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1. INTRODUCTION 

In this paper, we are concerned with the abstract Cauchy problem for the nonlinear second-order 
neutral functional integrodifferential equation 

~[i’(t)-g(~,~~)]=A.(t)+~tF(t,s,~~,~’(.),~~~(s,~,~~,~‘(~))d7) ds, 

t E (O,T), (1) 

50 = 4, z’(0) = gfJ E x, 

where A is the infinitesimal generator of the strongly continuous cosine family C(t), t E R, of 
bounded linear operators in a Banach space X, f : [O,T] x [0, T] x C x X -+ X, F : [O,T] x 
[O,T]xCxXxX+X,andg:[O,T]xC + X are given functions and 4 E C = C( [-T, 01, X). 

Several papers have appeared for the existence of solutions of first-order neutral functional 
differential equations in Banach spaces [l-4]. Th ere seems to be little known about the solvabil- 
ity of the nonlinear second-order neutral equations in abstract spaces. Recently, Balachandran 
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and Marshal Anthoni [5,6] studied the existence problem for both Volterra integrodifferential 
equations and neutral differential equations in Banach spaces. Ntouyas [7] and Ntouyas and 
Tsamatos [8] established the existence of solutions for semilinear second-order delay differential 
equations. In many cases, it is advantageous to treat the second-order abstract differential equa- 
tions directly rather than to convert them to first-order equations. A useful tool for the study 
of abstract second-order differential equations is the theory of strongly continuous cosine fami- 
lies. We refer to the papers [9,10] for a detailed discussion of cosine family theory. Second-order 
equations which appear in a variety of physical problems can be found in [11,12]. The pur- 
pose of this paper is to study the existence of mild solutions for second-order neutral functional 
integrodifferential equations in Banach spaces using the Schaefer fixed-point theorem. 

2. PRELIMINARIES 
Let X be a Banach space with norm 1 .I and let T > 0 be a real number. By C we denote the 

Banach space of all continuous functions 4 : [-r, 0] + X endowed with the sup-norm 

11911 = suP{/$(qI : --T 58 IO}. 

Also for z E C([--T, T], X), wehaveztECfortEJ=[O,T], and Q(I~) = z(t+B) for 8 E [-T, 01. 

DEFINITION 2.1. (See 191.) A one-parameter family C(t), t E R, of bounded linear operators in 
the Banach space X is called a strongly continuous cosine family iff 

(i) C(s + t) + C(s - t) = 2C(s)C(t) for all s, t E R; 
(ii) C(0) = I; 

(iii) C(t)x is continuous in t on R for each fixed x E X. 

Define the associated sine family S(t), t E R, by 

S(t)x = 
s 

t 
C(s)x ds, 2 E x, t E R. 

0 

Assume the following conditions on A. 

(HI) A is the infinitesimal generator of a strongly continuous cosine family C(t), t E R, of 
bounded linear operators from X into itself, and the adjoint operator A* is densely defined; 
i.e., D(A*) = X* (see [13]). 

The infinitesimal generator of a strongly continuous cosine family C(t), t E R, is the operator 
A : X + X defined by 

Ax = $C(t)x x E W), 
t=o, 

where D(A) = {x E X : C(t) x is twice continuously differentiable in t}. 

Define E = {x E X : C(t) x is once continuously differentiable in t}. 

To establish our main theorem, we need the following lemmas. 

LEMMA 2.1. (See [91.) Let (HI) hold. Then 

(i) there exist constants M 2 1 and w 2 0 such that IC(t)I 5 MeWIt and IS(t) - S(t*)l 5 

MI s,“’ e”lsI dsl for t, t* E R; 
(ii) S(t)X c E and S(t)E c D(A) fort E R; 

(iii) $ C(t)x = AS(t)x for x E E and t E R; 
(iv) $ C(t)x = AC(t)x for x E D(A) and t E R. 

LEMMA 2.2. (See 191.) Let (HI) hold, let v : R + X such that v is continuously differentiable, 
and let q(t) = si S(t - s)v(s) ds. Then q is twice continuously differentiable and for t E R, 

q(t) E W), 

I 

t 
q’(t) = C(t - s)v(s) ds and q”(t) = Aq(t) + v(t). 

0 
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SCHAEFER’S FIXED-POINT THEOREM. (See [14].) Let S be a normed linear space. Let Cp : S --+ S 
be a completely continuous operator; that is, it is continuous and the image of any bounded set 
is contained in a compact set, and let 

(((a) = {x E S : x = X@x for some 0 < X < 1). 

Then either t(F) 1s unbounded or @ has a fixed point. 

DEFINITION 2.2. A continuous function 2 : [-r,T] + X, T > 0, is called a mild solution of 
problem (1) if x0 = 4, and if it satisfies the integral equation 

x(t) = C(+fo) + S(t)[Yo - do, d)l + jy cct - SM% h) ds 

+~S(t-s)~‘F(“,‘.“~,x~(~),~~~(~,~,xs,x~(~)) d,> drds, t E J. 

We make the following assumptions. 

(H2) C(t), t > 0 is compact. 
(Ha) g : J x C -+ X is completely continuous and for any bounded set K in C([--T, T], X), the 

set {t + g(t, zt) : z E K} is equicontinuous in C( [0, T]), X). 
(Hd) There exist constants cl and c2 such that 

Mt, 411 I ~111411 + c2> t E J, q!J E c. 

(Hs) The function f(t, s, ., .) : C x X + X is continuous for each t, s E J. 
(He) The function f(., .,z, y) : J x J + X is strongly measurable for each x E C and y E X. 
(Hr) There exists a continuous function h : J x J -+ [0, oo) such that 

If(4 %X,Y)I I qt, ~)~o(ll~ll + IYI), t,sE J, XEC, and YEX, 

where 520 : [0, oo) --+ (0, co) is a continuous nondecreasing function. 
(Hs) The function F(t, s, ., ., .) : C x X x X + X is continuous for each t, s E J. 
(Ha) The function F(., .,x, y,z) : J --+ X is strongly measurable for each x E C, y E X, and 

z E x. 
(Hre) For every positive constant lc, there exists ok E L’(J) such that 

IJ 
t 

sup F(t,s,x,y,z)ds 5 a(t), for t E J a.e. 
1141~1Ylh4I~ 0 

(HII) There exists a continuous function 1 : J x J -+ [0, co) such that 

lWt7 % 27 Y7 z)I 5 w, ~P(ll~ll + IYI + Izl), tEJ, XEC, y,z~X, 

where fl : [0, co) --+ (0, m) is a continuous nondecreasing function and 

J 
T 

J 
00 

m(s) ds < 
ds 

0 c s + Q(s) + Ro(s) < 03, 

where 

J 
t 

m(t) = mm cl [MCI + ibf + M*] , M(qT + T + 1) l(t, s) ds, h(t, t) 
> 

, 

M = sup{]C(t)] : t E J}, M* = sup{]AS(t)] : t”t J}, 

c = (M + hf* + cd 11~11 + (1 + T)M{lyol + clll$ll + cg} + (M + M*)c2T + c2. 



1316 K. BALACHANDRAN etal. 

3. MAIN RESULT 
THEOREM 3.1. Suppose (HI)-(HII) hold. Then the IVP (1) has at least one mild solution on 

l-r, Tl. 
PROOF. Consider the space 2 = C([-r, T], X) n C1(J, X) with the norm 

where 
llxllr =sup{lz(t)I : --T 5 t 5 T), ~~x’)~~ = sup {Iz’(t)l : 0 < t 5 T} . 

To prove the existence of a n&l solution of the IVP (l), we have to apply the Schaefer fixed-point 
theorem for the nonlinear operator equation 

x(t) = Aihx(t), O<X<l 

where the operator @ : Z -+ Z is defined by 

@x(t) = c(t)4(0) + WY0 - do, @I+ 1’ cct - SM% 25) ds 

+~S(t-s)~‘F(s,i,x,,x’(i),~Tf(Q,xs,x1(8))d6’) drds, tEJ. (2) 

Then we have, for t E J, 

IX(t)1 I Mll4ll + MT{lyol + cl~~~~~ + 24 + Ms 
s 
ot llxs II ds 

dr ds. 

Consider the function q defined by 

q(t) = sup{lz(s)l : -r 5 s 5 t}, t E J. 

Let t* E [-r,t] be such that q(t) = Ix(t*)l. If t* E [0, t], by the previous inequality we have, for 
t E J, 

q(t) I Ml1911 + MT{lyol + cllldll + 2~2) + MCI 
s 

o'n(4ds 

dr ds. 

If t* E [-r,O], then q(t) = 11411 and th e p revious inequality holds since M 2 1. 
Denoting by v(t) the right-hand side of the above inequality, we have 

q(t) L v(t), t E J, ~(0) = WMI + MT{lyol + cllldll + 2~2) 

and for t E J, 

v’(t) = Mclq(t) + MT q(s) + lx’(s)1 + /’ h(s,@o (q(T) + IX’(~) d7) ds 

Ohv(t)+MT~ 7 ( z(t S)Q v(s) + lx’(s)1 + j’ h(s,+o (V(T) + I~‘(~>11 d7) ds. o 
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BY 

I 

t 
z’(t) = ~As(+$(O) + W~>[YO - do, $)I + W, 4 + X AS(t - s)g(s, 2,) ds 

++(t-s)i’F (s,T,~~,~‘(r);~.~(0,8,II.I’(B))dB) drds, t E J, 

we obtain 

V(t)l 5 MIMI + WYOI + Clll4ll + c2) + ClIIQ(l + c2 + lQf* {d-+c~~Ir,lld~} 

+MJr;Ll’ s,r ( o drds. l( )Q q(T) + I~‘(dl + IT h(~.Vh~ (44 + l~‘(W de) 

Denoting by r(t) the right-hand side of the above inequality, we have for t E J, 

~(0) = M*ll411+ M{lyol + c1ll4ll + ~2) + sll~ll + ~2 + M*cJ’, 

and 

r’(t) < qw’(t) + M*qw(t) 

+MJu’i(t,s)i+s)+r(s)+~‘h(s,~)Qo(v(r)+r(r))dr) ds 

5 cl Mqv(t) + MT It Z(t, s)R (w(s) + r(s) + 1’ h(s, T)fio(v(T) + r(T)) d+ ds} 
0 0 

+ M*qw(t) + M ~“(t,s)+(s)+~(s)+~‘~(s,~)~o(~(~)+r(T))dT) ds. 

Let u(t) = w(t) + r(t), t E J. Then u(0) = c, and 

u’(t) = w’(t) + r’(t) 

I cl [MCI + M + M*] v(t) 

+ M(cIT + T + 1) It l(t, s)fl (w(s) + r(s) + 1' h(~, T&(w(T) + r(T)) d’r) ds 

5 cl [MCI + M + M*]:(t) 
0 

+ M(sT + T + 1) [i(t,s)R (u(s) + /d’h(s,+o(+))dT) ds, t E J 

Let w(t) = u(t) + si h(t, s)Ro(zl(s)) ds, t E J. Then w(0) = c, and for t E J, 

w’(t) = u’(t) + qt, t&(u(t)) 

5 cl [MCI + M + M*] w(t) 

+ M(clT + T + 1) 
s 

t 
Z(t, s)R(w(s)) ds + h(t, Wo(4t)) 

< q[Mcl + M + M*]:(t) 

+ M(clT + T + l)fl(w(t)) I’@, s) ds + h(t,t)flo(w(t)). 

This implies 

J w(t) ds 
w(o) s+fqs>+no(s> s 0 J 

T 

m(s) ds < 
ds 

s + n(s) + Q,(s) ’ 
t E J. 
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This inequality implies that there is a constant K such that w(t) 5 K, t E J. Then 

and hence, 

1141* = m=4141r, ll4lo~ 5 K 

where K depends on the constants T, N and on the functions Cl0 and R. 
We shall now prove that the operator Q : Z --f Z defined by 

(@x)(t) = 4(t), -r 5 t 5 0, 

(@x)(t) = c(t)4(0) + WlYo - do, 4)1+ It cct - sMs7 4 02 (3) 

is a completely continuous operator. 
Let Bk = {x E 2 : ~~z~~* 5 k} f or some k 2 1. We first show that @ maps Bk into an 

equicontinuous family. Let x E Bk and tl, t2 E J. Then if 0 < tl < t2 5 T, 

I(@x)(td - (@x&2)1 

5 IWl> - C(t2>14@9I + IF(t1) - S(S)l[Yo - 9(0,4)11 

+ 
IJ 

t1 [C@l - s) - C(tz - s)]g(s, x,) ds + t2 C(t2 - s)g(s, 2,) ds 
0 I IJ t1 

5 IWd - w2>111911 + w> - S(t2)l{lYol + slldll + c2) 

+ 
s 

t1 F(t1 - s> - qt2 - S)I{ClIIGll + c2)ds 
0 

ta + 
s t1 

ICV2 - ~)I~c1ll~sll + C2)dS + St1 p(t1 - s) - S(t2 - s)lak(s) ds 
0 

s 
t2 + w, - S)IQk(S) ds, 

t1 

and similarly, 

IPwl> - (W’(t2)l 

I IA(S(h) - S(t2))sW)l+ IF’(h) - C(t,)l[yo - do,4)11 

I/ t1 + Ig(t1, q) - g(t2, xta)l + A(S(tl -s) - s(t2 - s))g(s,4ds 
0 

AS(t2 - s)g(s, 2,) ds + I II t* [fT(t, - s) - C(tz - s)] 
0 

J Tf(T,e ,X8, d(e)) de dT ds 
0 > I 

(4 

(5) 
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5 Lw(td - s~~2))llldllf IWh) - c(t,)]lllYol+ Clll4ll + c2) _( 

+ ld~1,~t,) - g(tz,%)l + 
J 

t1 IA(S(tl - s) - s(t2 - s))I{c~~I~,I~ + c2} ds 
0 

t* + 
J t1 

\AS(tz - s)l~clll~sll + ~2) ds + It1 \c(t, - s) - c(t2 - s)\cQ(~) ds 
0 

+ J tz pqt, - S)IQk(S) ds. ((5) cont.) 
t1 

The right-hand sides of (4) and (5) are independent of y E Bk and tend to zero as tz - tl -+ 0, 
since C(t), S(t) are uniformly continuous for t E J and the compactness of C(t), S(t) for t > 0 
imply the continuity in the uniform operator topology. The compactness of S(t) follows from 
that of C(t) (see [lo]). 

Thus, @ maps Bk into an equicontinuous family of functions. It is easy to see that the fam- 
ily @Bk is uniformly bounded. 

Next we show @‘Bk is compact. Since we have shown (PBk is an equicontinuous collection, it 
suffices by the Arzela-Ascoli theorem to show that @ maps Bk into a precompact set in X. 

Let 0 < t 5 T be fixed and E a real number satisfying 0 < E < t. For x E Bk, we define 

(@<x>(t) = C(+,W) + S(t)lyo - do, 4)l + I” C(t - s)g(s, 2,) ds 

J 
t--E s + S(t - s) J ( F WG,+), J Tfw , xe, x’(0)) d6’ 

> 
dr ds, t E 3. 

0 0 0 

Since C(t), S(t) are compact operators, the set Ye(t) = {(GEx)(t) : x E Bk} is precompact in X 
for every e, 0 < e < t. Moreover, for every x E Bk, we have 

I(@x>(t) - (@EX)@)l .5 J t IC(t - s)g(s, x,)1 ds 
t--E 

+#(t-s)lF (s,T,xnxi(T),~if(~,e,~e,21(e))de) drj ds 

I J t IC(t - s)I{c1IIx,II + cz}ds t--E 
J t + IS(t - s)jcik(s) ds + 0, X3E-+O, 

t--E 

and 

J t I(@x)‘(t) - (@P)‘@)l 5 ldt, xt) - C(dg(t - 6, Q-4 + IAS(t - s)ds, x,)1 ds 
t--a 

+~~.jC(t-s)~F(s,7,x,,2’(7);~if(i,8,10;210)ds) +s 

J t 2 lg(t, xt) - C(f)& - 67 xt--E)I + IAS(t - ~)l{c1II~sII + c2> ds 
t--e 

+ J t \C(t - s)lak(s) ds + 0, as&--,O. 
t--E 

Therefore, there are precompact sets arbitrarily close to the set {(@x)(t) : x E Bk}. Hence, the 
set {(@x)(t) : x E Bk} is precompact in X. 

It remains to show that ip : 2 + 2 is continuous. Let {x~}F 2 2 with x, -+ x in Z. Then 
there is an integer q such that IxCn(t)l 5 q, Ix;(t)1 2 q for all n and t E J, so (x(t)1 5 q, Ix’(t)1 5 q, 
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and z,z’ E 2. By (H5) and (lb), 

for each t E J and since 

J sf( s, 7, xn,, X,‘(T)) dT ds 
0 t - J ( F t, 3, xs, x'(s), J sf( s,T,x~,x’(T)) dT ds 5 Sa,(t), 

0 0 > I 

we have by the dominated convergence theorem, 

+lS(t-S) [I~F(s,7..nii.n’(T)i~if W,m,dW de) dT s - J ( F s,T,G,x'(T), J 7 f (T,Q , xe,x’(e)) de d7 ds 
0 0 > 1 I 

I J oT Ictt - SM s,xn,) - gts, xs)ll ds 
+JoTIstt--S) [~sF(S.i.~nr,Zni(T),~lfti.8.ZneiZnl(e))de) d7 

- J ( SF %T,%X’(T), J Tf w , xe,x’(e)) de > 1 I dr ds --f 0, as7z-+m, 
0 0 

and 

IIP4 - (@~>‘I1 

= SUP [g(t, 4 - g(t, 41 + J AS@ - s>[g(s, &is, - gts, xa)] ds tEJ 
+lc(t-s) [L’J’ (v,::.,dC+~Tf &%~ne,d@‘~~ de> d7 s - J ( F s, 7, ~7, X'(T), 

0 J Tf (0 , x8, x’(e)) dt9 dr ds 
0 > 1 I 

I Is+, xnt) - gtt, 41 ds + s, xn,) - gts, x&II ds 

s - J ( F s,~,xnx'(~), Tf (0 , xe,x’(6’)) de dr ds --+ 0, asn+oo. 
0 J 0 > 1 I 

Thus, @ is continuous. This completes the proof that Q is completely continuous. 

Obviously, the set [(a) = {z E 2 : 2 = Xk, X E (0, 1)) is bounded, as we proved in the first 
step. Consequently, by Schaefer’s theorem the operator Q has a fixed point in 2. This means 
that any fixed point of @ is a mild solution of (1) on [-r,Z’] satisfying (k)(t) = z(t). Thus, 
IVP (1) has at least one mild solution on [-r, T] . 
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4. EXAMPLE 

Consider the following partial differential equation: 

z(0,t) = z(7r,t) = 0, for t > 0, 

4Y7 4 = $(Y, 4, for - T 5 t 5 0, 

Zt(Y,O) = Zl(Y), tEJ=[O,T], forO<y<7r, 

where 4 is continuous and the functions p, (T, 77 are defined below. 
Let X = L2[0, 7r] and let A : X -+ X be defined by 

Aw = w”, ‘w E W9, 

where D(A) = {w E X : w, w’ are absolutely continuous, w” E X, w(0) = W(T) = 0). Then, 
Aw = C,“=i -n2(w,w~)w~, w E D(A), where w,(s) = msinns, n = 1,2,3,. . . is the 
orthogonal set of eigenvalues of A. 

It can be easily shown that A is the infinitesimal generator of a strongly continuous cosine 
family C(t), t E R, in X and is given by 

00 
C(t)w = c cosnt(w, w,)w,, w E x. 

n=l 

The associated sine family is given by 

“1 
S(t)w = C ; sinnt(w, w,)w,, w E x. 

n=l 

Let g : J x C + X be defined by 

dc U)(Y) = At, U(Y)), UEC, YE[O,7+ 

where ~1 : J x [0, ] 7r -+ [O,K] is continuous and strongly measurable. Also there exist positive 
constants cr and c2 such that 

IlP@, 4111 I Clll4ll + c2. 

Let f : J x J x C x X -+ X be defined by 

f (4 s, ‘11, V)(Y) = Tl(t, 37 4Y), 4Y)), u E c, 21 E x, Y E [O,~], 

where 77 : J x J x [0, r] x [0, r] + [0, 7r is continuous and strongly measurable. Also, the function n ] 
satisfies the following condition: there exists a continuous function 4 : J x J + [0, co) such that 

IId s,x, Y>ll 5 tct, ~>~(ll~ll + IYI), t E J, x E C, y E X, 

where Ri : [O,oo) -+ (0, co) is a continuous nondecreasing function. 
Let F : J x J x C x X x X + X be defined by 

F(~,s>u,~,w)(Y) = ~(~,s,~(Y),~(Y),w(Y)), u E c, 2, E x, WEX, YE[O,4, 

wherea:JxJx[O,r]x[O,w]x[O,7r]+[O, ] r is continuous and strongly measurable. 
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Further, the function o satisfies the following condition: there exists a continuous function 
$ : J x J + (0, oo) such that 

where 02 : [0, oo) + (0, co) is a continuous nondecreasing function such that 

ds 

where 

h(t) = max cl [MCI + A4 + M*] , M(cIT + T + 1) 
I 

t $(t, s) ds, G(t, t) , 
0 

and c is a known constant. 
With this choice of A, g, f, and F, (1) is an abstract formulation of (6). Furthermore, all the 

conditions stated in the above theorem are satisfied. Hence, equation (6) has at least one mild 
solution on [-T-, T]. 

5. APPLICATION 
As an application of Theorem 3.1, we shall consider the system with a control variable such as 

; [x’(t) - g(t, xt)] = Ax(t) + Bu(t) 
t 

+ 
I ( 

F OJ,,X’(~, 
I 

If( s, T, x,, X’(T)) dr 
> 

ds, t E (O,T), C7) 
0 0 

20 = 4, x’(O) = Yo, 

where B is a bounded linear operator from a Banach space U to X and u E L2 (J, U). 
A continuous function x : [-r, T] + X, T > 0, is called a mild solution of (7) if x0 = 4, and if 

it satisfies the integral equation 

x(t) = C(t)4(0) + WYO - do, +)I + /dt C(t - sMsvxs)ds 

+~~(t-s)[BU(s)+I’F(s,~,x~,x’(r),I~f(7,e,xB,Z’(8))de) dr] ds, MJ. (8) 

DEFINITION 5.1. System (7) is said to be controllable on J if for every q5 E C with 4(O) E D(A), 
yo E E, and x1 E X, there exists a control u E L2( J, V) such that the solution x(.) of (7) satisfies 
x(T) = x1. 

For the controllability of second-order systems, one can refer to paper [15] and the references 
cited therein. To establish the controllability result, we need the following additional assump- 
tions. 

(H4 Bu(t) is continuous in t and l[Bll 5 iI41 for some constant 441 > 0. 
(HIS) The linear operator W : L2( J, V) -+ X defined by 

I 
T 

wu= S(T - s)Bu(s) ds 
0 

induces a bounded invertible operator m : L2(J, U)/ker W + X such that ll@-111 I M2 
for some constant M2 > 0. 

(H14) 

I 

T 

m*(s) ds < 
ds 

0 s + Q(s) + no(s) < m7 
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J 
t 

m*(t) = max cl [MCI + M + M*] , M(crT + T + 1) I(4 3) ds, h(t, t) , 
0 > 

a = (M + M* + cd 1141 + Cl+ T)M{IYoI + clll4ll+ c2> 

+(M+M*)c2T+(T2+T)MN+c2, 

1~11 + Ml141 + MT{lyol + c1ll44 + 2~2) + MCI 
J 
oT II-II d7 

h(~,Wo (Ilxell + Ix’(Q)l) do ) 1 drds . 

THEOREM 5.1. If the hypotheses (Hl)-(H1~) hold, then system (7) is controllable on J. 

PROOF. Using (Hrs), for an arbitrary function x(.), we define the control 

U(t) = W-l 21 - W’%(O) - W)[YO - do, d)] - lT C(T - s)ds, 2s) ds 

J 

T 
- 

S(T - s)f (s, x,, x’(s)) ds (t). 
0 1 

Using this control, we will show that the operator P : 2 + 2 defined by 

(*x)(t) = 4(t), -r < t 5 0, 

(*x)(t) = C(tM(o) + W[yo - do, 411 + It C(t - s)ds, 2s) ds 

J 
t + s(t - s)BW1 [ x1 - C(T)#@) - W’)[YO - g(O, 4)1- iT C(T - T)g(T,x:7) do 

-~~S(T-~)~~~(.,;,~~,x’(T),b.i(T,e,~~,x’(~)) do) d,d,] (s)ds 

+Ji,‘S(t-s)~sF(s,~,x~,x’(T),~i~(r;BIZg;.lo)d~) dTds> tE-& 

has a fixed point. This fixed point is then a solution of equation (8). 
Clearly, (+x)(T) = ~1, which means that the control u steers the system from the initial 

state xc to x1 in time T, provided we obtain a fixed point of the nonlinear operator 9. The 
remaining part of the proof is similar to Theorem 3.1, and hence it is omitted. 
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