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Abstract 

This article presents the initial results of 2-D and 3-D neutron imaging of bronze artifacts using the CG-1D prototype 
beamline at the High Flux Isotope Reactor (HFIR) located at the Oak Ridge National Laboratory (ORNL). Neutron 
imaging is a non-destructive technique capable of producing unprecedented three-dimensional information on 
archaeomaterials, including qualitative, quantitative, and visual data on impurities, composition change, voids, and 
structure at macro-scale levels. The initial results presented in this publication highlight how information from 
neutron imaging can provide otherwise inaccessible details about the methods and materials that ancient craftspeople 
used in creating bronze objects. 
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1. Introduction 

Neutron imaging is a non-destructive, non-invasive technique capable of producing radiographic and 
tomographic data from a diversity of objects, spanning from engineering, geological, and biological 
materials to archaeological artifacts [1-5]. Unlike X-rays, which interact with an atom’s electronic cloud, 
neutrons interact with the nucleus of an atom, where they can be scattered and/or absorbed. Their 
penetration through layers of metals is particularly well-suited for archaeological objects made of copper 
alloy.  

In recent years a number of neutron-based techniques have been productively enlisted in the non-
destructive two-dimensional and three-dimensional analysis of archaeological objects (e.g. radiography, 
Computed Tomography, diffraction) [6-9]. To date, the majority of neutron tomographic imaging of 
archaeological materials has occurred at major European spallation and pulsed neutron facilities, such as 
NEUTRA/SINQ at the Paul Scherer Institute (Switzerland) and ISIS at the Rutherford Appleton 
Laboratory (U.K.) [1-2]. The neutron tomographic images collected by our research team at the Oak 
Ridge National Laboratory in August and May of 2011 mark the first time that archaeological objects 
have been examined with neutron computed tomography at a major pulsed neutron facility in the United 
States.   

Neutron imaging, both two-dimensional (i.e. radiography) and three-dimensional (i.e. computed 
tomography CT), provides data on the structure, texture, phase contrasts, and composition of 
archaeological materials and objects at multiple scales and depths without requiring destructive or 
invasive sampling of the object. As demonstrated by the following Roman period examples of a small dog 
figurine and hanging oil lamp, such a holistic approach to rare bronze artifacts permits focus on a range of 
questions regarding manufacturing methods, craft skills, object integrity, and material behavior over time. 
These broad concerns are addressed with specific quantitative and qualitative data generated by the 
neutron imaging experiments. The data includes information on: material structure and heterogeneity; raw 
materials used in manufacturing; objects’ functions and use-lives; and the relationship of structural and 
compositional variables to an objects’ performance and preservation over time.  

The goals of the 2011 experiments at the Oak Ridge National Laboratory were twofold and focused 
on testing the capabilities of the CG-1D neutron beamline for the effective imaging of archaeomaterials, 
and also on collecting initial structural data from a range of archaeological objects. A total of eleven 
artifacts were imaged in three dimensions, seven of which were bronze. The artifacts originate from 
contexts in the Mediterranean associated with Classical Greek and Roman settlement, or from early 
historical North American manufacturers and artisans in New England and the upper Midwest. All of the 
objects were loaned from the research collections of either the Joukowsky Institute for Archaeology and 
the Ancient World at Brown University or the Detroit Historical Museum in Michigan.  

These initial measurements established a protocol for measuring archaeological objects at the ORNL 
CG-1D neutron imaging facility. Similar to the challenges faced with medical imaging, the research team 
worked to balance image noise with radiation exposure to minimize activation in the archaeological 
objects in order to ensure their safe and timely return to their institutional collections. The combined 
practical/simulation approach utilized for this research is described below. 

1.1. Principle of conventional neutron imaging and application to Bronze artifacts 

Neutron radiography is based on the attenuation of a neutron beam through the matter in which it 
passes. The decrease in transmission of the beam is caused by scattering and absorption within the object 
under study. Beam attenuation caused by a thick sample composed of a single isotope is given by Beer-
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Lambert law 
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where I0( ) and I( ) are, respectively, the incident and transmitted beam intensities at wavelength , μ( ) 
is the attenuation coefficient at wavelength  and Δx is the thickness of the sample. The attenuation 
coefficient μ is given by 
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where σt(λ) is the material’s total cross section for neutrons of wavelength , ρ is its density, NA is 
Avogadro’s number, and M is the molar mass. Attenuation coefficients are wavelength dependent, as 
described in Eq. 2. Straightforward extension of these basic formulas underpins the radiography of 
heterogeneous and irregularly shaped objects. 

The process of creating a three-dimensional tomographic images first involves taking a set of 
radiographs of the object at multiple, evenly-spaced orientations. These radiographs collect projection 
data at the same time. The length of the imaging process depends on the desired accuracy and resolution, 
as well as the strength of the neutron flux. Image reconstruction (or computed tomography) from 
projections can be obtained using the Filtered-Back Projection (FBP) technique which produces 
sinograms. The intensities in the sinograms are proportional to the line integrals of the neutron attenuation 
coefficient between the source and the detector. The two-dimensional slice represents the attenuation 
coefficient distribution obtained by inverse Radon transform of these line integrals [11]. 

Metals pose multiple challenges in archaeometric research. Corrosion and poor preservation 
conditions often inhibit visual identification of objects and their manufacturing techniques. Heterogeneous 
constituents within archaeological metals, (related to both ore and alloy components), prevent accurate 
compositional and provenience analysis using techniques such as X-Ray Fluorescence (XRF) and 
Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM/EDS).  X-ray imaging offers only 
limited penetration of metallic structures.  Very few historical accounts describe the construction process 
of ancient metals. Although it is possible to obtain details about a metal object’s manufacturing 
techniques, constituents, and properties from metallographic analysis, such examinations are invasive and 
destructive, since they require the removal of a small section of the object. Neutron imaging offers the 
possibility of performing metallographic studies non-destructively through neutron computed 
tomography. 

The composition of bronze objects likely manufactured during the Roman period can vary 
considerably, but in general, ancient bronzes were composed primarily of Copper (Cu, 88%) and Tin (Sn, 
12%), with trace amounts of Lead (Pb), Zinc (Zn), or other elements.   The two samples discussed here, 
the dog figurine (JI-0000-04-0286, 286, Wagner Collection, Joukowsky Institute) and the hanging oil 
lamp (LC-025, Lewis Collection, Joukowsky Institute) are cast and molded examples of bronze objects.  
The dog sits 7.5 cm tall with a maximum width of 2.8 cm from hind leg to hind leg and possesses incised 
surface detail.  The hanging oil lamp measures 17 cm in length and 8 cm wide. It hangs from braided 
bronze chains attached to decorative swan heads at the top of the lamp.  Decorative lion heads protrude 
from either side. 
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As illustrated in Table 1, Cu, Sn and Pb scatter comparatively less than a strong scatterer such as H 

and do not absorb as much as 10B, for example. Complementarily to X-rays, neutrons are capable of 
penetrating deep layers of Bronze objects and are thus an appropriate probe for archaeological bronze 
objects. 

Table 1. Thermal neutron cross-sections of the main elements found in archaeological bronzes in comparison with Hydrogen (H) 
and Boron-10 (10B). 

Element Scattering cross-section (barns) Attenuation cross-section (barns) 

Cu 8.03 4.5 

Sn 4.89 0.63 

Zn 4.13 1.11 

Pb 11.12 0.17 

H 82.03 0.33 
10B 3.10 3835 

 

1.2. Experimental set-up 

Neutron radiography and tomography were performed at the High Flux Isotope Reactor (HFIR) CG-
1D beamline, which is located in the Cold Guide Hall of the facility. Fig. 1 illustrates the basic layout of a 
neutron imaging beamline. An aperture of diameter, D, is placed after the neutron source. The most 
straightforward layout involves the use of evacuated flight tubes positioned between the aperture and the 
sample to minimize neutron scattering from moisture in the ambient air. Size, location and shape of the 
aperture define the maximum spatial resolution achievable when flight tubes are utilized. The figure of 
merit of a neutron imaging beamline is L/D, where L is the distance from the aperture to the face of the 
scintillator (where the image is produced). Characterization of a beamline is defined by three properties of 
the instrument: (1) its flux at sample position, (2) the temporal stability thereof and (3) its divergence. 
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Fig. 1. Schematic layout of a neutron imaging beamline [12]. 

1.3. Protocol for estimating radioactivity in archaeological samples 

The ORNL Neutron Sciences Directorate (NScD) has developed a tool called Sample Activation 
Calculation (SAC) that estimates neutron activation of a sample that has been exposed to a neutron beam. 
This tool is beamline-specific and complements experimental radiation measurements. The protocol 
employed for objects of cultural heritage at CG-1D has been as followed: (1) pre-exposure SACs using 
best sample composition estimation, (2) quick neutron beam exposure (30 sec or less), (3) radiation 
measurements using Geiger and neutron counters, (4) confirmation (or re-adjustment) of SACs based on 
experimental radiation measurements and (5) SACs for the duration of the estimated time required for 
computerized tomography (CT). This protocol ensures that archaeological objects, which belong to U. S. 
museums, can be returned within a year after neutron exposure. If an object is estimated by SACs to 
remain radioactive longer than a year, the archaeological team makes a decision to either limit exposure 
by performing radiography only or to balance CT optimization with radiation dose, similarly to diagnostic 
imaging in the medical community. The latter case may need adaptive statistical iterative reconstruction 
methods rather than the commonly used filtered back projection in order to reduce patient exposure time. 
Another approach to reduce neutron exposure may be the investigation and implementation, when 
possible, of these advanced medical CT techniques. 

2. Results and Discussion 

Two particularly interesting archaeological bronze objects have been measured using neutron 
radiography and CT at the HFIR CG-1D neutron imaging prototype facility. The achievable spatial 
resolution was approximately 75 microns. Fig. 2 displays the photograph and two-dimensional neutron-
mosaic radiograph of a Late Roman hanging bronze lamp excavated from the site of Boscoreale, Italy. 
Although the lamp was too large to fit into the field of view and rotational platform used for three-
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dimensional image collection on the CG-1D instrument, the research team compiled a photomosaic of 
two-dimensional radiographic images. The lamp’s exterior is mildly corroded, but imaging revealed that 
it is otherwise structurally stable, with no superficial or subsurface cracks, voids or other weaknesses. 
Prior to imaging, it was known that lamp was constructed in a multi-part mold, but no other technical 
information was detectable about the application of decorative elements to the lamp’s exterior, the joining 
of fasteners to the main body of the lamp, or how/if the lamp was used regularly in antiquity. The results 
clearly demonstrated the lamp’s construction techniques, texture, and the presence of fuel residue and 
wear from burning in the lamp’s interior. Future tests will examine the composition of the residue as well 
as the structural details of the joining mechanisms between the lamp’s decorative elements and its main 
body.  

Fig. 3 displays the photograph, neutron radiograph and neutron transmission contour map of an 
unprovenanced bronze dog figurine (probably Roman) from the Joukowsky Institute collections. The 
contour map indicates that transmission is lower inside the object, as expected since the object is thicker 
in the center. A CT scan of the dog figure was performed at CG-1D, as illustrated in Figs. 4. The 
tomography data identified defects such as voids inside the figurine (see Fig. 4b) and a change in 
attenuation values revealed faults in the manufacturing of the tail. The attenuation values of the tail are 
identical to those of the figurine’s exterior layer. The internal structure of the dog figurine contains 
remains of the core material (clay and possibly organics), which indicate that the object was cast using a 
lost-wax technique. Future tests will examine the contrasts, composition, and variation between these 
internal features and the object’s bronze exterior.  

 
 
           (a) 
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Fig. 2. Photograph (a) and 2-D neutron-mosaic radiograph (b) of Late Roman hanging bronze lamp showing inside residue. The 
transmission scale is displayed from 0 to 1 on the neutrograph, where 0 means 0% of neutron transmission and 1 means 100% 
neutron transmission. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. (a) Photograph, (b) neutron radiograph and (c) contour map of an ancient dog figurine (7.5 cm x 3.5 cm). 
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Fig. 4. (a) Visualization of 3-D CT scan of dog figurine, (b) neutron reconstructed slide of head of dog showing void in right ear, 
and (c) interior mid-section of dog figurine showing core material, internal material variation, texture and impurities. 

3. Conclusion and Future Prospect 

Two- and three-dimensional neutron imaging provides unique insights about archaeological objects 
without the necessity of invasively sampling a rare artifact. Nevertheless, careful planning during the 
experimental design stages is necessary to minimize neutron exposure, which leads to radioactivity in the 
sample. The results of our initial experiments, as illustrated by the hanging bronze lamp and bronze dog 
figurine, demonstrate the range of previously unobtainable information on material properties, structure, 
performance, and techniques of ancient craftspeople that can be obtained from non-destructive, non-
invasive neutron imaging techniques.  
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