$ terms of smaller degree. Since degree $b^{\prime} \leqslant$ $n-1<$ degree $b, b^{\prime} \in B a$. Therefore $n d(a) a_{n}-a a_{n-1} \in a$. But $a \in a=a^{\prime} \cap A$. Therefore $n d(a) a_{n} \in \mathfrak{a}$, i.e. $d(a) a_{n} \in \mathfrak{a}$. Since $A a+A d a=A$ there exist c and $c^{\prime} \in A$ such that $c a+c^{\prime} d(a)=1$. This shows that $a_{n}=c\left(a a_{n}\right)+c^{\prime}\left(d(a) a_{n}\right) \in \mathfrak{a}$, which is a contradiction. Therefore $B a=a^{\prime}$. Hence the result.

Proposition 1.2. Let K be an algebraically closed field of char.0. Let A be a K-algebra. Let d be a K-derivation of A. Let a be an element of the centre of A such that $d(a)=1$. Let \mathfrak{b} be a proper left ideal of B. If for some $b^{\prime} \notin \mathfrak{b}\left(b: b^{\prime}\right) \cap K[a] \neq 0$ then there exists $b \notin \mathbf{b}$. such that $\boldsymbol{a}-\lambda \in(\mathbf{b}: b)$ for some $\lambda \in K$.

Proof. $d(a)=1$ implies that a is transcendental over K. Therefore $K[a]$ is a polynomial algebra over K in one variable. Let $0 \neq f \in\left(b: b^{\prime}\right) \cap K[a]$. We prove
the result by induction on $\operatorname{deg} f$ where $\operatorname{deg} f$ denotes the degree of f as an element of $K[a]$.

Since b is a proper left ideal and $f \neq 0, \operatorname{deg} f \geqslant 1$. Let $\operatorname{deg} f=1$. Then $f=\alpha a+\beta$ with $\alpha, \beta \in K$ and $\alpha \neq 0$. Then by taking $\lambda=-\alpha^{-1} \beta$ and $b^{\prime}=b$ we get the required result.

Assume the result for $\operatorname{deg} f \leqslant m-1$. Let $\operatorname{deg} f=m>1$. Then since K is algebraically closed there exists $\alpha \in K$ such that $f=(a-\alpha) f^{\prime}, f^{\prime} \in K[a]$ and $\operatorname{deg} f^{\prime}=m-1$. If $f^{\prime} \notin\left(b: b^{\prime}\right)$ then by taking $b=f^{\prime} b^{\prime}$ we get $b \notin b$ and $a-\alpha \in(b: b)$. If $f^{\prime} \in\left(b: b^{\prime}\right)$ then since $\operatorname{deg} f^{\prime}=m-1$ by our induction hypothesis there exist $b \notin b$ and $\lambda \in K$ such that $a-\lambda \in(b ; b)$.

This completes the proof of Proposition 1.2.

Proposition 1.3. Let A be a ring which is ieft and right noetherian. Let $\operatorname{l.gl} \operatorname{dim} A<$ ∞. Let d be a derivation of A. Let a be a left ideal of B such that $1 . g 1 \cdot \operatorname{dim} B=$ $h d_{B} B / a$. Let T be a multiplicatively closed subset of A contained in its centre such that $1 \in T$ ana no element of T is a zero divisor in A. If for every $b \notin a(a: b) \cap T=\emptyset$ then 1.gl.dim $B=1 . g 1 . \operatorname{dim} B_{T}$.

Proof. Since \boldsymbol{A} is left and right noetherian and $\operatorname{l.gl} \operatorname{dim} A<\infty$, by our earlier remarks, it follows that B as well as B_{T} are left and right noetherian and have finite left global dimension. Therefore by [1, Theorem ${ }^{1}$] there exists a left ideal \mathfrak{b} of B_{T} such that l.gl.dim $B_{T}=h d_{B_{T}} B_{T} / \mathrm{b}$. But since B_{T} is a left ring of fractions of B there exists a left ideal \dot{b}^{\prime} of B such that $B_{T} / \mathfrak{b} \simeq B_{T} \otimes_{B} B / b^{\prime}$ as B_{T}-modules.

For a ring R and \bar{a} left module N let w. $\operatorname{dim}_{R} N$ denote the weak dimension of N. If R is left noetherian and N is initely generated then $\operatorname{hd}_{R} N=w . \operatorname{dim}_{R} N$ [3, Chapter VI]. Therefore

$$
\text { 1.gl.dim } B_{T}=\operatorname{hd}_{B_{T}} B_{T} / \mathfrak{b}=w . \operatorname{dim}_{B_{T}} B_{T} / \mathfrak{b}:=N \cdot \operatorname{dim}_{B_{T}} B_{T} \bigotimes_{B} B / b^{\prime}
$$

Since B_{T} is B-flat as a right B-module we get

$$
\mathrm{w} \cdot \operatorname{dim}_{B_{T}} B_{\mathrm{B}} \otimes_{\mathrm{B}} B / \mathrm{b}^{\prime} \leqslant \mathrm{w} \cdot \operatorname{dim}_{B} B / \mathrm{b}^{\prime}=\mathrm{hd}_{\mathrm{B}} / 2 / \mathrm{b}^{\prime} \leqslant 1 . \operatorname{gl} \cdot \operatorname{dim} B .
$$

Therefore l.gl.dim $B_{T} \leqslant 1 . g l . \operatorname{dim} B$.
Now since $(a: b) \cap T=\emptyset$ for all $b \notin a$, the mapping $\psi: B / a \rightarrow B_{T} \bigotimes_{B} B / a$ given by $\psi(\bar{x})=1 \otimes \bar{x}$ is a monomorphism. Therefore, since $\operatorname{l.gl} \cdot \operatorname{dim} R=h_{B} B / a=$ w. $\operatorname{dim}_{B} B / a$ we get l.gl.dim $B=w . \operatorname{dim}_{B} B_{T} \bigotimes_{B} B / a$. But B_{T} is B-flat as a left module. Therefore

$$
\text { w. } \operatorname{dim}_{B} B_{T} \bigotimes_{B} B / a \leqslant w . \operatorname{dim}_{B_{T}} B_{T} \bigotimes_{B} B / a=\operatorname{hd}_{B_{T}} B_{T} \bigotimes_{B} B / a \leqslant 1 . g 1 . \operatorname{dim} B_{T}
$$

This shows that l.gl. $\operatorname{dim} B \leqslant 1 . \mathrm{gl}$ dim B_{r}. Hence the equality.
This completes the proof of Proposition 1.3.
Let g be a Lie algebra over a field k of char. 0 . Let f be a k-valued 2-cocycle on the 'standard complex' for $g\left[14\right.$, p. 532]. Let θ be an element of $\operatorname{Fom}_{k}(g, k)$.

Definition. A subalgebra h of g is said to be f-subordinate to $\boldsymbol{\theta}$ if for every $h_{1}, h_{2} \in h$ we have $\theta\left[h_{1}, h_{2}\right]+f\left(h_{1}, h_{2}\right)=0$.

Remark 4. From the definition it follows that if h is a subalgetra of g then the restriction of f to $h \times h$ is a coboundary if and only if there exists $\theta \in \operatorname{Hom}_{\kappa} \mathrm{g}, k$) such that h is f-subordinate to θ. Therefore if a subalgebra h is f-subordinate to θ then $h(f)$ is isomorphic to $h(0)$ [14, Theorem 3.1]. But $h(0)$ is nothing but the usual enveloping algebıa of the Lie algebra h. Therefore l.gl.dim $h(0)=\operatorname{dim}_{k} h[3, p .283$, Theorem 8.2]. Moreover the map $\boldsymbol{\theta}: \boldsymbol{h} \rightarrow \boldsymbol{k}$ defines an $\boldsymbol{h}(f)$-module structure denoted by $k(\theta, h)$ on k such that $h_{{ }_{(f)}} k(\theta, h)=\operatorname{dim}_{k} h=1 . g 1 . \operatorname{dim} h(f)$. Since $g(f)$ is $h(f)$-free as a right as well as a left module and contains $h(f)$ as a direct summand, from [8, Lemma 1] it follows that

$$
\text { 1.gl.dimg }(f) \geqslant \operatorname{hd}_{\mathrm{g}(f)} g(f){\underset{h(f)}{ }}_{\otimes} k(\theta, h)=\operatorname{hd}_{h(f)} k(\theta, h)=\operatorname{dim}_{k} h .
$$

On the other hand from [13, Theorem 1] wa get $\operatorname{dim}_{k} g \geqslant 1 . g 1 . \operatorname{dim} g(f)$. Therefore we always have inequality $\operatorname{dim}_{k} g \geqslant 1 . g 1 . \operatorname{dim} g(f) \geqslant \operatorname{dim}_{k} h$ for a subalgebra h of g for which the restriction of f to $h \times h$ is a coboundary.

2

We begin this section with the following theorem.
Theorem 2.1. Let k be an algebraically closed field of char. 0 . Let g be a finite dimensional solvable Lie algebra over k. Let f be a k-valued 2 -cocycle on the 'standard complex' for \mathfrak{g}. Then there exists θ in $\operatorname{Hom}_{k}(\underline{g}, k)$ and a subalgebra h of g such that
I) h is f-subordinate to θ
II) $1 . g 1 . \operatorname{dim} g(f)=\operatorname{dim}_{k} h$.

For the proof of this theorem we require some lemmas. In the first two lemmas (i.e. Lemma 2.2 and Lemma 2.3) k, g, and f are as in the statement of Theorem 2.1.
Let $x \in g$ be such that $k \cdot x$ is an ideal of g. Let $g_{1}=\{z / z \in g,[x, z]=0\}$, $\mathrm{g}^{\prime}=\{z / z \in \mathrm{~g}, f(x, z)=0\}$.

Lemma 2.2. If g^{\prime} is a subspace of g of codimension 1 then g^{\prime} is an ideal of g if $\mathrm{g}^{\prime} \subset \mathrm{g}_{1}$.

Proof. It is easy to see that g_{1} is an ideal of g of $\operatorname{codim} \leqslant 1$. If codim $g_{1}=1$ then since codim $\mathrm{g}^{\prime}=1, \mathrm{~g}^{\prime} \subset \mathrm{g}_{1}$ implies that $\mathrm{g}^{\prime}=\mathrm{g}_{1}$. Therefore g^{\prime} is an ideal of g .

If $\operatorname{codim} \mathrm{g}_{1}=0$ then $\mathrm{g}_{1}=\mathrm{g}$. This means that \boldsymbol{x} is an element of the centre of g . But thea for any $z, w \in g$ we have

$$
f(x,[z, w])=f(x,[z ; w])+f(w,[x, z])+f(z,[w, x])=0 .
$$

Therefore $[g, g] \subset g^{\prime}$. Hence g^{\prime} is an ideal of g.
This completes the proof of Lemma 2.2.
Lemma 2.3. If g^{\prime} is not an ideal of g then $\mathrm{g}^{\prime} \cap \mathrm{g}_{1}$ is an ibal of \mathfrak{g}_{1} of codim 1 and $g_{1}=g^{\prime} \cap g_{1} \oplus k \cdot w$ where $w \in g_{1}$ be such that $f(w, x)=1$ and the adjoint aciion of w or g_{1} is nilpotent.

Proof. Since g^{\prime} is not an ideal of g , by Lemma 2.2 we have $\mathrm{g}^{\prime} \not \subset \mathrm{g}_{1}$. Therefore $\mathrm{g}_{1} \varsubsetneqq \mathrm{~g}$ and $g^{\prime} \cap g_{1}$ is a subspace of g_{1} of codim 1. Applying Lemma 2.2 again to x, g_{1} and f we get that $\mathfrak{g}_{1} \cap \mathfrak{g}^{\prime}$ is an ideal of g_{1} of codim1.

Since $g_{1} \subsetneq g$ and $k \cdot x$ is an ideal of $g_{\text {s }}$ there exists $y \in g$ such that $g=g_{1} \oplus k \cdot y$ and $[y, x]=x$. Since $g^{\prime} \neq g_{1}$ there exists $w^{\prime} \in g_{1}$ such that $f\left(w^{\prime}, x\right)=1$. Therefore

$$
1=f\left(w^{\prime}, x\right)=f\left(w^{\prime},[y, x]\right)=-f\left(x,\left[w^{\prime}, y\right]\right)-f\left(y,\left[x, w^{\prime}\right]\right)=f\left(\left[w^{\prime}, y\right], x\right) .
$$

Let $w=\left[w^{\prime}, y\right]$. Since g_{1} is an ideal of g of codim $1[g, g] \subset g_{1}$. Since g is solvable and $w \in[g, g]$ the adjoint action of w on g and therefore on g_{1} is nilpotent.

Hence the result.
Remark 5. If g^{\prime} is an ideal of g of codim 1 then $g^{\prime} \subset g_{1}$ and $g=g^{\prime} \oplus k \cdot y$. Therefore x is an element of the centre of $g^{\prime}(f)$ and $g(f)$ is the Ore-extension of $g^{\prime}(f)$ with respect to the derivation d induced by y. If $g_{2}=g$ then we can choose y such that $f(y, x)=1$. Then $d(x)=1$. If $g_{1} \varsubsetneqq g$ then we can choose y such that $[y, x]=x$ and then $d(x)=x+\lambda$ where $\lambda=f(y, x)$. Therefore $d(x+\lambda)=x+\lambda$.

Lemma 2.4. Let D be a Dedekind domain of cha .0 . Let L be its quotient field. Let g be a finite dimensional Lie algebra over L with a basis $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Let f be a L-valued 2-cocycle on the 'standard complex' fo' J . Let $\theta \in \operatorname{Hom}_{L}(\mathrm{~g}, L)$ and h be a subalgebra of g such that h is f-subordinate to θ. I'sen there exists a discrete valuation ring R with $D \subset R \subset L$ such that
(1) $[z, w] \in g_{R}$ for all $z, w \in g_{R}$
2) $f_{R}(z, w) \in R$ for all $z, w \in g_{R}$
3) $\theta\left(g_{R}\right) \subset R$
where $g_{R}=\Sigma_{1<i \leqslant n} R x_{i}, f_{R}=\left.f\right|_{g_{R}} \times g_{R}$.
Proof. Since L is the quatient field of D and g is finite dimensional over L there exists $0 \neq s \in D$ such that $s \cdot\left[x_{i}, x_{i}\right] \in \sum_{1<i<n} D x_{i}, s \cdot f\left(x_{i}, x_{j}\right) \in D$ and $s \cdot \theta\left(x_{i}\right) \in D$ for all $i, j, 1 \leqslant i, j \leqslant n$. Let m be a maximal ideal of D such that $s \notin m$. Then by taking $R=D_{m}$ we get the required result.

Lemma 2.5. Let $L, g, f, g_{R}, h, \theta$ be as in the statement of Lemma 2.4. Let K be the residue field of R. Let $\overline{\mathfrak{g}}=K \otimes_{R} g_{R}, \bar{f}=I_{K} \otimes_{R} f_{R}$. Then there exist $\bar{\theta} \in \operatorname{Hom}_{K}(\bar{g}, K)$ and a subalgebra \bar{h} of $\overline{\mathfrak{g}}$ such that \bar{h} is \bar{f}-subordinate to $\bar{\theta}$ and $\operatorname{dim}_{\mathrm{K}} \bar{h}=\operatorname{dim}_{\mathcal{L}} h$.

Proof. Let $h^{\prime}=g_{R} \cap h$. Since h^{\prime} is a R-submodule of g_{R} and R is a discrete valuation ring h^{\prime} is a free R-module of rank r. Since $L \bigotimes_{R} h^{\prime} \simeq h$ as L-vector spaces $r=\operatorname{dim}_{\mathrm{L}} h$.

Let \mathfrak{a} be the maximal ideal of R. Then $h^{\prime}=g_{R} \cap h$ implies $a h^{\prime}=a g_{R} \cap h^{\prime}$. This shows that the map $i ; K \otimes_{R} h^{\prime} \rightarrow K \otimes_{R} g_{R}(=\bar{g})$ given by $i(\lambda \otimes x)=\lambda \otimes x$ is a monomorphism. We identify $K \otimes_{R} h^{\prime}$ with its image in $K \otimes_{R} g_{A_{i}}$ under the mapping i. Let $\bar{\theta}: \bar{g} \rightarrow K$ be the map given by $\bar{\theta}(\lambda \otimes x)=\lambda \eta \theta(x)$ wher $\because \eta: R \rightarrow K$ is the canonical map. It is easy to see that $\bar{\theta}$ is well defined and K-linear. Let $\bar{h}=K \otimes_{R} h^{\prime}$. We claim that \bar{h} is f-subordinate to $\overline{\boldsymbol{\theta}}$.

Let $u, v \in \bar{h}$. Then there exist $z, w \in h^{\prime}$ such that $u=1 \otimes z, v=1 \otimes w$. Therefore

$$
\begin{aligned}
\bar{f}(u, v)+\bar{\theta}[u, v] & =\bar{f}(1 \otimes z, 1 \otimes w)+\bar{\theta}[1 \otimes z, 1 \otimes w \overline{]}=1 \otimes f(z, w)+\eta \theta[z, w] \\
& =\eta f(z, w)+\eta \theta[z, w]=\eta(f(z, w)+\theta[z, w])=0 .
\end{aligned}
$$

Thus \bar{h} is \bar{f}-subordinate to $\bar{\theta}$. Since h^{\prime} is R-free of rank r we have $\operatorname{dim}_{K} \bar{h}\left(=K \dot{\otimes}_{R} h^{\prime}\right)=r=\operatorname{dim}_{L} h$. Hence the result.

Thus the proof of Lemma 2.5 is complete.
Proof of Theorem 2.1. We will prove the result by induction on $\operatorname{dim}_{k} g$. Let $\operatorname{dim}_{k} g=1$. Then $g(f)$ is a polynomial algebra $k[x]$ in one variable over k. Let $\theta: g \rightarrow k$ be the map given by $\theta(x)=0$ where $g=k \cdot x$. Then g is f-subordinate to θ and l.gl. $\operatorname{dim} g(f)=\operatorname{gl} \cdot \operatorname{dim} k[x]=1=\operatorname{dim}_{k} g$.

Assume the result for $\operatorname{dim}_{k} g \leqslant n-1$. Let $\operatorname{dimg}=n$.
Since $g(f)$ is left and right noetherian and of finite left global dimension, by [2, Proposition 1.1] thert exists a maximal left ideal a of $g(f)$ such that l.gl.dim $g(f)=$ $\mathrm{hd}_{\mathrm{g}()} \mathrm{g}(f) /(\mathfrak{a}: a)$ for al $a \notin \mathfrak{a}$. Since \mathfrak{g} is solvable and k-algebraically closed there exists $x \in g$ such that $k \cdot x$ is a non zero ideal of g. Let $g_{1}=\{w / w \in g,[x, w]=0\}$, $g^{\prime}=\{w / w \in g, f(x, w)=0\}$.

We divide the proof in following four cases:
Case 1: $g=g^{\prime}=g_{1}$. Then x will be an element of the centre of $g(f)$.
Let $M=g(f) / a$ and let $I=$ ann M. Then since M is a simple left $g(f)$-module and x an element of the centre of $g(f)$ by $[10, p .171]$ we get $x-\lambda \in I$ for some $\lambda \in k$.

Let $\tilde{g}=g /(x)$. Let $\alpha: g \rightarrow k$, be the k-linear map given by

$$
\begin{aligned}
& \alpha\left(x_{1}\right)=\lambda \\
& \alpha\left(x_{i}\right)=0, \quad 2 \leqslant i \cdot n
\end{aligned}
$$

where $x=x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ is a k-basis of \mathfrak{g}. Let $\tilde{f}: \tilde{g} \times \tilde{g} \rightarrow k$ be the map defined by $\tilde{f}(\bar{z}, \bar{w})=f(z, w)+\alpha[z, w]$.
Then \tilde{g} is a solvable Lie algebra, \tilde{f} a k-valued 2-cocycle on the 'standard complex' for \tilde{g} such that $\tilde{g}(\tilde{f})=g(f) /\left(x_{1}-\lambda\right)$.

Since $x_{1}-\lambda \in I=\operatorname{ann} M$, we can regard M as a $\tilde{g}(\tilde{f})$-module. Since $x_{1}-\lambda$ is an element of the centre of $g(f)$ which is neither a unit nor a divisor of zero and
$\operatorname{hd}_{\mathfrak{g}()} M \leqslant$ l.gl.dim $\tilde{g}(f) \leqslant \operatorname{Dim}_{\kappa} \tilde{\mathfrak{g}}<\infty$, by Kaplansky's Theorem [6, p. 172, Theorem 3]; $\operatorname{hd}_{\tilde{\mathrm{g}}()} M=\operatorname{hd}_{\mathrm{g}(\mathcal{f}} M-1=1 . \mathrm{gl} . \operatorname{dim} \mathrm{g}(f)-1$. But since 1.gl.dim $\tilde{\mathrm{g}}(\tilde{f})<\infty$ we always have 1.gl.dim $\tilde{g}(\tilde{f}) \leqslant 1 . g 1 \operatorname{dim} g(f)-1[6, p .173$, Theorem 4]. Therefore l.gl.dim $\tilde{g}(f)=$ l.gl.dim $g(f)-1$. (One can easily prove Kaplansky's Theorems [$6, \mathrm{p}$. 172; Theorem 3 and p. 173, Theorem 4] for an element $x-\lambda \in g(f)$ which is neither a unit nor a divisor of zero and which is such that $g(f)(x-\lambda)=(x-\lambda) g(f)$. Therefore our conclusions remain valid for such element $x-\lambda$ even though it may not be an element of the centre of $g(f)$. This fact we have used in the proof of the theorem for case 3).
Since $\operatorname{dim}_{k} \tilde{g}=n-1$, by our induction hypothesis there exists a subalgebra \bar{h} of \tilde{g} and an element $\tilde{\theta}$ of $\operatorname{Hom}_{k}(\tilde{\mathfrak{g}}, k)$ such that (I) \vec{h} is \hat{f}-subordinate to $\tilde{\theta}$, (II) l.gl. $\operatorname{dim} \tilde{g}(\tilde{f})=\operatorname{dim}_{k} \bar{h}$.

Let h be a subalgebra of g such that $x_{1} \in h$ and $h /\left(x_{1}\right)=\tilde{h}$. Let $\theta: g \rightarrow k$ be the k-linear map such that $\theta\left(x_{1}\right)=\lambda$ and $\theta\left(x_{i}\right)=\tilde{\theta}\left(\bar{x}_{i}\right)$ for $2 \leqslant i \leqslant n$ where \bar{x}_{i} denotes the image of x_{1} in $\tilde{g}\left(=g /\left(x_{1}\right)\right)$ under the canonical mapping $\eta: g \rightarrow \overline{\mathrm{~g}}$.
Then \bar{h} is \tilde{f}-subordinate $\bar{\theta}$ implies that \boldsymbol{h} is f-subordinate to θ and $\operatorname{dim}_{k} h=$ $\operatorname{dim} \check{h}+1=1 . \mathrm{gl} \cdot \operatorname{dim} \tilde{g}(\tilde{f})+1=1$.gl. $\operatorname{dimg} g(f)$.
Case 2: $g_{1}=\mathfrak{g}, \mathrm{g}^{\prime} \subsetneq \mathrm{g}$. Then from Lemma 2.2 it follows that g^{\prime} is an ideal of g of codim1. Let $g=g^{\prime} \oplus k y$ with $y \in g$ be such that $f(y, x)=1$. Then $g(f)$ is the Ore-extension of $g^{\prime}(f)$ with respect to the derivation d induced by y and $x-\lambda$ is an element of the centre of $g^{\prime}(f)$ with $d(x-\lambda)=1$ for every $\lambda \in k$. We claim that 1.gl.dim $g^{\prime}(f)=1 . g 1 . \operatorname{dim} g(f)$.

If for some $b^{\prime} \notin \mathfrak{a}\left(\mathfrak{a}: b^{\prime}\right) \cap k[x] \neq 0$ then by Proposition 1.2 we get an element $b \notin a$ and an element $\lambda \in k$ such that $x-\lambda \in(a: b)$. But then by Proposition 1.1 we have $a^{\prime \prime}=g(f) a^{\prime}$ where $a^{\prime}=a^{\prime \prime} \cap g^{\prime}(f)$ and $a^{\prime \prime}=(a: b)$. Therefore $g(f) / a^{\prime \prime} \simeq$ $g(f) \otimes_{g^{\prime}(f)} g^{\prime}(f) / a^{\prime}$. Since $g(f)$ is $q^{\prime}(f)$-free as a left as well as a right module and contains $\mathfrak{g}^{\prime}(f)$ as a direct summand, from [8, Len ma 1] it follows that

$$
\text { 1.gl.dim } g^{\prime}(f) \leqslant 1 . g 1 . \operatorname{dim} g(f)=h d_{g(f)} g(f) /(r: b)
$$

$$
=h d_{g(f)} g(f) \otimes g_{g^{\prime}(f)}(f) / a^{\prime} \leqslant \operatorname{hd}_{g^{\prime}(f)} g^{\prime}(f) / a^{\prime} \leqslant 1 . g 1 . \operatorname{dim} g^{\prime}(f) .
$$

Therefore we have l.g1.dimg $(f)=1 . g 1 . \operatorname{dim} g^{\prime}(f)$.
Suppose for all $b \notin \mathfrak{a}(a: b) \cap k[x]=0$. Let $T=k[x]-\{0\}$. Then T is a multiplicatively closed set contained in the centre of $g^{\prime}(f)$ such that no element of T is a zero divisor of $g^{\prime}(f)$ (in fact $g^{\prime}(f)$ itself is without proper divisors of \mathbf{z} aro). Therefore from Proposition 1.3 it follows that l.gl.dimg $(f)=$ l.gl.dimg $(f)_{T}=$ 1.g1.dim $g^{\prime}(f)_{\tau}\left[X ; d^{\prime}\right] \leqslant 1+1 . g 1.0 \mathrm{~m}^{\prime}(f)_{r}$ where d^{\prime} is the derivation of $g^{\prime}(f)_{\tau}$ induced by the derivation d of $g^{\prime} f$).
Let $x=x_{1}, x_{2}, \ldots, x_{n-1}$ be a k-basis of g^{\prime}. Let K be the quotient fiel. of $k[x]$ (note that since $d(x)=1, k[x]$ is a polynomial algebra over $k)$. Let $g^{\prime \prime}=K^{\prime} \otimes_{k} g^{\prime} /(x)$. Let $\beta: g^{\prime} \rightarrow k\left[x_{1}\right](=k[x])$ be the k-linear map given by

$$
\begin{aligned}
& \beta\left(x_{1}\right)=x_{1} \\
& \beta\left(x_{i}\right)=0, \quad 2 \leqslant i \leqslant n-1 .
\end{aligned}
$$

Let $f^{\prime \prime}: g^{\prime \prime} \times g^{\prime \prime} \rightarrow K$ be the map defined by

$$
f^{\prime \prime}(1 \otimes \bar{z}, 1 \otimes \bar{w})=f(z, w)+\beta[z, w] .
$$

Then $g^{\prime \prime}$ is a solvable Lie algebra over $K, f^{\prime \prime}$ a K-valued 2-cocycle on the 'standard complex' for $g^{\prime \prime}$ such that $g^{\prime \prime}\left(f^{\prime \prime}\right) \simeq g^{\prime}(f)_{T}$.

Let Ω be the algebraic closure of K. Let $g_{\boldsymbol{\Omega}}^{\prime \prime}=\boldsymbol{\Omega} \otimes_{K} g^{\prime \prime}, f_{\Omega}^{\prime \prime}=I_{\boldsymbol{\Omega}} \otimes_{\mathrm{K}} f^{\prime \prime}$. Then $g_{\Omega}^{\prime \prime}$ is a solvable Lie algebra over Ω of $\operatorname{dim} n-2, f_{\Omega}^{\prime \prime}$ a Ω-valued 2-cocycle on the 'standard complex' for $g_{\Omega}^{\prime \prime}$ such that $g_{\Omega}^{\prime \prime}\left(f_{\Omega}^{\prime \prime}\right)=\boldsymbol{\Omega} \boldsymbol{\otimes}_{K} g^{\prime \prime}\left(f^{\prime \prime}\right)$. Since $\operatorname{dim}_{\boldsymbol{\Omega}} g_{\boldsymbol{\Omega}}^{\prime \prime}=n-2$, by our induction hypothesis there exist a subalgebra h^{\prime} of $g_{\boldsymbol{\Omega}}^{\prime \prime}$ and an element $\theta^{\prime \prime} \in$ $\operatorname{Hom}_{\Omega}\left(g_{\Omega}^{\prime \prime}, \Omega\right)$ such that I$) h^{\prime}$ is $f_{\Omega^{\prime}}^{\prime \prime}$-subordinate to $\theta^{\prime \prime}$, II) $1 . g 1 . \operatorname{dim} g_{\Omega}^{\prime \prime}\left(f_{\Omega}^{\prime \prime}\right)=\operatorname{dim}_{\Omega} h^{\prime}$. Since $g^{\prime \prime}$ is finite dimensional over K and $f^{\prime \prime}$ is completely determined by its values on a K-basis of $\mathfrak{g}^{\prime \prime} \times \mathfrak{g}^{\prime \prime}$, there exist a finite extension L of K and a subalgebra h of $g_{L}^{\prime \prime}$ such that $\theta\left(g_{L}^{\prime \prime}\right) \subset L$ and $\Omega \otimes_{L} h=h^{\prime}$ where $g_{L}^{\prime \prime}=L \bigotimes_{K} g^{\prime \prime}$ and $\theta=\theta^{\prime \prime} \mid g_{L}^{\prime \prime}$. This implies that h is $f_{L}^{\prime \prime}$-subordinate to θ where $f_{L}^{\prime \prime}=I_{L} \otimes_{K} f^{\prime \prime}$ and l.gl.dim $g_{\Omega}^{\prime \prime}\left(f_{\Omega}^{\prime \prime}\right)=$ $\operatorname{dim}_{\Omega} h^{\prime}=\operatorname{dim}_{L} h=1 . g 1 \cdot \operatorname{dim} h\left(f_{L}^{\prime \prime}\right) \leqslant 1 . g 1 \cdot \operatorname{dim}_{g_{L}^{\prime \prime}}^{\prime \prime}\left(f_{L}^{\prime \prime}\right) . \operatorname{But} g_{L}^{\prime \prime}\left(f_{L}^{\prime \prime}\right) \simeq L \otimes_{K} g^{\prime \prime}\left(f^{\prime \prime}\right)$ and L is a finite separable extension. Therefore by [4, p. 74] we have l.gl.dim $g_{L}^{\prime \prime}\left(f_{z}^{\prime \prime}\right)=$ l.gl.dim $g^{\prime \prime}\left(f^{\prime \prime}\right)$. Since $g_{\Omega}^{\prime \prime}\left(f_{\Omega}^{\prime \prime}\right)$ is $g^{\prime \prime}\left(f^{\prime \prime}\right)$-free as a left and a right module and contains $g^{\prime \prime}\left(f^{\prime \prime}\right)$ as a direct summand, by $\left[8\right.$, Lemma 1] we have l.gl.dim $g^{\prime \prime}\left(f^{\prime \prime}\right) \leqslant$ l.gl.dim $g_{\Omega}^{\prime \prime}\left(f_{\Omega}^{\prime \prime}\right)=\operatorname{dim} h^{\prime}=\operatorname{dim}_{L} h \leqslant 1 . g 1 . \operatorname{dim} g_{L}^{\prime \prime}\left(f_{L}^{\prime \prime}\right)=1 . g \operatorname{dim} g^{\prime \prime}\left(f^{\prime \prime}\right)$. Therefore l.gl. $\operatorname{dim} g^{\prime}(f)_{T}=1 . g l . \operatorname{dim} g^{\prime \prime}\left(f^{\prime \prime}\right)=1 . g 1 . \operatorname{dim} g_{L}\left(f_{L}^{\prime \prime}\right)=1 . g 1 . \operatorname{dim} g_{\Omega}^{\prime \prime}\left(f_{\Omega}^{\prime \prime}\right)$.

Let D be the integral closure of $k[x]$ in L. Then since L is separable over K, D is a Dedekind domain. Then by Lemma 2.4 there exists a discrete valuation ring R with $D \subset R \subset \mathcal{L}$ such that 1) $[u, v] \in g_{R}^{\prime \prime}$ for $\left.\left.u, v \in g_{R}^{\prime \prime}, 2\right) f_{R}^{\prime \prime}(u, v) \in R, 3\right) \theta\left(g_{R}^{\prime \prime}\right) \subset R$ where $g_{R}^{\prime \prime}=\sum_{2 \leqslant i \leqslant n-1} R\left(1 \otimes \bar{x}_{i}\right), \bar{x}_{i}$ is the image of x_{i} in $g^{\prime} /(x)$ under the canonical $\operatorname{map} \eta: g^{\prime} \rightarrow g^{\prime} /(x)$ for $2 \leqslant i \leqslant n-1, f_{R}^{\prime \prime}=f_{L}^{\prime \prime} \mid g_{R}^{\prime \prime} \times g_{R}^{\prime \prime}$. From the construction of R and $g_{R}^{\prime \prime}$ it follows that the residue field of R is k and $g_{R}^{\prime \prime} \simeq R \otimes_{k} g^{\prime} /(\bar{x})$.

Let $\bar{g}=k \otimes_{R} g_{R}^{\prime \prime}, \bar{f}=I_{k} \otimes_{R} f_{R}^{\prime \prime}$. Then it is easy to see that $\bar{g} \simeq k \otimes_{R} g_{R}^{\prime \prime} \simeq$ $k \otimes_{R} R \otimes_{k} g^{\prime} /(x) \simeq g^{\prime} /(x)$ as Lie algebras over k and when we identify \bar{g} with $g^{\prime} /(x)$ then $\bar{f}(\bar{z}, \bar{w})=f(z, w)+\eta^{\prime} \beta[z, w]$ where $\beta=\hat{g}^{\prime} \rightarrow k[x]$ is the map as defined above and $\eta^{\prime}: R \rightarrow k$ is the canonical map. From this it follows that $\bar{g}(\bar{f}) \simeq g^{\prime}(f) /(x-\lambda)$ where $\lambda=\eta^{\prime}(x)$.

Lemma 2.5 shows that there exists a subalgebra \bar{h} of \bar{g} and an element $\bar{\theta} \in \operatorname{Hom}_{k}(\overline{\mathfrak{g}}, k)$ such that \bar{h} is \bar{f}-subordinate to $\bar{\theta}$ and $\operatorname{dim}_{k} \bar{h}=\operatorname{dim}_{L} h$. Therefore we have

$$
\begin{aligned}
\text { 1.gl.dim } g^{\prime}(f)_{T} & =1 . g l \cdot \operatorname{dim} g^{\prime \prime}\left(f^{\prime \prime}\right)=1 . g 1 \cdot \operatorname{dim} g_{L}^{\prime \prime}\left(f_{L}^{\prime \prime}\right)=\operatorname{dim}_{L} h \\
& =\operatorname{dim}_{k} \bar{h}=1 . g 1 . \operatorname{dim} \bar{h}(\bar{f}) \leqslant 1 . g 1 \cdot \operatorname{dim} \bar{g}(\bar{f})=1 \cdot g 1 \cdot \operatorname{dim} g^{\prime}(f) /(x-\lambda)
\end{aligned}
$$

Since l.gl.dim $g^{\prime}(f) /(x-\lambda) \leqslant \operatorname{dim} \bar{g}<\infty$ and $x-\lambda$ is an element of the centre of $g^{\prime}(f)$ which is neither a unit nor a divisor of zero, by Kaplansky's Theorem [6, p. 173,

Theorem 4] we have l.gl.dimg $g^{\prime}(f) /(x-\lambda) \leqslant 1 . g 1 . \operatorname{dim} g^{\prime}(f)-1<1$. gl.dim $g^{\prime}(f)$. This shows that

$$
\text { 1.gl.dim } g(f)=\text { l.gl.dim } g(f)_{T} \leqslant 1+\text { l.g1.dim } g^{\prime}(f)_{T}<1+1 . \text { gl.dim } g^{\prime}(f) .
$$

But since $g(f)$ is the Ore-extension of $g^{\prime}(f)$ and l.gl.dim $g^{\prime}(f)<\infty$, by our Remark 3 we have l.gl.dim $g^{\prime}(f) \leqslant 1 . g 1 . \operatorname{dim} g(f)$. Therefore we get l.gl.dim $g^{\prime}(f)=1 . g 1 . \operatorname{dim} g(f)$.
Thus our claim that l.gl.dim $g(f)=1 . g 1 . \operatorname{dim} g^{\prime}(f)$ if $g_{1}=g$ and $g^{\prime} \varsubsetneqq g$ is \bar{p} roved.
Since $\operatorname{dim}_{k} \mathrm{~g}^{\prime}=\boldsymbol{n - 1}$ by our induction hypothesis there exist a subalgebra h of \mathfrak{g}^{\prime} and an element $\theta^{\prime} \in \operatorname{Hom}_{k}\left(g^{\prime}, k\right)$ such that I) h is f-subordinate to θ^{\prime}, II) 1.gl.dim $g^{\prime}(f)=\operatorname{dim}_{k} h$. Let $\theta=g \rightarrow k$ be the k-linear map such that $\theta(y)=0$ and $\theta \mid \boldsymbol{g}^{\prime}=\theta^{\prime}$. Then it is easy to see that h is f-subordinate to θ also and $1 . g 1 . \operatorname{dimg} g(f)=$ 1.gl.dim $g^{\prime}(f)=\operatorname{dim}_{k} h$.

Case 3: $\mathfrak{g}_{1} \subset \mathfrak{g}^{\prime}, \mathfrak{g}_{1} \varsubsetneqq \mathrm{~g}$. Then g_{1} is an ideal of \mathfrak{g} of codim 1. Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \boldsymbol{k} \cdot \boldsymbol{y}$ where $y \in g$ be such that $[y, x]=x$. Let $f(x, y)=\lambda$. Then $g(f)$ is the Ore-extension of $g_{1}(f)$ with respect to the derivation d induced by $y, x-\lambda$ an element of the cuntre of $g_{1}(f)$ with $d(x-\lambda)=x-\lambda$.
If l.gl.dimg $g(f)=1 . \mathrm{gl}$. dim $_{1}(f)$ then the proof of the theorem for case 2 shows that there exists an element $\theta \in \operatorname{Hom}_{k}(g, k)$ and a subalgebra h of g such that I) h is f-subordinate to θ, II) l.gl.dimg $(f)=\operatorname{dim}_{k} h$.

If l.gl. $\operatorname{dim} g(f)>1 . g 1 . \operatorname{dim} g_{1}(f)$ then the proof of the theorem for case 2 and Proposition 1.1 shows that there exists an element $b \in g(f)$ such that $b \notin a$ and $x-\lambda \in(a: b)$. Since $x-\lambda$ is an element of the centre of $g_{1}(f)$ and $d(x-\lambda)=x-\lambda$ we have $g(f) x-\lambda=(x-\lambda) g(f)$. Therefore $x-\lambda \in(a: b)$ implies that $g(f) x$ $-\lambda \in I$ where I is the greatest two sided ideal of $g(f)$ contained in $(a: b)$. It is easy to see that I is also the greatest two sided ideal of $g(f)$ contained in a and $I=$ ann M where $M=g(f) / a$. Then the proof of the theorem fo: case 1 shows that there exists an element $\theta \in \operatorname{Hom}_{k}(\mathrm{~g}, k)$ and a subalgebra h of \boldsymbol{y} such that I$) h$ is f-subordinate to θ, II) l.gl.dimg $(f)=\operatorname{dim}_{k} h$.
Case $4: g_{1} \subsetneq \mathrm{~g}, \mathrm{~g}^{\prime} \varsubsetneqq \mathrm{g}, \mathrm{g}_{1} \neq \mathrm{g}^{\prime}$. Then g^{\prime} is not an ideal of g . Therefore by Lemma 2.3 we have $g_{1}=g_{1} \cap g^{\prime} \oplus k \cdot w, f(w, x)=1$ and the idjoint action of w on g_{1} is nilpotent. Let $g=g_{1} \oplus k y$ with $[y, x]=x$ and $f(y, x)=0$. Then $g(f)$ is the Oreextension of $g_{1}(f)$ with respect to the derivation d of $g_{1}(f)$ induced by y.

Let $\mathfrak{g}^{\prime \prime}=g_{1} \cap g^{\prime}$. Let d^{\prime} be the derivation of $g^{\prime \prime}(f)$ induced by w. Then $g_{1}(f)=$ $\mathfrak{g}^{\prime \prime}(f)\left[X, d^{\prime}\right]$. Since the adjoint action of w on $\mathfrak{g}^{\prime \prime}$ is nilpotent it follows that d^{\prime} is a locally nilpotent derivation of $g^{\prime \prime}(f)$. Since x is an element of the centre $g^{\prime \prime}(f)$ and $d^{\prime}(x)=1$ it follows from [9, p. 78] that there exists an isomorphism

$$
\begin{aligned}
& \psi: g_{1}(f) \rightarrow g^{\prime \prime}(f) /(x) \otimes_{k} A_{1}(k) \\
& \psi\left(x_{i}\right)=\overline{x_{i}} \otimes 1+\overline{d^{\prime}\left(x_{i}\right)} \otimes X_{1}+\overline{d^{\prime 2}\left(x_{i}\right)} \otimes \frac{X_{1}^{2}}{2!}+\cdots \text { for } 1 \leqslant i \leqslant n-2 \\
& \psi\left(x_{n-1}\right)=1 \otimes Y_{1}
\end{aligned}
$$

where $x=x_{1}, x_{2}, \ldots, x_{n-1}=w$ is a k-basis of g_{1} and $A_{1}(k)$ is the Weyl algebra $k\left[X_{1}, Y_{1}\right]$ of index 1 with coefficients in k, i.e. $A_{1}(k)$ is the k-alge 5 ra generated by X_{1} and Y_{1} with the relation $Y_{1} X_{1}-X_{1} Y_{1}=1$.

Let \tilde{d} be the k-derivation of $g^{\prime \prime}(f) /\left(x_{1}\right) \otimes_{k} A_{1}(k)$ induced by d through the isomorphism ψ. Then $g(f)=g_{1}(f)[X ; d] \simeq g^{\prime \prime}(f) /\left(x_{1}\right) \otimes_{k} A_{1}(k)[X ; d]$. Now every element b of $g^{\prime \prime}(f) /(x) \otimes_{k} A_{1}(k)$ has the unique expression of the type

$$
b=\sum_{i+j>0} a_{i j} \otimes X_{I}^{i} Y_{I}^{j}, \quad a_{i j} \in g^{\prime \prime}(f) /(x)
$$

We define a k-derivation d_{0} on $g^{\prime \prime}(f) /(x) \otimes_{k} A_{i}(k)$ as follows

$$
\begin{aligned}
& d_{0}(a \otimes 1)=a_{00} \otimes 1 \quad \text { if } \tilde{d}(a \otimes 1)=a_{00} \otimes 1+\sum_{i+j>0} a_{i i} \otimes X_{i}^{i} Y_{i}^{j} \\
& d_{0}\left(1 \otimes X_{1}\right)=d_{0}\left(1 \otimes Y_{1}\right)=0 .
\end{aligned}
$$

Then from [7, Lemma 2.15] it follows that there exists an element g of $g^{\prime \prime}(f) /(x) \otimes_{k} A_{1}(k)$ such that $\tilde{d}(b)-\dot{d}_{0}(b)=b g-g b$ for all $b \in g^{\prime \prime}(f) /(x) \otimes_{k} A_{1}(k)$. Therefore we have

$$
\begin{aligned}
g(f) & \simeq g^{\prime \prime}(f) /(x) \otimes_{k} A_{1}(k)[X, \tilde{d}] \simeq g^{\prime \prime}(f) /(x) \otimes_{k} A_{1}(k)\left[X ; d_{0}\right] \\
& \simeq g^{\prime \prime}(f) /(x)\left[X ; d_{0}\right] \otimes_{k} A_{1}(k)
\end{aligned}
$$

Let $a \in g^{\prime \prime}(f)$ then

Therefore

$$
\begin{aligned}
& \bar{a} \otimes 1=\psi\left(a-d^{\prime}(a) x+\frac{d^{\prime 2}(a) x^{2}}{2!}-\frac{d^{\prime 3}(a) x^{3}}{3!}+\cdots\right) . \\
& \tilde{d}(\bar{a} \otimes 1)= \\
& =\left(d(a)-d\left(d^{\prime}(a) x-d^{\prime}(a) x\right)+\frac{d\left(d^{\prime 2}(a)\right) x^{2}}{2!}+d^{\prime 2}(a) x^{2}+\cdots\right) \\
& =\overline{d(a)} \otimes 1+\text { terms of the type } \sum_{i+j>0} a_{i j} \otimes X_{1}^{\prime} Y_{1}^{j} .
\end{aligned}
$$

This shows that $d_{0}(\bar{a} \otimes 1)=\overline{d(a)} \otimes 1$.
It is easy to see that $g^{\prime \prime}$ is an ideal of g. Let $\bar{g}=g^{\prime \prime} \oplus k \cdot y$. Then $\bar{g}(f)$ is the Ore-extension of $g^{\prime \prime}(f)$ with respect to the derivation \bar{d} induced by y. Since $[y, x]=x, f(y, x)=0, f$ induces 2-cocycle \tilde{f} on $\tilde{g}=\tilde{g} /(x)$ such that $\tilde{g}(\tilde{f}) \simeq \tilde{g}(f) /(x) \simeq$ $g^{\prime \prime}(f) /(x)\left[X ; d_{0}\right]$. Let η be an abelian Lie algebra of $\operatorname{dim} 2$ over k generated by X_{1}, Y_{1}. Let f^{\prime} be a 2-cceycie on η defined by $f^{\prime}\left(X_{1}, Y_{1}\right)=1$. Let $\hat{\mathfrak{g}}=\tilde{g} \oplus \eta, f=\tilde{f} \oplus f^{\prime}$. Then one can see that \hat{g} is a solvable Lie algebra over k, \hat{f} a 2-cocycle on the 'standard complex' for \hat{g} such that $\tilde{g}(\tilde{f}) \otimes_{k} A_{1}(k)=\hat{g}(\hat{f})$. Since X_{1} is ari element of the centre of \hat{g} and $\hat{f}\left(u, X_{1}\right)=0$ for all $u \in \tilde{g}$, the proof of the theorem for case 2 shows that l.gl.dim $\hat{g}(\hat{f})=1+1 . g 1 \cdot \operatorname{dim} \tilde{g}(\hat{f})$. Therefore we have '

$$
\begin{aligned}
l . g l . \operatorname{dim} g(f) & =1 . g l \cdot \operatorname{dim} g^{\prime \prime}(f) /\left(x_{1}\right) \otimes_{k} A_{1}(k)[X ; \tilde{d}] \\
& =1 . g l \cdot \operatorname{dim} g^{\prime \prime}(f) /\left(x_{1}\right)\left[X ; d_{0}\right] \otimes_{k} A_{1}(k) \\
& =1 . g 1 \cdot \operatorname{dim} \tilde{g}(\tilde{f}) \otimes_{k} A_{1}(k)=1 . g 1 \cdot \operatorname{dim} \hat{g}(\hat{f})=1+1 . g l \cdot \operatorname{dim} \tilde{g}(\tilde{f})
\end{aligned}
$$

Since $\operatorname{dim}_{k} \tilde{\mathrm{~g}}=\boldsymbol{;}$? by induction hypothesis there exist an element $\tilde{\boldsymbol{\theta}} \in$ $\operatorname{Hom}_{k}(\tilde{\mathfrak{g}}, k) \tilde{\sigma}$: ubalgebra \tilde{h} of \tilde{g} such that I) \tilde{h} is \tilde{f}-subordinate to $\tilde{\theta}$, II) l.gl.dim $\tilde{g}(\tilde{f})=\tilde{z i n} \bar{h}$.

Let h be a subalgebra of g such that $x \in h$ and $h /(x)=\bar{h}$. Let $\theta: g \rightarrow k$ be the k-linear map such that $\theta(x)=\theta(w)=0$ and $\bar{\theta} \mid \bar{g} /(x)=\tilde{\theta}$ where $\bar{\theta}: g /(x) \rightarrow k$ is the map induced by θ. Then it is easy to see that I) h is f-subordinate to θ, II) l.gl. $\operatorname{dim} g(f)=1+1 . g 1 \cdot \operatorname{dim} \tilde{g}(\tilde{f})=1+\operatorname{dim}_{k} \tilde{h}=\operatorname{dim}_{k} h$.

Thus the theorem is proved for $\operatorname{dim}_{k} g=n$.
This completes the proof of Theorem 2.1.
Now we state the main theorem.

Theorem 2.6. Let k be an algebraically closed field of char. 0 . Let g be a finite dimensional solvable Lie algebra over k. Let f be a k-valued 2-cocycle on the 'standard complex' for g. Let $\left(h_{i}\right)_{i \in J}$ be the family of subalgebras of g for which the restriction of f to $h_{j} \times h_{i}$ is a coboundary. Then l.g1.dimg $(f)=\sup _{j_{j} \in \mathrm{~J}} \operatorname{dim}_{k} h_{j}$.

Proof. By Remark 4 it follows that if h is a subalgebra of g such that the restriction of f to $h \times h$ is a coboundary then $\operatorname{dim}_{k} h=1 . g 1 . \operatorname{dim} h(f) \leqslant 1 . g 1 . \operatorname{dim} g(f)$. Therefore we always have $1 . g \mathrm{gl} . \operatorname{dim} g(f) \geqslant \sup _{f \in J} \operatorname{dim}_{k} h$.
Theorem 2.1 shows that there exist a subaigebra h of g and an element $\theta \in \operatorname{Hom}_{k}(\mathrm{~g}, k)$ such that \boldsymbol{h} is f-subordinate to θ and $1 . \mathrm{gl} . \operatorname{dim} g(f)=\operatorname{dim}_{k} h$. But h is f-subordinate to θ implies that the restriction of f to $h \times h$ is a coboundary. Therefore l.gl.dimg $(f)=\operatorname{dim}_{k} h \leqslant \sup _{j \in J} \operatorname{dim}_{k} h_{j}$. Hence the equality.
This completes the proof of Theorem 2.6.

Remark 6. The following example shows that Th sorem 2.6 is no longer valid if we drop the assumption that k is algebraically clos \because. .

Example. Let g be the solvable Lie algebra over the field \mathbf{R} of real numbers with a basis (x, y, z) such that $[x, y]=z,\langle x, z]=-y,[y, z]=0$. Let f be a R-valued 2-cocycle on the 'standard complex' for g such that $f(y, z)=1, f(x, y)=f(x, z)=0$. Then it is easy to prove that l.gldimg $f(f)=2$. Let h be a subalgebra of g of dim 2 with a basis $\left(e_{1}, e_{2}\right)$. Let $e_{1}=\alpha_{1} x+\beta_{1} y+r_{1} z, e_{2}=\alpha_{2} x+\beta_{2} y+r_{2} z$. Then if. $f \mid h \times h$ is a coboundary we get either $\alpha_{1} \neq 0$ or $\alpha_{2} \neq 0$. Assume $\alpha_{1} \neq 0$. If $\left[e_{1}, e_{2}\right]=0$, then $f \mid h \times h$ is a coboundary implies that $f\left(e_{1}, e_{2}\right)=0$ and this in turn will imply that e_{1} and e_{2} are linearly dependant which is contradiction. Therefore, $\left[e_{1}, e_{2}\right] \neq 0$. But $\left[e_{1}, e_{2}\right]=\beta_{3} y+r_{3} z$. Assume $\beta_{3} \neq 0$ and let $e_{2}^{\prime}=y+r z, r=\beta_{3}^{-1} r_{3}$. Then $e_{2}^{\prime} \in h$. But then $\left[e_{1}, e_{2}^{\prime}\right]=\alpha_{1} z-\alpha_{1} r y \in h$ and since $\alpha_{1} \neq 0$ this will imply that $e_{3}^{\prime}=z-r y \in h$. Since $\left[e_{2}^{\prime}, e_{3}^{\prime}\right]=0$ we get $f\left(e_{2}^{\prime}, e_{3}^{\prime}\right)=0$.
But $f\left(e_{2}^{\prime}, e_{3}^{\prime}\right)=1+r^{2}$. Since $1, r \in \mathbb{R}$ we get a contradiction showing that there does not exist a subalgebra h of g of dim 2 such that $f \mid h \times h$ is a coboundary.

But for a finite dimensional solvable Lie algebra over an arbitrary field of char. 0 we have the following

Theorem 2.7. Let K be a field of char. 0 . Let Ω be its algebraic closure. Let g be a finite dimensional solvable Lie algebra over K. Let f be a K-valued 2-cocycle on the 'standard complex' for g . Then l.gl.dimg $g(f)=1 . \lg . \operatorname{dim} g_{\Omega}\left(f_{\Omega}\right)$ where $g_{\Omega}=\Omega \bigotimes_{\mathrm{k}} \mathrm{g}$, $f_{\Omega}=I_{\Omega} \otimes_{K} f$.

Proof. Since Ω is algebraically closed field of char. 0, by Theorem 2.6 we get a subalgebra h^{\prime} of g_{Ω} such that the restriction of f_{Ω} to $h^{\prime} \times h^{\prime}$ is a coboundary and l.gl.dim $g_{\Omega}\left(f_{\Omega}\right)=\operatorname{dim}_{\Omega} h^{\prime}$. Since g is finite dimensional over K and f is completely determined by its values on a K-basis of $g \times g$, it follows that there exists a finite extension L of K and a subalgebra h of g_{L} such that the restriction of f_{L} to $h \times h$ is a coboundary and $\Omega \otimes_{L} h=h^{\prime}$ where $g_{L}=L \bigotimes_{K} g$ and $f_{L}=I_{L} \otimes_{K} f$. Therefore we have

$$
\text { 1.gl.dim } g_{\Omega}\left(f_{\Omega}\right)=\operatorname{dim}_{\Omega} h^{\prime}=\operatorname{dim}_{L} h \leqslant 1 . g 1 . \operatorname{dim}_{g_{L}}\left(f_{L}\right)
$$

But $g_{L}\left(f_{L}\right) \simeq L \otimes_{K} g(f)$ and L is a finite separable extension of K. Therefore by [4, p. 74] we have l.gl.dim $g_{L}\left(f_{L}\right)=1 . g l . \operatorname{dim} g(f)$. Therefore l.gl.dimga $\left(f_{\Omega}\right) \leqslant$ l.gl.dim $g(f)$. But $g_{\Omega}\left(f_{\Omega}\right)$ is $g(f)$-free as a left and as a right module and contains $g(f)$ as a direct summand. Therefore by [8, Lemma 1] we have $1 . g 1 . \operatorname{dimg} g(f) \leqslant$ l.gl.dim $g_{\Omega}\left(f_{\Omega}\right)$.

Hence the equality.
This completes the proof of Theorem 2.7.

Remark 6. The fol owing example shows that Theorem 2.6 is not true if g is not solvable.

Example. Let K be an algebraically closed field of char. 0 . Let g be a Lie algebra over K of $\operatorname{dim} 5$ such that its radical is abelian and of $\operatorname{dim} 2$. Let $g=Z \oplus S$ be the Levi decomposition of g where Z is the radical of g and S is a semisimple sub-algebra of g. Let f be a K-valued 2-cocycle on the 'standard complex' for g such that $f \mid g \times S=0$ and $f \mid Z \times Z \neq 0$. Since $\operatorname{dim} Z=2, f \mid Z \times Z \neq 0$ implies $Z(f) \simeq$ $A_{1}(K)$. Let us assume that Z is a simple S-module. Since every element of S defines a Lie-algebra derivation of Z there exists a Lie-algebra homomorphism $\psi: S \rightarrow \operatorname{Der}_{K}(Z(f))$. Since $Z(f) \simeq A_{1}(k)$ and S is semisimple it follows that $\psi(S) \subset D$ where D denotes the Lie-algebra of inner derivations of $Z(f)$. From this it follows that l.gl. $\operatorname{dim} g(f)=1 . g 1 \cdot \operatorname{dim} Z(f)+\operatorname{dim}_{K} S=1+3=4$.

Let h be a subalgebra of g of $\operatorname{dim} 4$. Suppose $f \mid h \times h$ is a coboundary it follows that $\operatorname{dim}_{K} h \cap Z=1$ and $h+Z=g$. From this it follows that $h=h \cap Z \oplus S^{\prime}$ where S^{\prime} is a semisimple sub-Lie algebra of g such that $S^{\prime} \simeq g / Z$. Therefore $g=Z \oplus S^{\prime}$ is another Levi decomposition of g. Let $\phi: S \rightarrow S^{\prime}$ be a Lie-algebra isomorphism defined as follows $\phi(s)=s^{\prime}$ if $s=z+s^{\prime}, z \in Z, s^{\prime} \in S^{\prime}$. Then since Z is abelian, we
have for $z \in Z, s \in S,[s, z]=[\phi(s), Z]$. Therefore Z is a simple S^{\prime}-module. But $h \cap Z$ is an ideal of h and $S^{\prime} \subset h$. Therefore $h \cap Z$ is a S^{\prime}-module. Since $\operatorname{dim}_{K} h \cap Z=1$ we get a proper non zero S^{\prime}-submodule of Z which is a contradiction.

This shows that if h is a subalgebra of g stch that $f \mid h \times h$ is a coboundary then $\operatorname{dim}_{K} h<4=1$.gl.dim $g(f)$.
We refer to [11] for the definition of Krull dimension of a module over (not necessarily commutative) ring. For a ring A let $l . K r \cdot \operatorname{dim} A$ denote the Krull dimension of \boldsymbol{A} when \boldsymbol{A} is regarded as a left module aver \boldsymbol{A}.
We state a result which has been proved by Roos J.E. in [12].
Theorem ct Roos. Let A be a filtered noetherian ring whose associated graded ring is a commutative regular noetherian ring. Then 1.Kr.dim $A \leqslant 1 . g 1 . \operatorname{dim} A$.

As a consequence of the above theorem and Theorem $2.6 \mathrm{we} \mathrm{g} t$ the toilowing corollary.

Corollary 2.8. Let g, f, K be as given in Theorem 2.6. Then 1.gldimg(f) $=$ 1.Kr. $\operatorname{dim} g(f)$.

Proof. By Thecrem of Roos we have $1 . \operatorname{Kr}$.dim $q(f) \leqslant 1 . g 1 . \operatorname{dimg}(f)$.
By Theorem 2.6 we get a subalgebra h of g such that the restriction of f to $h \times h$ is a coboundary and l.gl.dim $g(f)=\operatorname{dim}_{K} h$. Since $h(f)$ is isomorphic to the usual enveloping algebra of the solvable Lie algebra h, by [11, P. 713, (9)] we have $\operatorname{dim}_{K} h \leqslant l . \operatorname{Kr} \cdot \operatorname{dim} h(f)$.
But since $g(f)$ is $h(f)$-free as a right and as a left module and contains $h(f)$ as a direct summand, it is easy to see that $1 . \mathrm{Kr} . \operatorname{dim} h\left({ }^{(}\right) \leqslant 1 . \mathrm{Kr} . \operatorname{dimg} g(f)$. Therefore we have l.gl.dimg $(f)=\operatorname{dim}_{K} h \leqslant 1 . \operatorname{Kr} . \operatorname{dim} h(f) \leqslant 1 . \mathrm{K}^{-} \cdot \operatorname{limg}(f)$.

Hence the equality.
This completes the proof of Corollary 2.8 .

References

[1] M. Auslander, On the Dimension of Modules and algebras (III). Global dimension, Nagoya Math. J. 9 (1955) 67-77.
[2] S.M. Bhatwadekar, On the Global Dimension of some Filtered Algebras, to appear in the J. of the London Math. Soc.
[3] H. Cartan and S. Eilenberg, Homological Algebra (Princeton University Press, 1956).
[4] S. Eilenberg, A. Rosenberg and D. Zelinsky, On the Dimension of Modules and Algebras, VIII, Nagoya Math. J. 12 (1957) 71-93.
[5] K.R. Goodearl, Global dimension of differential operator rings, Proc. Amer. Math. Soc. 45 (1974) 315-322.
[6] Irving Kaplansky, Fields and Rings, Chicago Lectures in M. thematics (Chicago University Press, 1969).
[7] J.C. McConnell, Representations of Solvable Lie algebras and the Gel'and-Kirillov Conjucture, to appear.
[8] M.P. Murthy and R. Sridharan, On the Global Dimension of some Algebras, Math. Zeitschr. 81 (1963) 108-111.
[9] Y. Nouaze' and P. Gabriel, Algebras de Lie Nilpotentes, J. of Algebra 6 (1967) 77-79.
[10] D. Quillen, On the Endomorphism Rings of a Simple Module over an Enveloping Algebra, Proc. Amer. Math. Soc. 21 (1969) 171-172.
[11] R. Rentschler and P. Gabriel, Sur la dimension des anneaux et ensembles Ordonnes, C.R.Acad. Sci. Paris 265, Ser. A (1967) 712-715.
[12] J.E. Ross, The Weyl algebras are Gorenstein rings, Generalisations and applications, to appear.
[13] Amit Roy, A note on_filtered rings, Archiv der Mathematik 26 (1965) 421-427.
[14] Sridharan, Filtered Algebras and representations of Lie algebras, Trans. Amer. Math. Soc. 100 (1961) 530-550.
[15] B.O. Stenstörm, Ring and Modules of Quotients (Springer, Berlin, 1971).

