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a b s t r a c t

We propose a new method for converting a Gröbner basis w.r.t. one term order into a
Gröbner basis w.r.t. another term order by using the algorithm stabilization techniques
proposed by Shirayanagi and Sweedler. First, we guess the support of the desired Gröbner
basis from a floating-point Gröbner basis by exploiting the supportwise convergence
property of the stabilized Buchberger’s algorithm. Next, assuming this support to be
correct, we use linear algebra, namely, the method of indeterminate coefficients to
determine the exact values for the coefficients. Related work includes the FGLM algorithm
and its modular version. Our method is new in the sense that it can be thought of as
a floating-point approach to the linear algebra method. The results of Maple computing
experiments indicate that our method can be very effective in the case of non-rational
coefficients, especially the ones including transcendental constants.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Symbolic and numeric computation is one of the most active research areas of computational algebra. Starting with
approximate algebra [17,13], symbolic-numeric algebra for polynomials and structured matrices [15,3,23], this research
resulted in a number of articles and collections of articles [23,22,26,16].
Sweedler and one of the authors of the present paper proposed stabilization techniques for algebraic algorithms [19],

which have since been applied to various computations by other researchers. While approximate algebra assumes that
there is noise or errors in input and aims to find a meaningful output from the scope of errors, the stabilization techniques
assume that the input is exact and attempt to arrive at the exact output through approximate computations.
Throughout this paper, a precisiondenotes the number of decimal digits in themantissa of a floating-point representation.

When using an algorithm stabilized by the stabilization techniques, if we increase the precision of the floating-point
coefficients of the input, the output will converge to the true output. This is called coefficientwise convergence. In fact,
we can establish a supportwise convergence that is stronger than coefficientwise convergence if we slightly modify the
stabilized algorithm. In this paper, using this supportwise convergence, we devise a new method of converting a Gröbner
basis w.r.t. one term order into a Gröbner basis w.r.t. another term order. First, we guess the support of the desired Gröbner
basis from a floating-point Gröbner basis, by using the supportwise convergence of the stabilized Buchberger’s algorithm.
Next, assuming this support to be correct, we use linear algebra, i.e., the method of indeterminate coefficients, to determine
the exact values of the coefficients. This method can be applied to arbitrary dimensional ideals.
Related studies using linear algebra include the FGLM algorithm [6] and Noro–Yokoyama’s algorithm [14]. While the

latter is a modular approach, our method can be thought of as a floating-point approach. In this sense, the method is new.
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We give some results fromMaple computing experiments, which show that the method can be very effective in the case of
non-rational coefficients, especially the ones including transcendental constants.
This paper is organized as follows: Section 2 reviews the theory and gives examples of the stabilization techniques and

remarks on applications. Section 3 describes the proposedmethod of basis conversion based on the stabilization techniques.
Section 4 gives five experimental results and discusses the effectiveness of the method. The conclusion mentions future
work.

2. Review of the stabilization techniques

2.1. Theory

Let us begin with a brief review of the theory of the stabilization techniques, whereby we restrict our discussion to the
following class of algorithms. For the details in a more general setting, see [19].

• Data is from the polynomial ring R[x1, . . . , xm], where R is a subfield of the reals.
• Operations between data are addition, subtraction, multiplication, and division in R[x1, . . . , xm].
• If a predicate on data has a discontinuous point, this point should be 0.

Here, a discontinuous point of a predicate is said to be 0 if the algorithm branches depending on whether the evaluation
value of the predicate is 0 or not, such as in ‘‘If C = 0 then . . . else . . . ’’. Instead of ‘‘If C = 0’’, ‘‘If C ≥ 0’’ or ‘‘If C > 0’’ can
also be permitted. We refer to an algorithm belonging to the above class as an algebraic algorithm with discontinuity at 0.
Most algorithms in computational algebra are algebraic algorithms with discontinuity at 0 or can be transformed into the
ones without changing semantics.
Now, there are three key points for stabilization:

• Keep the structure of the algorithm unchanged.
• Change each coefficient into an interval coefficient in the data set.
• Perform zero rewriting prior to predicate evaluation.

Here, an interval consists of an approximate value and its error bound, which is often said to be a ‘‘circular disc interval’’.
A different type of interval, such as a ‘‘rectangular interval’’, also works well. Zero rewritingmeans rewriting every interval
containing zero into the zero interval [0, 0].
More specifically, the stabilized algorithm has the following features.

Interval Domain The interval domain is the set of interval coefficient polynomials, where an interval coefficient is [A, α]
with A ∈ R and non-negative real α. [A, α] represents the set {x ∈ R : |x− A| ≤ α}.

Interval Arithmetic For binary operations ∗ ∈ {+,−,×, /}, [A, α] ∗ [B, β] = [A ∗ B, γ∗]. Here, γ∗ satisfies that |x − A|
≤ α, |y− B| ≤ β ⇒ |x ∗ y− A ∗ B| ≤ γ∗.

Zero Rewriting Prior to the evaluation of a predicate with discontinuity at 0: for each interval coefficient [C, γ ],

if |C | ≤ γ , then rewrite [C, γ ] into [0, 0]
if |C | > γ , then keep [C, γ ] unchanged.

For more details on intervals and interval arithmetic, see [1].
If we write an input f ∈ R[x1, . . . , xm] as f =

∑
α aαx

α using multi-index notation, an approximation sequence {Int(f )j}j
for f can be defined as

Int(f )j =
∑

α

[(aα)j, (εα)j] xα,

where for allα and for any j, we have |aα−(aα)j| ≤ (εα)j, and (εα)j → 0 as j→∞. In this case, we simplywrite Int(f )j → f .
Most typically, as in the algorithm and examples which will appear in this paper, (aα)j is a floating-point approximation of
aα with precision j.
Now, let Stab(A) denote the stabilization of algorithmA. The fundamental theorem is as follows.

Theorem 1 (Coefficientwise Convergence). Let algorithmA be an algebraic algorithmwith discontinuity at 0, and let it terminate
normally for an input f ∈ R[x1, . . . , xm]. For any approximation sequence {Int(f )j}j for f , there exists n such that if j ≥ n, Stab(A)
terminates normally for Int(f )j, and

Stab(A)(Int(f )j)→ A(f ).
In many cases, supportwise convergence is more important than coefficientwise convergence. The support of polynomial
f =

∑
α aαx

α is the set {xα | aα 6= 0}, denoted by Supp(f ).
fj → f is supportwise convergent if it is coefficientwise convergent and there exists a finite integer n such that if j ≥ n,

then Supp(fj) = Supp(f ).
We can establish supportwise convergence in the following manner:
After running Stab(A), perform zero rewriting for each interval coefficient of the result.

We hereby denote this algorithm by Stab(A)R. The following theorem holds:
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Theorem 2 (Supportwise Convergence). Let algorithmA be an algebraic algorithm with discontinuity at 0, and let it terminate
normally for an input f ∈ R[x1, . . . , xm]. For any approximation sequence {Int(f )j}j for f , there exists n such that if j ≥ n,
Stab(A)R terminates normally for Int(f )j and Stab(A)R(Int(f )j) supportwise converges toA(f ).

Note that the input does not have to be only a single polynomial. It can also be a finite set of polynomials.
The proofs of the above theorems in a more general setting and specifically for Buchberger’s algorithm that computes

Gröbner bases are given in [19,18], respectively.
The aim of this paper is to compute an exact coefficient Gröbner basis using this notion of supportwise convergence.1

2.2. Examples

We illustrate some examples to which the stabilization techniques have been applied by computer. Interval description
and interval arithmetic are all done by using floating-point approximations. The references cited in the table describe the
details of the corresponding example.

Algorithm Output Experiments (who and when)

(Shirayanagi 93) [18],

Buchberger Gröbner basis (Ozaki 94), (Hiyoshi 97),

(Traverso–Zanoni 02) [25],

(Krandick 05) [10]

Sturm Number of real roots (Sekigawa 95)

Graham etc. 2d and 3d convex hull (Sekigawa 95&98)

Elementary divisor Smith normal form (Niitsuma 96)

method

Greville Generalized inverse (Minakuchi 96–98) [12],

(Murakami 01)

Gauss Triangular matrix (Murakami 01)

Wu Characteristic set (Notake 00), (Shiraishi 01)

Lazard–Rioboo–Trager Rational integration (Khungurn 05) [7]

Here, Traverso and Zanoni do not directly use the stabilization techniques, but they do incorporate the idea of zero
rewriting in the computation of numerical Gröbner bases. Note that all the algorithms in the table are algebraic algorithms
with discontinuity at 0.
The results of these experiments indicate that the stabilization techniques are useful when exact computation of the

original algorithm is slow due to the growth of coefficients.

2.3. Two categories of applications

We believe that there are two application categories for the stabilization techniques. The first category is one in which
we estimate the precision for stabilization in advance, andwith that precision run the stabilized algorithm to get the correct
result. The second category is one in which we repeatedly run the stabilized algorithm while increasing the precision until
the correct result is obtained. The application in the present paper belongs to the second category, but let us briefly mention
the recent progress on the first category. This is about a precision problem, which is one of the important unsolved problems
of the theory.

1We previously proposed another method to compute exact coefficient Gröbner basis using supportwise convergence, called the log method [20,21],
and showed that it was effective in some cases.
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Convergence is guaranteed by the theorems on coefficientwise and supportwise convergence for a sufficiently large
precision. However, it is very difficult to estimate which precision will give a stabilized result. We refer to this problem
as the precision problem. In fact, the difficulty of this problem comes from the fact that the desired precision depends on
not only the algorithms but also the inputs.
Recently, however, Khungurn and the authors of this paper solved the precision problem for GCD computing

algorithms [8,9]. Theoretically, there is a precision at and beyond which the execution path of the stabilized algorithm
run with floating-point computations coincides with that of the original algorithm run with exact computation. We refer
to the minimum value of such a precision as the minimum converging precision (MCP). We proved that MCP is generally
incomputable for some class of GCD computing algorithms. Furthermore, in some specific domain such as Z, Q, Z[ξ ] (ξ is
an algebraic integer), we gave an upper bound of the MCP for the Euclidean algorithm. Although bounding the MCP is still
an open problem, we derived an upper bound for the minimum degree precision and the minimum correct support precision
in the case of GCD computing algorithm based on QR decomposition of the Sylvester matrix.

3. Basis conversion based on the stabilization techniques

Let us consider the following problem:

Problem. Given a Gröbner basis w.r.t. one term order of a polynomial ideal in R[x1, . . . , xm], compute a Gröbner basis
w.r.t. another term order of the ideal.

Typically, while the first term order is graded reverse lexicographic order or graded lexicographic order with which the
Gröbner basis computation is rather fast, the second term order is lexicographic order with which the computation is often
slow.
The problem can be solved by using linear algebra such as the FGLM algorithm [6] and its modular version [14].2 While

the FGLM algorithm can only be executed for zero-dimensional ideals, the modular approach can be applied to arbitrary
dimensional ideals. The FGLM algorithm prepares a set of monomials and the associated coefficients of indeterminates, and
to determine the coefficients in the underlying field, it solves the linear system derived from the normal forms modulo
the given Gröbner basis being zero. Particularly in the case of integer coefficients, the modular method chooses a suitable
prime p and executes Buchberger’s algorithm in Z/pZ, and when preparing a set of monomials, it adopts the support of the
obtained Gröbner basis.
The approachwe propose in this paper is to use a floating-point approximationwith precisionµ in place of the reduction

mod p. This method can be applied to arbitrary dimensional ideals in any subfield R of R. The outline is as follows:

Method. Use Stab(Buchberger)R to get the support of the Gröbner basis with floating-point coefficients with an initial
precision µ. Assuming this support to be correct, use the method of indeterminate coefficients. If there is no solution
in R, increase precision and repeat the above process. Here, Buchberger denotes Buchberger’s algorithm.

Let us describe an algorithmic form of this method on the next page. Let F be a finite subset of R[x1, . . . , xm] so that
I = 〈F〉 is an arbitrary dimensional ideal.
In BaseConv_Stab (Basis conversion algorithm based on stabilization), NFG0,<0(

∑
t∈Supp(g) at t) denotes the normal form

of
∑
t∈Supp(g) at t modulo G0 w.r.t. <0. The indeterminate coefficients at ’s except for the leading monomial t are computed

by exact linear algebra, so that an exact solution is obtained. Note that as the floating-point Gröbner basis computed by
Stab(Buchberger)R is reduced, the resulting Gröbner basis will also be reduced. By the uniqueness of monic reduced Gröbner
bases, the linear system Lg eventually will have a unique solution.
In the last ‘‘if ’’ statement, the check to see if G is the true Gröbner basis of 〈G0〉 w.r.t. < can be done by executing the

following two steps:

(1) First, confirm that G is a Gröbner basis by checking that the S-polynomial of each pair of G reduces to 0 by Gw.r.t.<.
(2) Second, confirm that 〈G〉 ⊇ 〈G0〉 by checking that every element of G0 reduces to 0 by Gw.r.t.<.

In fact, we already have that 〈G〉 ⊆ 〈G0〉 because every element of G reduces to 0 by G0 w.r.t.<0, from the structure of the
BaseConv_Stab algorithm. Therefore, by (2), we have that 〈G〉 = 〈G0〉. That is, the correctness of BaseConv_Stab is verified.
Termination also immediately follows from Theorem 2 on the correct support from a finite precision.

4. Experiments

We give a brief report of the experiments on BaseConv_Stab that we conducted in Maple. We used Maple 10 loaded
on a Dell Dimension DC051 PC (Intel(R) Pentium 4 CPU: 3.00 GHz, RAM: 2.99 GHz, 0.99 GB). Here we give five illustrative
examples. For every example F of polynomial sets, we first computed the Gröbner basis of 〈F〉 w.r.t. tdeg in advance in
Maple, and then computed the Gröbner basis of 〈F〉 w.r.t. plex by using our method. Here, tdeg and plex denote graded
reverse lexicographic order and lexicographic order, respectively.

2 For other approaches, we refer the reader to [11,24,5,2].



K. Shirayanagi, H. Sekigawa / Theoretical Computer Science 409 (2008) 311–317 315

(1) F = {f1, f2, f3}, where f1 = 1
7x
2
−
326548390854652
272974017239 x +

1263781236281
712638126 y

2
+
26872672361827
7263188218281 z

2, f2 = 3
8xy +

12367812638123
763812368213132yz −

63812638126
77263812831y, f3 =

4
9x+

327091270979304
24122375460421 y+

18467031595309203
318405459032 z − 356318063693141319

6436561806418109 .
(2) F = {(

√
2+
√
5)x3y+

√
3xy+

√
7, (
√
3−
√
2)x2y2 −

√
7xy+

√
11
11 }.

(3) F = {ex+
√
2y+
√
3z, exy+

√
5yz +

√
3zx, xyz − e}, where e is Napier’s number (2.71828 . . .).

(4) F = {
√
2ex2 + xy2 − z + 1/4,

√
3x+ y2z + 1/2,

√
5ex2z − 1/2 x− y2}.

(5) F = {
√
2e/πx3y+ (

√
3+ π)xy+

√
7/(e− π), (1− e

√
3)/e · πx2y2 − (

√
7− e)xy+ e/

√
11}.

Examples 1 and 5 are from the paper [18] about floating-point Gröbner bases. Example 2 is amodification of another example
in the same paper. Examples 3 and 4 are modifications of cyclic3 and an example from paper [4], respectively.

BaseConv_Stab (Basis conversion algorithm based on stabilization)
Input: Gröbner basis G0 of I w.r.t. term order<0, another term order<
Output: Reduced Gröbner basis of I w.r.t.<

µ := M (Initial value of precision of floating-point approximation)
again
loop
Gµ ← Floating-point reduced Gröbner basis of 〈G0〉w.r.t.<

with precision µ computed by Stab(Buchberger)R
G← ∅
for g ∈ Gµ do
for t ∈ Supp(g) do
if t is LM(g) (the leading monomial of g w.r.t<)
then at := 1
else at := Indeterminate corresponding to the floating-point

coefficient of t ∈ Supp(g)
endif

endfor
Lg := Linear system in at ’s (except for t = LM(g)) made from

NFG0,<0(
∑
t∈Supp(g) at t) = 0 by setting each coefficient

w.r.t. x1, . . . , xm to zero.
Solve Lg in R
if there exists a unique solution ãt ∈ R for at (except for t = LM(g))
then G← G ∪ {

∑
t∈Supp(g) ãt t}

else increase µ and goto again
endif

endfor
if G is the true Gröbner basis of 〈G0〉w.r.t.<
then return G else increase µ goto again
endif

endloop

We assume that we have a means of computing arbitrarily good approximations to the given transcendental constants.
In this experiment, we used evalf in Maple.
The experimental results are shown in the table.

Example GB(tdeg) by Maple Basis conversion MP GB(plex) by Maple
1 0.03 0.28 4 0.09
2 1.03 0.88 3 5.25
3 1.26 0.84 3 116.61
4 0.25 50.14 10 >3600
5 >3600 – – >3600

In this table, ‘‘GB(tdeg) by Maple’’ shows the cpu time in seconds for the Basis function in Maple 10 to compute the
Gröbner basis w.r.t. tdeg. ‘‘Basis conversion’’ shows the cpu time in seconds for the execution of BaseConv_Stabwhere the
initial value of floating-point precision was set to 1 and thereafter the precision was increased by 1 if a failure occurred.
Practically, however, various other ways of increasing the precision such as doubling at each iteration can be considered as
well. ‘‘MP’’ means the minimum precision which produced success. For reference, ‘‘GB(plex) by Maple’’ shows the cpu time
in seconds for the Maple 10 Basis to compute the Gröbner basis w.r.t. plex. ‘‘>3600’’ and ‘‘–’’ respectively denote that the
computation did not terminate after 3600 s and that we could not get the result.
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Discussion. The experimental results indicate that our method of basis conversion is more useful in the case of non-rational
coefficients than in the case of rational coefficients. In particular, when coefficients contain not only algebraic numbers but
also transcendental constants, it often displays great effectiveness. The cpu time taken for checking whether the obtained
result is the true Gröbner basis in the algorithm was rather small.
We believe that methods such as the FGLM algorithm or the modular version would be good in the cases of rational or

integer coefficients, whereas our method would be useful in the cases with non-rational coefficients, especially the ones
containing transcendental constants, because floating-point computation can display its full power.
In example 5, however, the method could not be used because an exact Gröbner basis w.r.t. tdeg was not obtained. In

such a case, we might consider a Gröbner basis w.r.t. another term order, or if possible, compute a Gröbner basis w.r.t. tdeg
by using another computer algebra system. Moreover, for example 5, we easily obtained a floating-point Gröbner basis w.r.t.
plex by using the stabilization techniques, so we might try the log method instead of basis conversion.
Finally, let us discuss other possible approaches to Gröbner basis computation in the case of coefficients containing

transcendental constants. First, in place of each transcendental constant, we might introduce an indeterminate and then
directly compute the Gröbner basis w.r.t. plex in the coefficient field with the indeterminates adjoined. This method may
be faster than direct computation in the original coefficient field, but in general it cannot avoid the growth of coefficients as
well. In fact, it was faster for example 3, but for examples 4 and 5, it could not display the results within a reasonable time.
Moreover, if the number of transcendental constants ismore than 1, we need to be careful about the algebraic independence
among them. Another approach to basis conversion would be to change each transcendental constant to an integer chosen
at random and then guess the support by computing the Gröbner basis w.r.t. plex in the new coefficient field.3 In most cases,
it would give the correct support more efficiently, but theoretically it is probabilistic. This approach deserves probabilistic
analysis.

5. Conclusion

We proposed a new Gröbner basis conversion method based on the stabilization techniques. We experimentally
confirmed that it is useful in the non-rational case. Futureworkwill include experiments in other computer algebra systems,
an estimation of the precision for which the correct support can be obtained, applications to real-world problems where
non-rational coefficients appear and new applications of supportwise convergence to other algebraic problems.
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