Journal of Pure and . pplied Algebra 12 (1978) 1-14. © North-Holland Pub' shing Company

ON THE GLOBAL DIMENSION OF SOME FILTERED ALGEBRAS (II)

S.M. BHATWADEKAR

Tata Institute of Fundamental Research, Homi Bhabha Rd., Colaba, Bombay, India

Communicated by H. Bass Received 14 April 1976

Introduction

Let k be a commutative field of char. 0. Let g be a Lie algebra over k. Let f be a k-valued 2-cocycle on the 'standard complex' for g. We set $g(f) = T(g)/U_f(g)$, where T(g) denotes the tensor algebra of the vector space g and $U_i(g)$ the two sided ideal of $T(\alpha)$ generated by all elements of the form $x \otimes y - y \otimes x - [x, y] - f(x, y)$ for $x, y \in g$. It is known [14] that g(f) is a filtered k-algebra whose associated graded is isomorphic to a polynomial algebra over k and that every filtered k-algebra with this property is isomorphic to one such.

In this paper we determine [Section 2, Theorem 2.7] the global dimension of g(f) where g is a finite dimensional solvable Lie algebra over k and deduce some interesting results. This paper is a sequel to the aut for's previous paper of the same title [2].

In Section 1 we prove some results which are used in the proof of the main theorem.

13、19·14年2月 - 建铁路子子 新教师 分表 1986-

一日一日日的一部一部一部分的新闻的 化合金 化合金 化合金 化合金

1

Let A be a ring and d be a derivation of A. The Ore-extension A[X;d] is the ring generated by A and an indeterminate X satisfying the relation Xa - aX = d(a) for all $a \in A$. It is easy to see that any element b of A[X;d] is of the form $\sum_{0 \le i \le n} X^i a_i$ with $a_i \in A$ and $a_n \ne 0$ and that such expression is unique. We call n to be the degree of b and a_n the leading coefficient of b.

Now we make following remarks regarding A[X; d].

Remark 1. If A is left (resp. right) noetherian then A[X; d] is also left (resp. right) noetherian.

Remark 2. A[X;d] is A-free as a left as well as a right module.

Remark 3. l.gl.dim $A \le l.gl.dim A[X; d] \le 1 + l.gl.dim A$ if l.gl.dim $A < \omega$ [see 5, Proposition 3].

Let T be a multiplicatively closed subset of A contained in its centre such that $1 \in T$ and no element of T is a zero divisor in A. Then as a subset of A[X;d], T has the properties: 1) no element of T is a zero divisor in A[X;d], 2) T is left (resp. right) permutable, i.e. for $s \in T$ and $b \in A[X;d]$ there exist $t \in T$ and $c \in A[X;d]$ such that sc = bt (resp. cs = tb).

Therefore from [15, Proposition 15.1] it follows that the left ring of fractions of A[X; d] with respect to T exists and that it is isomorphic to $A_T[X; d']$ where A_T is the localisation of A with respect to T and d' is the derivation of A_T induced by d. We get similar results for the right ring of fractions of A[X; d] with respect to T.

We denote both the left and right ring of fractions of A[X; d] with respect to T by $A[X; d]_T$. Then by Remark 2 it follows that $A[X; d]_T$ is flat as a left and as a right A[X; d]-module.

Let a be a left ideal of A. Let for $a \in A$, $(a:a) = \{b/b \in A, ba \in a\}$. Then (a:a) is also a left ideal of A and (a:a) = A if and only if $a \in a$. If a is a maximal left ideal then so also (a:a) for $a \notin a$. Moreover the map $\phi : A/(a:a) \rightarrow A/a$ given by $\phi(\overline{b}) = \overline{ba}$ is an isomorphism of A-modules.

For the sake of simplicity of notation throughout this section we write B (resp. B_T) for A[X;d] (resp. $A[X;d]_T$.

With the above notation we prove the following

Proposition 1.1. Let A be a ring which contains Q. Let d be a derivation of A. Let a be an element of the centre of A such that Aa + Ad(a) = A. Let a' be a left ideal of B which contains a. Then a' = B a where $a = a' \cap A$.

Proof. Since $a \subset a'$ we have $B a \subset a'$. If $B a \neq a'$ then there exists an element $b \in a'$ such that $b \notin B a$ and is of smallest degree with such property. Let $b = \sum_{0 \le i \le n} X^i a_i$, $a_n \neq 0$. Since every element of B a is of the form $\sum_{0 \le j \le m} X^j c_j$, $c_j \in a$ for $0 \le j \le m$, by choice of b we get $a_n \notin 1$. Since $a \in a'$ we have $b' = (X^n a_n)a - a \sum_{0 \le i \le n} X^i a_i \in a'$. But $b' = X^{n-1} (nd(a)a_n - aa_{n-1}) + \text{terms}$ of smaller degree. Since degree $b' \le$ $n-1 < \text{degree } b, \ b' \in B a$. Therefore $nd(a)a_n - aa_{n-1} \in a$. But $a \in a = a' \cap A$. Therefore $nd(a)a_n \in a$, i.e. $d(a)a_n \in a$. Since Aa + Ada = A there exist c and $c' \in A$ such that ca + c'd(a) = 1. This shows that $a_n = c(aa_n) + c'(d(a)a_n) \in a$, which is a contradiction. Therefore Ba = a'. Hence the result.

Proposition 1.2. Let K be an algebraically closed field of char. 0. Let A be a K-algebra. Let d be a K-derivation of A. Let a be an element of the centre of A such that d(a) = 1. Let b be a proper left ideal of B. If for some $b' \notin b$ $(b:b') \cap K[a] \neq 0$ then there exists $b \notin b$. such that $a - \lambda \in (b:b)$ for some $\lambda \in K$.

Proof. d(a) = 1 implies that a is transcendental over K. Therefore K[a] is a polynomial algebra over K in one variable. Let $0 \neq f \in (b:b') \cap K[a]$. We prove

the result by induction on deg f where deg f denotes the degree of f as an element of K[a].

Since b is a proper left ideal and $f \neq 0$, deg $f \ge 1$. Let deg f = 1. Then $f = \alpha a + \beta$ with $\alpha, \beta \in K$ and $\alpha \neq 0$. Then by taking $\lambda = -\alpha^{-1}\beta$ and b' = b we get the required result.

Assume the result for deg $f \le m - 1$. Let deg f = m > 1. Then since K is algebraically closed there exists $\alpha \in K$ such that $f = (a - \alpha)f'$, $f' \in K[a]$ and deg f' = m - 1. If $f' \notin (\mathfrak{b}; b')$ then by taking b = f'b' we get $b \notin \mathfrak{b}$ and $a - \alpha \in (\mathfrak{b}; b)$. If $f' \in (\mathfrak{b}; b')$ then since deg f' = m - 1 by our induction hypothesis there exist $b \notin \mathfrak{b}$ and $\lambda \in K$ such that $a - \lambda \in (\mathfrak{b}; b)$.

This completes the proof of Proposition 1.2.

Proposition 1.3. Let A be a ring which is left and right noetherian. Let $l.gl.dim A < \infty$. Let d be a derivation of A. Let a be a left ideal of B such that $l.gl.dim B = hd_B B/a$. Let T be a multiplicatively closed subset of A contained in its centre such that $l \in T$ and no element of T is a zero divisor in A. If for every $b \notin a(a:b) \cap T = \emptyset$ then $l.gl.dim B = l.gl.dim B_T$.

Proof. Since A is left and right noetherian and l.gl.dim $A < \infty$, by our earlier remarks, it follows that B as well as B_T are left and right noetherian and have finite left global dimension. Therefore by [1, Theorem 1] there exists a left ideal b of B_T such that l.gl.dim $B_T = hd_{B_T}B_T/b$. But since B_T is a left ring of fractions of B there exists a left ideal b' of B such that $B_T/b = B_T \bigotimes_B B/b'$ as B_T -modules.

For a ring R and a left module N let w.dim_R N denote the weak dimension of N. If R is left noetherian and N is finitely generated then $hd_R N = w.dim_R N$ [3, Chapter VI]. Therefore

l.gl.dim $B_T = hd_{B_T}B_T/b = w.dim_{B_T}B_T/b = w.dim_{B_T}B_T \bigotimes_B B/b'$.

Since B_T is B-flat as a right B-module we get

w.dim_{B_T} $B_i \bigotimes_B B/b' \leq w.dim_B B/b' = hd_B M/b' \leq l.gl.dim B.$

Therefore l.gl.dim $B_T \leq$ l.gl.dim B.

Now since $(a:b) \cap T = \emptyset$ for all $b \notin a$, the mapping $\psi: B/a \to B_T \bigotimes_B B/a$ given by $\psi(\bar{x}) = 1 \bigotimes \bar{x}$ is a monomorphism. Therefore, since l.gl.dim $B = hd_B B/a =$ w.dim_B B/a we get l.gl.dim $B = w.dim_B B_T \bigotimes_B B/a$. But B_T is B-flat as a left module. Therefore

w.dim_B $B_T \bigotimes_B B/a \leq$ w.dim_{BT} $B_T \bigotimes_B B/a = hd_{BT} \bigotimes_B B/a \leq 1.gl.dim B_T$.

This shows that l.gl.dim $B \leq 1.$ gl.dim B_T . Hence the equality.

This completes the proof of Proposition 1.3.

Let g be a Lie algebra over a field k of char.0. Let f be a k-valued 2-cocycle on the 'standard complex' for g [14, p. 532]. Let θ be an element of $\text{Hom}_k(g, k)$.

Definition. A subalgebra h of g is said to be *f*-subordinate to θ if for every $h_1, h_2 \in h$ we have $\theta[h_1, h_2] + f(h_1, h_2) = 0$.

Remark 4. From the definition it follows that if h is a subalgebra of g then the restriction of f to $h \times h$ is a coboundary if and only if there exists $\theta \in \operatorname{Hom}_{\kappa} g, k$) such that h is f-subordinate to θ . Therefore if a subalgebra h is f-subordinate to θ then h(f) is isomorphic to h(0) [14, Theorem 3.1]. But h(0) is nothing but the usual enveloping algebra of the Lie algebra h. Therefore l.gl.dim $h(0) = \dim_k h$ [3, p. 283, Theorem 8.2]. Moreover the map $\theta: h \to k$ defines an h(f)-module structure denoted by $k(\theta, h)$ on k such that $\operatorname{hd}_{M}k(\theta, h) = \dim_k h = \operatorname{l.gl.dim} h(f)$. Since g(f) is h(f)-free as a right as well as a left module and contains h(f) as a direct summand, from [8, Lemma 1] it follows that

l.gl.dim g(f)
$$\ge$$
 hd_{g(f)} g(f) $\bigotimes_{h(f)} k(\theta, h) =$ hd_{h(f)} $k(\theta, h) =$ dim_k h.

On the other hand from [13, Theorem 1] we get $\dim_k g \ge l.gl.\dim g(f)$. Therefore we always have inequality $\dim_k g \ge l.gl.\dim g(f) \ge \dim_k h$ for a subalgebra h of g for which the restriction of f to $h \times h$ is a coboundary.

2

We begin this section with the following theorem.

Theorem 2.1. Let k be an algebraically closed field of char.0. Let g be a finite dimensional solvable Lie algebra over k. Let f be a k-valued 2-cocycle on the 'standard complex' for g. Then there exists θ in Hom_k (g, k) and a subalgebra h of g such that

- I) h is f-subordinate to θ
- II) l.gl.dim $g(f) = \dim_k h$.

For the proof of this theorem we require some lemmas. In the first two lemmas (i.e. Lemma 2.2 and Lemma 2.3) k, g, and f are as in the statement of Theorem 2.1.

Let $x \in g$ be such that $k \cdot x$ is an ideal of g. Let $g_1 = \{z/z \in g, [x, z] = 0\}$, $g' = \{z/z \in g, f(x, z) = 0\}$.

Lemma 2.2. If g' is a subspace of g of codimension 1 then g' is an ideal of g if $g' \subset g_1$.

Proof. It is easy to see that g_1 is an ideal of g of codim ≤ 1 . If codim $g_1 = 1$ then since codim g' = 1, $g' \subset g_1$ implies that $g' = g_1$. Therefore g' is an ideal of g.

If $\operatorname{codim} g_1 = 0$ then $g_1 = g$. This means that x is an element of the centre of g. But then for any $z, w \in g$ we have

f(x, [z, w]) = f(x, [z, w]) + f(w, [x, z]) + f(z, [w, x]) = 0.

Therefore $[g,g] \subset g'$. Hence g' is an ideal of g.

This completes the proof of Lemma 2.2.

Lemma 2.3. If g' is not an ideal of g then $g' \cap g_1$ is an ideal of g_1 of codim 1 and $g_1 = g' \cap g_1 \oplus k \cdot w$ where $w \in g_1$ be such that f(w, x) = 1 and the adjoint action of w on g_1 is nilpotent.

Proof. Since g' is not an ideal of g, by Lemma 2.2 we have $g' \not\subset g_1$. Therefore $g_1 \not\subseteq g$ and $g' \cap g_1$ is a subspace of g_1 of codim 1. Applying Lemma 2.2 again to x, g_1 and f we get that $g_1 \cap g'$ is an ideal of g_1 of codim 1.

Since $g_1 \subsetneq g$ and $k \cdot x$ is an ideal of g, there exists $y \in g$ such that $g = g_1 \oplus k \cdot y$ and [y,x] = x. Since $g' \neq g_1$ there exists $w' \in g_1$ such that f(w',x) = 1. Therefore

$$1 = f(w', x) = f(w', [y, x]) = -f(x, [w', y]) - f(y, [x, w']) = f([w', y], x).$$

Let w = [w', y]. Since g_1 is an ideal of g of codim 1 $[g, g] \subset g_1$. Since g is solvable and $w \in [g, g]$ the adjoint action of w on g and therefore on g_1 is nilpotent.

Hence the result.

Remark 5. If g' is an ideal of g of codim 1 then $g' \subset g_1$ and $g = g' \oplus k \cdot y$. Therefore x is an element of the centre of g'(f) and g(f) is the Ore-extension of g'(f) with respect to the derivation d induced by y. If $g_1 = g$ then we can choose y such that f(y, x) = 1. Then d(x) = 1. If $g_1 \subsetneq g$ then we can choose y such that [y, x] = x and then $d(x) = x + \lambda$ where $\lambda = f(y, x)$. Therefore $d(x + \lambda) = x + \lambda$.

Lemma 2.4. Let D be a Dedekind domain of cha^{\cdot}. 0. Let L be its quotient field. Let g be a finite dimensional Lie algebra over L with 1 basis (x_1, x_2, \ldots, x_n) . Let f be a L-valued 2-cocycle on the 'standard complex' for \exists . Let $\theta \in \text{Hom}_L(g, L)$ and h be a subalgebra of g such that h is f-subordinate to θ . T'sen there exists a discrete valuation ring R with $D \subset R \subset L$ such that

(1) $[z, w] \in g_R$ for all $z, w \in g_R$

2) $f_R(z, w) \in R$ for all $z, w \in g_R$

3)
$$\theta(\mathfrak{g}_R) \subset R$$

where $g_R = \sum_{1 \le i \le n} Rx_i$, $f_R = f | g_R \times g_R$.

Proof. Since L is the quotient field of D and g is finite dimensional over L there exists $0 \neq s \in D$ such that $s \cdot [x_i, x_j] \in \sum_{1 \leq i \leq n} Dx_i, s \cdot f(x_i, x_j) \in D$ and $s \cdot \theta(x_i) \in D$ for all $i, j, 1 \leq i, j \leq n$. Let m be a maximal ideal of D such that $s \notin m$. Then by taking $R = D_m$ we get the required result.

Lemma 2.5. Let L, g, f, g_R , h, θ be as in the statement of Lemma 2.4. Let K be the residue field of R. Let $\bar{g} = K \bigotimes_R g_R$, $\bar{f} = I_K \bigotimes_R f_R$. Then there exist $\bar{\theta} \in \operatorname{Hom}_K(\bar{g}, K)$ and a subalgebra \bar{h} of \bar{g} such that \bar{h} is \bar{f} -subordinate to $\bar{\theta}$ and $\dim_K \bar{h} = \dim_L h$.

Proof. Let $h' = g_R \cap h$. Since h' is a R-submodule of g_R and R is a discrete valuation ring h' is a free R-module of rank r. Since $L \bigotimes_R h' \simeq h$ as L-vector spaces $r = \dim_L h$.

Let a be the maximal ideal of R. Then $h' = g_R \cap h$ implies $ah' = ag_R \cap h'$. This shows that the map $i; K \bigotimes_R h' \to K \bigotimes_R g_R (=\bar{g})$ given by $i(\lambda \otimes x) = \lambda \otimes x$ is a monomorphism. We identify $K \bigotimes_R h'$ with its image in $K \bigotimes_R g_R$ under the mapping i. Let $\bar{\theta}: \bar{g} \to K$ be the map given by $\bar{\theta}(\lambda \otimes x) = \lambda \eta \theta(x)$ where $\eta: R \to K$ is the canonical map. It is easy to see that $\bar{\theta}$ is well defined and K-linear. Let $\bar{h} = K \bigotimes_R h'$. We claim that \bar{h} is f-subordinate to $\bar{\theta}$.

Let $u, v \in \overline{h}$. Then there exist $z, w \in h'$ such that $u = 1 \otimes z, v = 1 \otimes w$. Therefore

$$\bar{f}(u,v) + \bar{\theta}[u,v] = \bar{f}(1 \otimes z, 1 \otimes w) + \bar{\theta}[1 \otimes z, 1 \otimes w] = 1 \otimes f(z,w) + \eta \theta[z,w]$$
$$= \eta f(z,w) + \eta \theta[z,w] = \eta (f(z,w) + \theta[z,w]) = 0.$$

Thus \bar{h} is \bar{f} -subordinate to $\bar{\theta}$. Since h' is R-free of rank r we have $\dim_K \bar{h} (= K \bigotimes_R h') = r = \dim_L h$. Hence the result.

Thus the proof of Lemma 2.5 is complete.

Proof of Theorem 2.1. We will prove the result by induction on dim_k g. Let dim_k g = 1. Then g(f) is a polynomial algebra k[x] in one variable over k. Let $\theta: g \to k$ be the map given by $\theta(x) = 0$ where $g = k \cdot x$. Then g is f-subordinate to θ and l.gl.dim $g(f) = gl.dim k[x] = 1 = \dim_k g$.

Assume the result for dim_k $g \le n - 1$. Let dim g = n.

Since g(f) is left and right noetherian and of finite left global dimension, by [2, Proposition 1.1] there exists a maximal left ideal a of g(f) such that $l.gl.dim g(f) = hd_{a(f)}g(f)/(a:a)$ for a l $a \notin a$. Since g is solvable and k-algebraically closed there exists $x \in g$ such that $k \cdot x$ is a non zero ideal of g. Let $g_1 = \{w/w \in g, [x, w] = 0\}$, $g' = \{w/w \in g, f(x, w) = 0\}$.

We divide the proof in following four cases:

Case 1: $g = g' = g_1$. Then x will be an element of the centre of g(f).

Let M = g(f)/a and let I = ann M. Then since M is a simple left g(f)-module and x an element of the centre of g(f) by [10, p. 171] we get $x - \lambda \in I$ for some $\lambda \in k$.

Let $\tilde{g} = g/(x)$. Let $\alpha : g \to k$, be the k-linear map given by

$$\alpha(x_1) = \lambda$$

$$\alpha(x_i) = 0, \quad 2 \le i \le n$$

where $x = x_1, x_2, x_3, ..., x_n$ is a k-basis of g. Let $\tilde{f} : \tilde{g} \times \tilde{g} \to k$ be the map defined by $\tilde{f}(\bar{z}, \bar{w}) = f(z, w) + \alpha[z, w]$.

Then \tilde{g} is a solvable Lie algebra, \tilde{f} a k-valued 2-cocycle on the 'standard complex' for \tilde{g} such that $\tilde{g}(\tilde{f}) = g(f)/(x_1 - \lambda)$.

Since $x_1 - \lambda \in I = \operatorname{ann} M$, we can regard M as a $\tilde{g}(\bar{f})$ -module. Since $x_1 - \lambda$ is an element of the centre of g(f) which is neither a unit nor a divisor of zero and

7

hd_{§(f)} $M \leq \text{l.gl.dim} \tilde{g}(f) \leq \text{Dim}_{\kappa} \tilde{g} < \infty$, by Kaplansky's Theorem [6, p. 172, Theorem 3]; hd_{§(f)} $M = \text{hd}_{g(f)} M - 1 = \text{l.gl.dim} g(f) - 1$. But since l.gl.dim $\tilde{g}(\tilde{f}) < \infty$ we always have l.gl.dim $\tilde{g}(\tilde{f}) \leq \text{l.gl.dim} g(f) - 1$ [6, p. 173, Theorem 4]. Therefore l.gl.dim $\tilde{g}(f) = \text{l.gl.dim} g(f) - 1$. (One can easily prove Kaplansky's Theorems [6, p. 172; Theorem 3 and p. 173, Theorem 4] for an element $x - \lambda \in g(f)$ which is neither a unit nor a divisor of zero and which is such that $g(f)(x - \lambda) = (x - \lambda)g(f)$. Therefore our conclusions remain valid for such element $x - \lambda$ even though it may not be an element of the centre of g(f). This fact we have used in the proof of the theorem for case 3).

Since dim_k $\tilde{g} = n - 1$, by our induction hypothesis there exists a subalgebra \tilde{h} of \tilde{g} and an element $\tilde{\theta}$ of Hom_k (\tilde{g}, k) such that (I) \tilde{h} is \tilde{f} -subordinate to $\tilde{\theta}$, (II) l.gl.dim $\tilde{g}(\tilde{f}) = \dim_k \tilde{h}$.

Let *h* be a subalgebra of g such that $x_1 \in h$ and $h/(x_1) = \tilde{h}$. Let $\theta: g \to k$ be the *k*-linear map such that $\theta(x_1) = \lambda$ and $\theta(x_i) = \tilde{\theta}(\bar{x}_i)$ for $2 \le i \le n$ where \bar{x}_i denotes the image of x_i in $\tilde{g}(=g/(x_1))$ under the canonical mapping $\eta: g \to \tilde{g}$.

Then \tilde{h} is \tilde{f} -subordinate $\tilde{\theta}$ implies that h is f-subordinate to θ and dim_k $h = \dim \tilde{h} + 1 = l.gl.\dim \tilde{g}(\tilde{f}) + 1 = l.gl.\dim g(f)$.

Case 2: $g_1 = g$, $g' \not\subseteq g$. Then from Lemma 2.2 it follows that g' is an ideal of g of codim 1. Let $g = g' \oplus ky$ with $y \in g$ be such that f(y, x) = 1. Then g(f) is the Ore-extension of g'(f) with respect to the derivation d induced by y and $x - \lambda$ is an element of the centre of g'(f) with $d(x - \lambda) = 1$ for every $\lambda \in k$. We claim that l.gl.dim g'(f) = l.gl.dim g(f).

If for some $b' \notin a$ $(a:b') \cap k[x] \neq 0$ then by Proposition 1.2 we get an element $b \notin a$ and an element $\lambda \in k$ such that $x - \lambda \in (a:b)$. But then by Proposition 1.1 we have a'' = g(f)a' where $a' = a'' \cap g'(f)$ and a'' = (a:b). Therefore $g(f)/a'' = g(f) \bigotimes_{g'(f)} g'(f)/a'$. Since g(f) is g'(f)-free as a left as well as a right module and contains g'(f) as a direct summand, from [8, Len ma 1] it follows that

 $l.gl.dim g'(f) \leq l.gl.dim g(f) = hd_{g(f)}g(f)/(r:b)$

$$= \operatorname{hd}_{\mathfrak{s}(f)} \mathfrak{g}(f) \bigotimes_{\mathfrak{s}'(f)} \mathfrak{g}'(f)/\mathfrak{a}' \leq \operatorname{hd}_{\mathfrak{s}'(f)} \mathfrak{g}'(f)/\mathfrak{a}' \leq \operatorname{l.gl.dim} \mathfrak{g}'(f).$$

Therefore we have l.gl.dim g(f) = l.gl.dim g'(f).

Suppose for all $b \notin a(a:b) \cap k[x] = 0$. Let $T = k[x] - \{0\}$. Then T is a multiplicatively closed set contained in the centre of g'(f) such that no element of T is a zero divisor of g'(f) (in fact g'(f) itself is without proper divisors of zero). Therefore from Proposition 1.3 it follows that $l.gl.dim g(f) = l.gl.dim g(f)_T = l.gl.dim g'(f)_T [X; d'] \le 1 + l.gl.a m g'(f)_T$ where d' is the derivation of $g'(f)_T$ induced by the derivation d of g'(f).

Let $x = x_1, x_2, ..., x_{n-1}$ be a k-basis of g'. Let K be the quotient field of k[x] (note that since d(x) = 1, k[x] is a polynomial algebra over k). Let $g'' = K \bigotimes_k g'/(x)$. Let $\beta: g' \to k[x_1] (= k[x])$ be the k-linear map given by

$$\beta(x_1) = x_1$$

$$\beta(x_i) = 0, \qquad 2 \le i \le n - 1.$$

Let $f'': g'' \times g'' \to K$ be the map defined by

$$f''(1 \otimes \overline{z}, 1 \otimes \overline{w}) = f(z, w) + \beta[z, w].$$

Then g" is a solvable Lie algebra over K, f" a K-valued 2-cocycle on the 'standard complex' for g" such that $g''(f'') \simeq g'(f)_T$.

Let Ω be the algebraic closure of K. Let $g_0'' = \Omega \bigotimes_K g''$, $f_0'' = I_0 \bigotimes_K f''$. Then g_0'' is a solvable Lie algebra over Ω of dim n-2, f''_{Ω} a Ω -valued 2-cocycle on the 'standard complex' for g''_{Ω} such that $g''_{\Omega}(f''_{\Omega}) = \Omega \bigotimes_{K} g''(f'')$. Since dim_{Ω} $g''_{\Omega} = n - 2$, by our induction hypothesis there exist a subalgebra h' of g''_n and an element $\theta'' \in$ Hom_{Ω} (g_{Ω}', Ω) such that I) h' is f_{Ω}' -subordinate to θ'' , II) l.gl.dim $g_{\Omega}''(f_{\Omega}') = \dim_{\Omega} h'$. Since g'' is finite dimensional over K and f'' is completely determined by its values on a K-basis of $g'' \times g''$, there exist a finite extension L of K and a subalgebra h of g_L'' such that $\theta(g_L'') \subset L$ and $\Omega \bigotimes_L h = h'$ where $g_L'' = L \bigotimes_K g''$ and $\theta = \theta'' | g_L''$. This implies that h is f''_L -subordinate to θ where $f''_L = I_L \bigotimes_K f''$ and $l.gl.dim g''_n(f''_n) =$ $\dim_{\Omega} h' = \dim_{L} h = l.gl.\dim h(f''_{L}) \leq l.gl.\dim g''_{L}(f''_{L})$. But $g''_{L}(f''_{L}) \simeq L \bigotimes_{K} g''(f'')$ and L is a finite separable extension. Therefore by [4, p. 74] we have $l.gl.dim g_L'(f_L') =$ l.gl.dim g''(f''). Since $g''_{\Omega}(f''_{\Omega})$ is g''(f'')-free as a left and a right module and contains g''(f'') as a direct summand, by [8, Lemma 1] we have $l.gl.dim g''(f'') \le$ l.gl.dim $g_{\Omega}''(f_{\Omega}'') = \dim h' = \dim_L h \leq l.gl.dim g_{L}''(f_{L}'') = l.gl.dim g''(f'').$ Therefore $\operatorname{l.gl.dim} g'(f)_T = \operatorname{l.gl.dim} g''(f'') = \operatorname{l.gl.dim} g_L(f''_L) = \operatorname{l.gl.dim} g''_O(f''_O).$

Let D be the integral closure of k[x] in L. Then since L is separable over K, D is a Dedekind domain. Then by Lemma 2.4 there exists a discrete valuation ring R with $D \subset R \subset L$ such that 1) $[u, v] \in g_R^n$ for $u, v \in g_R^n$, 2) $f_R^n(u, v) \in R$, 3) $\theta(g_R^n) \subset R$ where $g_R^n = \sum_{2 \le i \le n-1} R(1 \otimes \bar{x}_i)$, \bar{x}_i is the image of x_i in g'/(x) under the canonical map $\eta : g' \to g'/(x)$ for $2 \le i \le n-1$, $f_R^n = f_L^n | g_R^n \times g_R^n$. From the construction of R and g_R^n it follows that the residue field of R is k and $g_R^n \approx R \bigotimes_k g'/(\bar{x})$.

Let $\bar{g} = k \bigotimes_R g_R''$, $\bar{f} = I_k \bigotimes_R f_R''$. Then it is easy to see that $\bar{g} \simeq k \bigotimes_R g_R'' \simeq k \bigotimes_R R \bigotimes_k g'/(x) \simeq g'/(x)$ as Lie algebras over k and when we identify \bar{g} with g'/(x) then $\bar{f}(\bar{z}, \bar{w}) = f(z, w) + \eta' \beta[z, w]$ where $\beta = g' \rightarrow k[x]$ is the map as defined above and $\eta' : R \rightarrow k$ is the canonical map. From this it follows that $\bar{g}(\bar{f}) \simeq g'(f)/(x - \lambda)$ where $\lambda = \eta'(x)$.

Lemma 2.5 shows that there exists a subalgebra \bar{h} of \bar{g} and an element $\bar{\theta} \in \text{Hom}_k(\bar{g}, k)$ such that \bar{h} is \bar{f} -subordinate to $\bar{\theta}$ and $\dim_k \bar{h} = \dim_L h$. Therefore we have

l.gl.dim g'(f)_T = l.gl.dim g"(f") = l.gl.dim g_L"(f_L") = dim_L h
= dim_k
$$\overline{h}$$
 = l.gl.dim $\overline{h}(\overline{f}) \leq$ l.gl.dim $\overline{g}(\overline{f})$ = l.gl.dim g'(f)/(x - λ).

Since l.gl.dim $g'(f)/(x - \lambda) \le \dim \overline{g} < \infty$ and $x - \lambda$ is an element of the centre of g'(f) which is neither a unit nor a divisor of zero, by Kaplansky's Theorem [6, p. 173,

Theorem 4] we have $l.gl.dim g'(f)/(x - \lambda) \le l.gl.dim g'(f) - 1 < l.gl.dim g'(f)$. This shows that

$$\operatorname{l.gl.dim} g(f) = \operatorname{l.gl.dim} g(f)_T \leq 1 + \operatorname{l.gl.dim} g'(f)_T < 1 + \operatorname{l.gl.dim} g'(f).$$

But since g(f) is the Ore-extension of g'(f) and $l.gl.dim g'(f) < \infty$, by our Remark 3 we have $l.gl.dim g'(f) \le l.gl.dim g(f)$. Therefore we get l.gl.dim g'(f) = l.gl.dim g(f).

Thus our claim that l.gl.dimg(f) = l.gl.dimg'(f) if $g_1 = g$ and $g' \subsetneq g$ is proved.

Since dim_k g' = n - 1 by our induction hypothesis there exist a subalgebra h of g'and an element $\theta' \in \text{Hom}_k(g', k)$ such that I) h is f-subordinate to θ' , II) l.gl.dim $g'(f) = \dim_k h$. Let $\theta = g \rightarrow k$ be the k-linear map such that $\theta(y) = 0$ and $\theta \mid g' = \theta'$. Then it is easy to see that h is f-subordinate to θ also and l.gl.dimg(f) =l.gl.dim $g'(f) = \dim_k h$.

Case 3: $g_1 \subset g', g_1 \subsetneqq g$. Then g_1 is an ideal of g of codim 1. Let $g = g_1 \oplus k \cdot y$ where $y \in g$ be such that [y, x] = x. Let $f(x, y) = \lambda$. Then g(f) is the Ore-extension of $g_1(f)$ with respect to the derivation d induced by $y, x - \lambda$ an element of the centre of $g_1(f)$ with $d(x - \lambda) = x - \lambda$.

If $l.gl.dim g(f) = l.gl.dim g_1(f)$ then the proof of the theorem for case 2 shows that there exists an element $\theta \in Hom_k(g, k)$ and a subalgebra h of g such that I) h is f-subordinate to θ , II) l.gl.dim $g(f) = \dim_k h$.

If l.gl.dim $g(f) > l.gl.dim g_1(f)$ then the proof of the theorem for case 2 and Proposition 1.1 shows that there exists an element $b \in g(f)$ such that $b \notin a$ and $x - \lambda \in (a:b)$. Since $x - \lambda$ is an element of the centre of $g_1(f)$ and $d(x - \lambda) = x - \lambda$ we have $g(f)x - \lambda = (x - \lambda)g(f)$. Therefore $x - \lambda \in (a:b)$ implies that g(f)x $-\lambda \in I$ where I is the greatest two sided ideal of g(f) contained in (a:b). It is easy to see that I is also the greatest two sided ideal of g(f) contained in a and $I = \operatorname{ann} M$ where M = g(f)/a. Then the proof of the theorem for case 1 shows that there exists an element $\theta \in \operatorname{Hom}_k(g, k)$ and a subalgebra h of y such that I) h is f-subordinate to θ , II) l.gl.dim $g(f) = \dim_k h$.

Case $4:g_1 \not\subseteq g, g' \not\subseteq g, g_1 \neq g'$. Then g' is not an ideal of g. Therefore by Lemma 2.3 we have $g_1 = g_1 \cap g' \oplus k \cdot w$, f(w, x) = 1 and the adjoint action of w on g_1 is nilpotent. Let $g = g_1 \oplus ky$ with [y, x] = x and f(y, x) = 0. Then g(f) is the Oreextension of $g_1(f)$ with respect to the derivation d of $g_1(f)$ induced by y.

Let $g'' = g_1 \cap g'$. Let d' be the derivation of g''(f) induced by w. Then $g_1(f) = g''(f)[X, d']$. Since the adjoint action of w on g'' is nilpotent it follows that d' is a locally nilpotent derivation of g''(f). Since x is an element of the centre g''(f) and d'(x) = 1 it follows from [9, p. 78] that there exists an isomorphism

$$\psi: \mathfrak{g}_1(f) \to \mathfrak{g}''(f)/(x) \otimes_k A_1(k)$$

$$\psi(x_i) = \bar{x}_i \otimes 1 + \overline{d'(x_i)} \otimes X_1 + \overline{d'^2(x_i)} \otimes \frac{X_1^2}{2!} + \cdots \text{ for } 1 \le i \le n-2$$

$$\psi(x_{n-1}) = 1 \otimes Y_1$$

where $x = x_1, x_2, ..., x_{n-1} = w$ is a k-basis of g_1 and $A_1(k)$ is the Weyl algebra $k[X_1, Y_1]$ of index 1 with coefficients in k, i.e. $A_1(k)$ is the k-algebra generated by X_1 and Y_1 with the relation $Y_1X_1 - X_1Y_1 = 1$.

Let \tilde{d} be the k-derivation of $g''(f)/(x_1) \bigotimes_k A_1(k)$ induced by d through the isomorphism ψ . Then $g(f) = g_1(f)[X; d] \simeq g''(f)/(x_1) \bigotimes_k A_1(k)[X; \tilde{d}]$. Now every element b of $g''(f)/(x) \bigotimes_k A_1(k)$ has the unique expression of the type

$$b = \sum_{i+j \ge 0} a_{ij} \otimes X_I^i Y_I^j, \qquad a_{ij} \in \mathfrak{g}''(f)/(x).$$

We define a k-derivation d_0 on $g''(f)/(x) \otimes_k A_1(k)$ as follows

$$d_0(a \otimes 1) = a_{00} \otimes 1 \quad \text{if } \tilde{d}(a \otimes 1) = a_{00} \otimes 1 + \sum_{i+j>0} a_{ii} \otimes X_i^i Y_1^j$$
$$d_0(1 \otimes X_1) = d_0(1 \otimes Y_1) = 0.$$

Then from [7, Lemma 2.15] it follows that there exists an element g of $g''(f)/(x) \bigotimes_k A_1(k)$ such that $\tilde{d}(b) - d_0(b) = bg - gb$ for all $b \in g''(f)/(x) \bigotimes_k A_1(k)$. Therefore we have

$$g(f) \simeq g''(f)/(x) \bigotimes_{k} A_{1}(k) [X, \tilde{d}] \simeq g''(f)/(x) \bigotimes_{k} A_{1}(k) [X; d_{0}]$$
$$\simeq g''(f)/(x) [X; d_{0}] \bigotimes_{k} A_{1}(k).$$

Let $a \in \mathfrak{g}''(f)$ then

$$\bar{a} \otimes 1 = \psi \left(a - d'(a)x + \frac{d'^{2}(a)x^{2}}{2!} - \frac{d'^{3}(a)x^{3}}{3!} + \cdots \right).$$

Therefore
 $\tilde{d}(\bar{a} \otimes 1) = \psi(d(a) - d(d'(a)x - d'(a)x) + \frac{d(d'^{2}(a))x^{2}}{2!} + d'^{2}(a)x^{2} + \cdots)$
 $= \overline{d(a)} \otimes 1 + \text{terms of the type } \sum_{i+j>0} a_{ij} \otimes X_{1}^{i} Y_{1}^{j}.$

This shows that $d_0(\bar{a} \otimes 1) = \overline{d(a)} \otimes 1$.

It is easy to see that g'' is an ideal of g. Let $\bar{g} = g'' \oplus k \cdot y$. Then $\bar{g}(f)$ is the Ore-extension of g''(f) with respect to the derivation \bar{d} induced by y. Since [y, x] = x, f(y, x) = 0, f induces 2-cocycle \tilde{f} on $\tilde{g} = \bar{g}/(x)$ such that $\tilde{g}(\tilde{f}) \simeq \bar{g}(f)/(x) \simeq g''(f)/(x)[X; d_0]$. Let η be an abelian Lie algebra of dim 2 over k generated by X_1, Y_1 . Let f' be a 2-cocycle on η defined by $f'(X_1, Y_1) = 1$. Let $\hat{g} = \tilde{g} \oplus \eta, f = \tilde{f} \oplus f'$. Then one can see that \hat{g} is a solvable Lie algebra over k, \hat{f} a 2-cocycle on the 'standard complex' for \hat{g} such that $\tilde{g}(\tilde{f}) \bigotimes_k A_1(k) = \hat{g}(\hat{f})$. Since X_1 is an element of the centre of \hat{g} and $\hat{f}(u, X_1) = 0$ for all $u \in \tilde{g}$, the proof of the theorem for case 2 shows that $l.gl.\dim \hat{g}(\hat{f}) = 1 + l.gl.\dim \tilde{g}(\tilde{f})$. Therefore we have '

$$l.gl.\dim \mathfrak{g}(f) = l.gl.\dim \mathfrak{g}''(f)/(x_1) \bigotimes_k A_1(k) [X; \tilde{d}]$$

= l.gl.dim $\mathfrak{g}''(f)/(x_1) [X; d_0] \bigotimes_k A_1(k)$
= l.gl.dim $\tilde{\mathfrak{g}}(\tilde{f}) \bigotimes_k A_1(k) = l.gl.dim \,\hat{\mathfrak{g}}(\hat{f}) = 1 + l.gl.dim \,\tilde{\mathfrak{g}}(\tilde{f}).$

Since dim_k $\tilde{g} = \tilde{r} - \tilde{r}$ by induction hypothesis there exist an element $\tilde{\theta} \in$ Hom_k (\tilde{g}, k) and cubalgebra \tilde{h} of \tilde{g} such that I) \tilde{h} is \tilde{f} -subordinate to $\tilde{\theta}$, II) l.gl.dim $\tilde{g}(\tilde{f}) = \lim_{k \to \infty} \tilde{h}$.

Let *h* be a subalgebra of g such that $x \in h$ and $h/(x) = \tilde{h}$. Let $\theta: g \to k$ be the *k*-linear map such that $\theta(x) = \theta(w) = 0$ and $\bar{\theta} | \tilde{g}/(x) = \tilde{\theta}$ where $\bar{\theta}: g/(x) \to k$ is the map induced by θ . Then it is easy to see that I) *h* is *f*-subordinate to θ , II) l.gl.dim $g(f) = 1 + l.gl.dim \tilde{g}(\tilde{f}) = 1 + \dim_k \tilde{h} = \dim_k h$.

Thus the theorem is proved for $\dim_k g = n$.

This completes the proof of Theorem 2.1.

Now we state the main theorem.

Theorem 2.6. Let k be an algebraically closed field of char. 0. Let g be a finite dimensional solvable Lie algebra over k. Let f be a k-valued 2-cocycle on the 'standard complex' for g. Let $(h_i)_{i \in J}$ be the family of subalgebras of g for which the restriction of f to $h_i \times h_i$ is a coboundary. Then $l.gl.dimg(f) = \sup_{i \in J} dim_k h_i$.

Proof. By Remark 4 it follows that if h is a subalgebra of g such that the restriction of f to $h \times h$ is a coboundary then $\dim_k h = l.gl.\dim h(f) \le l.gl.\dim g(f)$. Therefore we always have $l.gl.\dim g(f) \ge \sup_{i \in J} \dim_k h_i$.

Theorem 2.1 shows that there exist a subalgebra h of g and an element $\theta \in \text{Hom}_k(g, k)$ such that h is f-subordinate to θ and $\text{l.gl.dim}\,g(f) = \dim_k h$. But h is f-subordinate to θ implies that the restriction of f to $h \times h$ is a coboundary. Therefore $\text{l.gl.dim}\,g(f) = \dim_k h \leq \sup_{j \in J} \dim_k h_j$. Hence the equality.

This completes the proof of Theorem 2.6.

Remark 6. The following example shows that Theorem 2.6 is no longer valid if we drop the assumption that k is algebraically closed.

Example. Let g be the solvable Lie algebra over the field **R** of real numbers with a basis (x, y, z) such that [x, y] = z, [x, z] = -y, [y, z] = 0. Let f be a **R**-valued 2-cocycle on the 'standard complex' for g such that f(y, z) = 1, f(x, y) = f(x, z) = 0. Then it is easy to prove that l.gl.dim g(f) = 2. Let h be a subalgebra of g of dim 2 with a basis (e_1, e_2) . Let $e_1 = \alpha_1 x + \beta_1 y + r_1 z$, $e_2 = \alpha_2 x + \beta_2 y + r_2 z$. Then if $f \mid h \times h$ is a coboundary we get either $\alpha_1 \neq 0$ or $\alpha_2 \neq 0$. Assume $\alpha_1 \neq 0$. If $[e_1, e_2] = 0$, then $f \mid h \times h$ is a coboundary implies that $f(e_1, e_2) = 0$ and this in turn will imply that e_1 and e_2 are linearly dependent which is contradiction. Therefore, $[e_1, e_2] \neq 0$. But $[e_1, e_2] = \beta_3 y + r_3 z$. Assume $\beta_3 \neq 0$ and let $e'_2 = y + rz$, $r = \beta_3^{-1} r_3$. Then $e'_2 \in h$. But then $[e_1, e'_2] = \alpha_1 z - \alpha_1 ry \in h$ and since $\alpha_1 \neq 0$ this will imply that $e'_3 = z - ry \in h$. Since $[e'_2, e'_3] = 0$ we get $f(e'_2, e'_3) = 0$.

But $f(e'_2, e'_3) = 1 + r^2$. Since $1, r \in \mathbb{R}$ we get a contradiction showing that there does not exist a subalgebra h of g of dim 2 such that $f \mid h \times h$ is a coboundary.

But for a finite dimensional solvable Lie algebra over an arbitrary field of char. 0 we have the following

Theorem 2.7. Let K be a field of char. 0. Let Ω be its algebraic closure. Let g be a finite dimensional solvable Lie algebra over K. Let f be a K-valued 2-cocycle on the 'standard complex' for g. Then $l.gl.dimg(f) = l.gl.dimg_{\Omega}(f_{\Omega})$ where $g_{\Omega} = \Omega \bigotimes_{\kappa} g$, $f_{\Omega} = I_{\Omega} \bigotimes_{\kappa} f$.

Proof. Since Ω is algebraically closed field of char. 0, by Theorem 2.6 we get a subalgebra h' of g_{Ω} such that the restriction of f_{Ω} to $h' \times h'$ is a coboundary and l.gl.dim $g_{\Omega}(f_{\Omega}) = \dim_{\Omega} h'$. Since g is finite dimensional over K and f is completely determined by its values on a K-basis of $g \times g$, it follows that there exists a finite extension L of K and a subalgebra h of g_L such that the restriction of f_L to $h \times h$ is a coboundary and $\Omega \otimes_L h = h'$ where $g_L = L \otimes_K g$ and $f_L = I_L \otimes_K f$. Therefore we have

l.gl.dim
$$g_{\Omega}(f_{\Omega}) = \dim_{\Omega} h' = \dim_{L} h \leq l.gl.dim g_{L}(f_{L}).$$

But $g_L(f_L) \simeq L \bigotimes_K g(f)$ and L is a finite separable extension of K. Therefore by [4, p. 74] we have $l.gl.dim g_L(f_L) = l.gl.dim g(f)$. Therefore $l.gl.dim g_n(f_n) \le l.gl.dim g(f)$. But $g_n(f_n)$ is g(f)-free as a left and as a right module and contains g(f) as a direct summand. Therefore by [8, Lemma 1] we have $l.gl.dim g(f) \le l.gl.dim g_n(f_n)$.

Hence the equality.

This completes the proof of Theorem 2.7.

Remark 6. The following example shows that Theorem 2.6 is not true if g is not solvable.

Example. Let K be an algebraically closed field of char. 0. Let g be a Lie algebra over K of dim 5 such that its radical is abelian and of dim 2. Let $g = Z \oplus S$ be the Levi decomposition of g where Z is the radical of g and S is a semisimple sub-algebra of g. Let f be a K-valued 2-cocycle on the 'standard complex' for g such that $f | g \times S = 0$ and $f | Z \times Z \neq 0$. Since dim Z = 2, $f | Z \times Z \neq 0$ implies $Z(f) \approx$ $A_1(K)$. Let us assume that Z is a simple S-module. Since every element of S defines a Lie-algebra derivation of Z there exists a Lie-algebra homomorphism $\psi: S \to \text{Der}_K(Z(f))$. Since $Z(f) \approx A_1(k)$ and S is semisimple it follows that $\psi(S) \subset D$ where D denotes the Lie-algebra of inner derivations of Z(f). From this it follows that $l.gl.dim g(f) = l.gl.dim Z(f) + dim_K S = 1 + 3 = 4$.

Let h be a subalgebra of g of dim 4. Suppose $f | h \times h$ is a coboundary it follows that dim_{κ} $h \cap Z = 1$ and h + Z = g. From this it follows that $h = h \cap Z \oplus S'$ where S' is a semisimple sub-Lie algebra of g such that $S' \simeq g/Z$. Therefore $g = Z \oplus S'$ is another Levi decomposition of g. Let $\phi : S \to S'$ be a Lie-algebra isomorphism defined as follows $\phi(s) = s'$ if $s = z + s', z \in Z, s' \in S'$. Then since Z is abelian, we have for $z \in Z$, $s \in S$, $[s, z] = [\phi(s), Z]$. Therefore Z is a simple S'-module. But $h \cap Z$ is an ideal of h and $S' \subset h$. Therefore $h \cap Z$ is a S'-module. Since $\dim_{\kappa} h \cap Z = 1$ we get a proper non zero S'-submodule of Z which is a contradiction.

This shows that if h is a subalgebra of g such that $f | h \times h$ is a coboundary then $\dim_{\kappa} h < 4 = 1$.gl.dim g(f).

We refer to [11] for the definition of Krull dimension of a module over (not necessarily commutative) ring. For a ring A let l.Kr.dim A denote the Krull dimension of A when A is regarded as a left module over A.

We state a result which has been proved by Roos J.E. in [12].

Theorem ct Roos. Let A be a filtered noetherian ring whose associated graded ring is a commutative regular noetherian ring. Then $1.Kr.\dim A \leq 1.gl.\dim A$.

As a consequence of the above theorem and Theorem 2.6 we get the tollowing corollary.

Corollary 2.8. Let g, f, K be as given in Theorem 2.6. Then l.gl.dimg(f) = l.Kr.dimg(f).

Proof. By Theorem of Roos we have $1.\text{Kr.dim } c(f) \leq 1.\text{gl.dim } g(f)$.

By Theorem 2.6 we get a subalgebra h of g such that the restriction of f to $h \times h$ is a coboundary and l.gl.dim $g(f) = \dim_{\kappa} h$. Since h(f) is isomorphic to the usual enveloping algebra of the solvable Lie algebra h, by [11, P. 713, (9)] we have $\dim_{\kappa} h \leq 1.Kr.\dim h(f)$.

But since g(f) is h(f)-free as a right and as a left module and contains h(f) as a direct summand, it is easy to see that $1.\text{Kr.dim } h(f) \leq 1.\text{Kr.dim } g(f)$. Therefore we have $1.\text{gl.dim } g(f) = \dim_{\kappa} h \leq 1.\text{Kr.dim } h(f) \leq 1.\text{Kr}$. $\lim g(f)$.

Hence the equality.

This completes the proof of Corollary 2.8.

References

- M. Auslander, On the Dimension of Modules and algebras (III). Global dimension, Nagoya Math. J. 9 (1955) 67-77.
- [2] S.M. Bhatwadekar, On the Global Dimension of some Filtered Algebras, to appear in the J. of the London Math. Soc.
- [3] H. Cartan and S. Eilenberg, Homological Algebra (Princeton University Press, 1956).
- [4] S. Eilenberg, A. Rosenberg and D. Zelinsky, On the Dimension of Modules and Algebras, VIII, Nagoya Math. J. 12 (1957) 71-93.
- [5] K.R. Goodearl, Global dimension of differential operator rings, Proc. Amer. Math. Soc. 45 (1974) 315-322.
- [6] Irving Kaplansky, Fields and Rings, Chicago Lectures in M. thematics (Chicago University Press, 1969).

- [7] J.C. McConnell, Representations of Solvable Lie algebras and the Gel'and-Kirillov Conjucture, to appear.
- [8] M.P. Murthy and R. Sridharan, On the Global Dimension of some Algebras, Math. Zeitschr. 81 (1963) 108-111.
- [9] Y. Nouaze' and P. Gabriel, Algebras de Lie Nilpotentes, J. of Algebra 6 (1967) 77-79.
- [10] D. Quillen, On the Endomorphism Rings of a Simple Module over an Enveloping Algebra, Proc. Amer. Math. Soc. 21 (1969) 171-172.
- [11] R. Rentschler and P. Gabriel, Sur la dimension des anneaux et ensembles Ordonnes, C.R.Acad. Sci. Paris 265, Ser. A (1967) 712-715.
- [12] J.E. Ross, The Weyl algebras are Gorenstein rings, Generalisations and applications, to appear.
- [13] Amit Roy, A note on_filtered rings, Archiv der Mathematik 26 (1965) 421-427.
- [14] Sridharan, Filtered Algebras and representations of Lie algebras, Trans. Amer. Math. Soc. 100 (1961) 530-550.
- [15] B.O. Stenstörm, Ring and Modules of Quotients (Springer, Berlin, 1971).

1