Available at
An Intemational Joumal
www.ElsevlerMathematics.com
computers \&
rownenirecience @dinect. mathematics with applications

Existence of Solutions of Abstract Nonlinear Second-Order Neutral Functional Integrodifferential Equations

K. Balachandran
Department of Mathematics, Bharathiar University
Coimbatore 641 046, India
D. G. Park
Dong-A University
Pusan 604-714, Korea
S. Marshal Anthoni
Kumaraguru College of Technology
Coimbatore 641 006, India

(Received November 2001; accepted August 2002)

Abstract

Sufficient conditions for existence of mild solutions for abstract second-order neutral functional integrodifferential equations are established by using the theory of strongly continuous cosine families of operators and the Schaefer theorem. © 2003 Elsevier Ltd. All rights reserved.

Keywords-Neutral functional integrodifferential equation, Strongly continuous cosine operators, Schaefer fixed-point theorem.

1. INTRODUCTION

In this paper, we are concerned with the abstract Cauchy problem for the nonlinear second-order neutral functional integrodifferential equation

$$
\begin{gather*}
\frac{d}{d t}\left[x^{\prime}(t)-g\left(t, x_{t}\right)\right]=A x(t)+\int_{0}^{t} F\left(t, s, x_{s}, x^{\prime}(s), \int_{0}^{s} f\left(s, \tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right) d s, \\
t \in(0, T), \tag{1}\\
x_{0}=\phi, \quad x^{\prime}(0)=y_{0} \in X,
\end{gather*}
$$

where A is the infinitesimal generator of the strongly continuous cosine family $C(t), t \in R$, of bounded linear operators in a Banach space $X, f:[0, T] \times[0, T] \times C \times X \rightarrow X, F:[0, T] \times$ $[0, T] \times C \times X \times X \rightarrow X$, and $g:[0, T] \times C \rightarrow X$ are given functions and $\phi \in C=C([-r, 0], X)$.
Several papers have appeared for the existence of solutions of first-order neutral functional differential equations in Banach spaces [1-4]. There seems to be little known about the solvability of the nonlinear second-order neutral equations in abstract spaces. Recently, Balachandran

[^0]and Marshal Anthoni [5,6] studied the existence problem for both Volterra integrodifferential equations and neutral differential equations in Banach spaces. Ntouyas [7] and Ntouyas and Tsamatos [8] established the existence of solutions for semilinear second-order delay differential equations. In many cases, it is advantageous to treat the second-order abstract differential equations directly rather than to convert them to first-order equations. A useful tool for the study of abstract second-order differential equations is the theory of strongly continuous cosine families. We refer to the papers $[9,10]$ for a detailed discussion of cosine family theory. Second-order equations which appear in a variety of physical problems can be found in [11,12]. The purpose of this paper is to study the existence of mild solutions for second-order neutral functional integrodifferential equations in Banach spaces using the Schaefer fixed-point theorem.

2. PRELIMINARIES

Let X be a Banach space with norm $|\cdot|$ and let $T>0$ be a real number. By C we denote the Banach space of all continuous functions $\phi:[-r, 0] \rightarrow X$ endowed with the sup-norm

$$
\|\phi\|=\sup \{|\phi(\theta)|:-r \leq \theta \leq 0\} .
$$

Also for $x \in C([-r, T], X)$, we have $x_{t} \in C$ for $t \in J=[0, T]$, and $x_{t}(\theta)=x(t+\theta)$ for $\theta \in[-r, 0]$. Definition 2.1. (See [9].) A one-parameter family $C(t), t \in R$, of bounded linear operators in the Banach space X is called a strongly continuous cosine family iff
(i) $C(s+t)+C(s-t)=2 C(s) C(t)$ for all $s, t \in R$;
(ii) $C(0)=I$;
(iii) $C(t) x$ is continuous in t on R for each fixed $x \in X$.

Define the associated sine family $S(t), t \in R$, by

$$
S(t) x=\int_{0}^{t} C(s) x d s, \quad x \in X, \quad t \in R .
$$

Assume the following conditions on A.
$\left(\mathrm{H}_{1}\right) A$ is the infinitesimal generator of a strongly continuous cosine family $C(t), t \in R$, of bounded linear operators from X into itself, and the adjoint operator A^{*} is densely defined; i.e., $\overline{D\left(A^{*}\right)}=X^{*}$ (see [13]).

The infinitesimal generator of a strongly continuous cosine family $C(t), t \in R$, is the operator $A: X \rightarrow X$ defined by

$$
A x=\left.\frac{d^{2}}{d t^{2}} C(t) x\right|_{t=0,} \quad x \in D(A)
$$

where $D(A)=\{x \in X: C(t) x$ is twice continuously differentiable in $t\}$.
Define $E=\{x \in X: C(t) x$ is once continuously differentiable in $t\}$.
To establish our main theorem, we need the following lemmas.
Lemma 2.1. (Scc [9].) Let (H_{1}) hold. Then
(i) there exist constants $M \geq 1$ and $\omega \geq 0$ such that $|C(t)| \leq M e^{\omega|t|}$ and $\left|S(t)-S\left(t^{*}\right)\right| \leq$ $M\left|\int_{t}^{t^{*}} e^{\omega|s|} d s\right|$ for $t, t^{*} \in R$;
(ii) $S(t) X \subset E$ and $S(t) E \subset D(A)$ for $t \in R$;
(iii) $\frac{d}{d t} C(t) x=A S(t) x$ for $x \in E$ and $t \in R$;
(iv) $\frac{d^{2}}{d t^{2}} C(t) x=A C(t) x$ for $x \in D(A)$ and $t \in R$.

Lemma 2.2. (See [9].) Let (H_{1}) hold, let $v: R \rightarrow X$ such that v is continuously differentiable, and let $q(t)=\int_{0}^{t} S(t-s) v(s) d s$. Then q is twice continuously differentiable and for $t \in R$, $q(t) \in D(A)$,

$$
q^{\prime}(t)=\int_{0}^{t} C(t-s) v(s) d s \quad \text { and } \quad q^{\prime \prime}(t)=A q(t)+v(t) .
$$

Schaefer's Fixed-Point Theorem. (See [14].) Let S be a normed linear space. Let $\Phi: S \rightarrow S$ be a completely continuous operator; that is, it is continuous and the image of any bounded sct is contained in a compact set, and let

$$
\xi(\Phi)=\{x \in S: x=\lambda \Phi x \text { for some } 0<\lambda<1\}
$$

Then either $\xi(F)$ is unbounded or Φ has a fixed point.
Definition 2.2. A continuous function $x:[-r, T] \rightarrow X, T>0$, is called a mild solution of problem (1) if $x_{0}=\phi$, and if it satisfies the integral equation

$$
\begin{aligned}
x(t)=C(t) \phi(0) & +S(t)\left[y_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, x_{s}\right) d s \\
& +\int_{0}^{t} S(t-s) \int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau d s, \quad t \in J
\end{aligned}
$$

We make the following assumptions.
$\left(\mathrm{H}_{2}\right) C(t), t>0$ is compact.
$\left(\mathrm{H}_{3}\right) g: J \times C \rightarrow X$ is completely continuous and for any bounded set K in $C([-r, T], X)$, the set $\left\{t \rightarrow g\left(t, x_{t}\right): x \in K\right\}$ is equicontinuous in $\left.C([0, T]), X\right)$.
$\left(\mathrm{H}_{4}\right)$ There exist constants c_{1} and c_{2} such that

$$
|g(t, \phi)| \leq c_{1}\|\phi\|+c_{2}, \quad t \in J, \quad \phi \in C
$$

$\left(\mathrm{H}_{5}\right)$ The function $f(t, s, \ldots): C \times X \rightarrow X$ is continuous for each $t, s \in J$.
$\left(\mathrm{H}_{6}\right)$ The function $f(., ., x, y): J \times J \rightarrow X$ is strongly measurable for each $x \in C$ and $y \in X$.
$\left(\mathrm{H}_{7}\right)$ There exists a continuous function $h: J \times J \rightarrow[0, \infty)$ such that

$$
|f(t, s, x, y)| \leq h(t, s) \Omega_{0}(\|x\|+|y|), \quad t, s \in J, \quad x \in C, \quad \text { and } \quad y \in X
$$

where $\Omega_{0}:[0, \infty) \rightarrow(0, \infty)$ is a continuous nondecreasing function.
$\left(\mathrm{H}_{8}\right)$ The function $F(t, s, ., .):, C \times X \times X \rightarrow X$ is continuous for each $t, s \in J$.
$\left(\mathrm{H}_{9}\right)$ The function $F(., ., x, y, z): J \rightarrow X$ is strongly measurable for each $x \in C, y \in X$, and $z \in X$.
$\left(\mathrm{H}_{10}\right)$ For every positive constant k, there exists $\alpha_{k} \in L^{1}(J)$ such that

$$
\sup _{\|x\|,|y|,|z| \leq k}\left|\int_{0}^{t} F(t, s, x, y, z) d s\right| \leq \alpha_{k}(t), \quad \text { for } t \in J \text { a.e. }
$$

$\left(\mathrm{H}_{11}\right)$ There exists a continuous function $l: J \times J \rightarrow[0, \infty)$ such that

$$
|F(t, s, x, y, z)| \leq l(t, s) \Omega(\|x\|+|y|+|z|), \quad t \in J, \quad x \in C, \quad y, z \in X
$$

where $\Omega:[0, \infty) \rightarrow(0, \infty)$ is a continuous nondecreasing function and

$$
\int_{0}^{T} m(s) d s<\int_{c}^{\infty} \frac{d s}{s+\Omega(s)+\Omega_{0}(s)}<\infty
$$

where

$$
\begin{aligned}
m(t) & =\max \left\{c_{1}\left[M c_{1}+M+M^{*}\right], M\left(c_{1} T+T+1\right) \int_{0}^{t} l(t, s) d s, h(t, t)\right\} \\
M & =\sup \{|C(t)|: t \in J\}, \quad M^{*}=\sup \{|A S(t)|: t \in J\} \\
c & =\left(M+M^{*}+c_{1}\right)\|\phi\|+(1+T) M\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\}+\left(M+M^{*}\right) c_{2} T+c_{2} .
\end{aligned}
$$

3. MAIN RESULT

Theorem 3.1. Suppose $\left(H_{1}\right)-\left(H_{11}\right)$ hold. Then the IVP (1) has at least one mild solution on $[-r, T]$.
Proof. Consider the space $Z=C([-r, T], X) \cap C^{1}(J, X)$ with the norm

$$
\|x\|^{*}=\max \left\{\|x\|_{r},\left\|x^{\prime}\right\|_{0}\right\}
$$

where

$$
\|x\|_{r}=\sup \{|x(t)|:-r \leq t \leq T\}, \quad\left\|x^{\prime}\right\|_{0}=\sup \left\{\left|x^{\prime}(t)\right|: 0 \leq t \leq T\right\}
$$

To prove the existence of a mild solution of the IVP (1), we have to apply the Schaefer fixed-point theorem for the nonlinear operator equation

$$
x(t)=\lambda \Phi x(t), \quad 0<\lambda<1
$$

where the operator $\Phi: Z \rightarrow Z$ is defined by

$$
\begin{gather*}
\Phi x(t)=C(t) \phi(0)+S(t)\left[y_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, x_{s}\right) d s \tag{2}\\
+\int_{0}^{t} S(t-s) \int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau d s, \quad t \in J .
\end{gather*}
$$

Then we have, for $t \in J$,

$$
\begin{aligned}
& |x(t)| \leq M\|\phi\|+M T\left\{\left|y_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right\}+M c_{1} \int_{0}^{t}\left\|x_{s}\right\| d s \\
& \quad+M T \int_{0}^{t} \int_{0}^{s} l(s, \tau) \Omega\left(\left\|x_{\tau}\right\|+\left|x^{\prime}(\tau)\right|+\int_{0}^{\tau} h(\tau, \theta) \Omega_{0}\left(\left\|x_{\theta}\right\|+\left|x^{\prime}(\theta)\right|\right) d \theta\right) d \tau d s .
\end{aligned}
$$

Consider the function q defined by

$$
q(t)=\sup \{|x(s)|:-r \leq s \leq t\}, \quad t \in J .
$$

Let $t^{*} \in[-r, t]$ be such that $q(t)=\left|x\left(t^{*}\right)\right|$. If $t^{*} \in[0, t]$, by the previous inequality we have, for $t \in J$,

$$
\begin{aligned}
q(t) \leq M\|\phi\| & +M T\left\{\left|y_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right\}+M c_{1} \int_{0}^{t} q(s) d s \\
& +M T \int_{0}^{t} \int_{0}^{s} l(s, \tau) \Omega\left(q(\tau)+\left|x^{\prime}(\tau)\right|+\int_{0}^{\tau} h(\tau, \theta) \Omega_{0}\left(q(\theta)+\left|x^{\prime}(\theta)\right|\right) d \theta\right) d \tau d s
\end{aligned}
$$

If $t^{*} \in[-r, 0]$, then $q(t)=\|\phi\|$ and the previous inequality holds since $M \geq 1$.
Denoting by $v(t)$ the right-hand side of the above inequality, we have

$$
q(t) \leq v(t), \quad t \in J, \quad v(0)=M\|\phi\|+M T\left\{\left|y_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right\}
$$

and for $t \in J$,

$$
\begin{aligned}
v^{\prime}(t) & =M c_{1} q(t)+M T \int_{0}^{t} l(t, s) \Omega\left(q(s)+\left|x^{\prime}(s)\right|+\int_{0}^{s} h(s, \tau) \Omega_{0}\left(q(\tau)+\left|x^{\prime}(\tau)\right|\right) d \tau\right) d s \\
& \leq M c_{1} v(t)+M T \int_{0}^{t} l(t, s) \Omega\left(v(s)+\left|x^{\prime}(s)\right|+\int_{0}^{s} h(s, \tau) \Omega_{0}\left(v(\tau)+\left|x^{\prime}(\tau)\right|\right) d \tau\right) d s
\end{aligned}
$$

By

$$
\begin{aligned}
& x^{\prime}(t)=\lambda A S(t) \phi(0)+\lambda C(t)\left[y_{0}-g(0, \phi)\right]+\lambda g\left(t, x_{t}\right)+\lambda \int_{0}^{t} A S(t-s) g\left(s, x_{s}\right) d s \\
&+\lambda \int_{0}^{t} C(t-s) \int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau d s, \quad t \in J
\end{aligned}
$$

we obtain

$$
\begin{aligned}
&\left|x^{\prime}(t)\right| \leq M^{*}\|\phi\|+M\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\}+c_{1}\left\|x_{t}\right\|+c_{2}+M^{*}\left\{c_{2} T+c_{1} \int_{0}^{t}\left\|x_{s}\right\| d s\right\} \\
&+M \int_{0}^{t} \int_{0}^{s} l(s, \tau) \Omega\left(q(\tau)+\left|x^{\prime}(\tau)\right|+\int_{0}^{\tau} h(\tau . \theta) \Omega_{0}\left(q(\theta)+\left|x^{\prime}(\theta)\right|\right) d \theta\right) d \tau d s
\end{aligned}
$$

Denoting by $r(t)$ the right-hand side of the above inequality, we have for $t \in J$,

$$
\begin{aligned}
\left|x^{\prime}(t)\right| & \leq r(t) \\
r(0) & =M^{*}\|\phi\|+M\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\}+c_{1}\|\phi\|+c_{2}+M^{*} c_{2} T
\end{aligned}
$$

and

$$
\begin{aligned}
r^{\prime}(t) \leq & c_{1} v^{\prime}(t)+M^{*} c_{1} v(t) \\
& +M \int_{0}^{t} l(t, s) \Omega\left(v(s)+r(s)+\int_{0}^{s} h(s, \tau) \Omega_{0}(v(\tau)+r(\tau)) d \tau\right) d s \\
\leq & c_{1}\left\{M c_{1} v(t)+M T \int_{0}^{t} l(t, s) \Omega\left(v(s)+r(s)+\int_{0}^{s} h(s, \tau) \Omega_{0}(v(\tau)+r(\tau)) d \tau\right) d s\right\} \\
& +M^{*} c_{1} v(t)+M \int_{0}^{t} l(t, s) \Omega\left(v(s)+r(s)+\int_{0}^{s} h(s, \tau) \Omega_{0}(v(\tau)+r(\tau)) d \tau\right) d s
\end{aligned}
$$

Let $u(t)=v(t)+r(t), t \in J$. Then $u(0)=c$, and

$$
\begin{aligned}
u^{\prime}(t)= & v^{\prime}(t)+r^{\prime}(t) \\
\leq & c_{1}\left[M c_{1}+M+M^{*}\right] v(t) \\
& +M\left(c_{1} T+T+1\right) \int_{0}^{t} l(t, s) \Omega\left(v(s)+r(s)+\int_{0}^{s} h(s, \tau) \Omega_{0}(v(\tau)+r(\tau)) d \tau\right) d s \\
\leq & c_{1}\left[M c_{1}+M+M^{*}\right] u(t) \\
& +M\left(c_{1} T+T+1\right) \int_{0}^{t} l(t, s) \Omega\left(u(s)+\int_{0}^{s} h(s, \tau) \Omega_{0}(u(\tau)) d \tau\right) d s, \quad t \in J
\end{aligned}
$$

Let $w(t)=u(t)+\int_{0}^{t} h(t, s) \Omega_{0}(u(s)) d s, t \in J$. Then $w(0)=c$, and for $t \in J$,

$$
\begin{aligned}
w^{\prime}(t)= & u^{\prime}(t)+h(t, t) \Omega_{0}(u(t)) \\
\leq & c_{1}\left[M c_{1}+M+M^{*}\right] w(t) \\
& +M\left(c_{1} T+T+1\right) \int_{0}^{t} l(t, s) \Omega(w(s)) d s+h(t, t) \Omega_{0}(w(t)) \\
\leq & c_{1}\left[M c_{1}+M+M^{*}\right] w(t) \\
& +M\left(c_{1} T+T+1\right) \Omega(w(t)) \int_{0}^{t} l(t, s) d s+h(t, t) \Omega_{0}(w(t)) .
\end{aligned}
$$

This implies

$$
\int_{w(0)}^{w(t)} \frac{d s}{s+\Omega(s)+\Omega_{0}(s)} \leq \int_{0}^{T} m(s) d s<\int_{c}^{\infty} \frac{d s}{s+\Omega(s)+\Omega_{0}(s)}, \quad t \in J
$$

This inequality implies that there is a constant K such that $w(t) \leq K, t \in J$. Then

$$
\begin{aligned}
|x(t)| \leq v(t) \leq K, & t \in J, \\
\left|x^{\prime}(t)\right| \leq r(t) & \leq K,
\end{aligned} \quad t \in J,
$$

and hence,

$$
\|x\|^{*}=\max \left\{\|x\|_{r},\left\|x^{\prime}\right\|_{0}\right\} \leq K
$$

where K depends on the constants T, N and on the functions Ω_{0} and Ω.
We shall now prove that the operator $\Phi: Z \rightarrow Z$ defined by

$$
\begin{align*}
(\Phi x)(t)= & \phi(t), \quad-r \leq t \leq 0 \\
(\Phi x)(t)= & C(t) \phi(0)+S(t)\left[y_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, x_{s}\right) d s \tag{3}\\
& +\int_{0}^{t} S(t-s) \int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau d s, \quad t \in J
\end{align*}
$$

is a completely continuous operator.
Let $B_{k}=\left\{x \in Z:\|x\|^{*} \leq k\right\}$ for some $k \geq 1$. We first show that Φ maps B_{k} into an equicontinuous family. Let $x \in B_{k}$ and $t_{1}, t_{2} \in J$. Then if $0<t_{1}<t_{2} \leq T$,
and similarly,

$$
\begin{align*}
& \left|(\Phi x)^{\prime}\left(t_{1}\right)-(\Phi x)^{\prime}\left(t_{2}\right)\right| \\
& \leq\left|A\left(S\left(t_{1}\right)-S\left(t_{2}\right)\right) \phi(0)\right|+\left|\left[C\left(t_{1}\right)-C\left(t_{2}\right)\right]\left[y_{0}-g(0, \phi)\right]\right| \\
& \quad+\left|g\left(t_{1}, x_{t_{1}}\right)-g\left(t_{2}, x_{t_{2}}\right)\right|+\left|\int_{0}^{t_{1}} A\left(S\left(t_{1}-s\right)-S\left(t_{2}-s\right)\right) g\left(s, x_{s}\right) d s\right| \\
& \quad+\left|\int_{t_{1}}^{t_{2}} A S\left(t_{2}-s\right) g\left(s, x_{s}\right) d s\right|+\mid \int_{0}^{t_{1}}\left[C\left(t_{1}-s\right)-C\left(t_{2}-s\right)\right] \tag{5}\\
& \quad \int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau d s \mid \\
& \quad+\left|\int_{t_{1}}^{t_{2}} C\left(t_{2}-s\right) \int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau d s\right|
\end{align*}
$$

$$
\begin{align*}
\leq & \left|A\left(S\left(t_{1}\right)-S\left(t_{2}\right)\right)\right|\|\phi\|+\|\left[C\left(t_{1}\right)-C\left(t_{2}\right)\right] \mid\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\} \\
& +\left|g\left(t_{1}, x_{t_{1}}\right)-g\left(t_{2}, x_{t_{2}}\right)\right|+\int_{0}^{t_{1}}\left|A\left(S\left(t_{1}-s\right)-S\left(t_{2}-s\right)\right)\right|\left\{c_{1}\left\|x_{s}\right\|+c_{2}\right\} d s \\
& +\int_{t_{1}}^{t_{2}}\left|A S\left(t_{2}-s\right)\right|\left\{c_{1}\left\|x_{s}\right\|+c_{2}\right\} d s+\int_{0}^{t_{1}}\left|C\left(t_{1}-s\right)-C\left(t_{2}-s\right)\right| \alpha_{k}(s) d s \\
& +\int_{t_{1}}^{t_{2}}\left|C\left(t_{2}-s\right)\right| \alpha_{k}(s) d s \tag{5}
\end{align*}
$$

The right-hand sides of (4) and (5) are independent of $y \in B_{k}$ and tend to zero as $t_{2}-t_{1} \rightarrow 0$, since $C(t), S(t)$ are uniformly continuous for $t \in J$ and the compactness of $C(t), S(t)$ for $t>0$ imply the continuity in the uniform operator topology. The compactness of $S(t)$ follows from that of $C(t)$ (see $[10]$).

Thus, Φ maps B_{k} into an equicontinuous family of functions. It is easy to see that the family ΦB_{k} is uniformly bounded.

Next we show $\overline{\Phi B_{k}}$ is compact. Since we have shown ΦB_{k} is an equicontinuous collection, it suffices by the Arzela-Ascoli theorem to show that Φ maps B_{k} into a precompact set in X.

Let $0<t \leq T$ be fixed and ϵ a real number satisfying $0<\epsilon<t$. For $x \in B_{k}$, we define

$$
\begin{aligned}
\left(\Phi_{\epsilon} x\right)(t)= & C(t) \phi(0)+S(t)\left[y_{0}-g(0, \phi)\right]+\int_{0}^{t-\epsilon} C(t-s) g\left(s, x_{s}\right) d s \\
& +\int_{0}^{t-\epsilon} S(t-s) \int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau d s, \quad t \in J
\end{aligned}
$$

Since $C(t), S(t)$ are compact operators, the set $Y_{\epsilon}(t)=\left\{\left(\Phi_{\epsilon} x\right)(t): x \in B_{k}\right\}$ is precompact in X for every $\epsilon, 0<\epsilon<t$. Moreover, for every $x \in B_{k}$, we have

$$
\begin{aligned}
\left|(\Phi x)(t)-\left(\Phi_{\epsilon} x\right)(t)\right| \leq & \int_{t-\epsilon}^{t}\left|C(t-s) g\left(s, x_{s}\right)\right| d s \\
& +\int_{t-\epsilon}^{t}\left|S(t-s) \int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau\right| d s \\
\leq & \int_{t-\epsilon}^{t}|C(t-s)|\left\{c_{1}| | x_{s} \|+c_{2}\right\} d s \\
& +\int_{t-\epsilon}^{t}|S(t-s)| \alpha_{k}(s) d s \rightarrow 0, \quad \text { as } \epsilon \rightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
\left|(\Phi x)^{\prime}(t)-\left(\Phi_{\epsilon} x\right)^{\prime}(t)\right| \leq & \left|g\left(t, x_{t}\right)-C(\epsilon) g\left(t-\epsilon, x_{t-\epsilon}\right)\right|+\int_{t-\epsilon}^{t}\left|A S(t-s) g\left(s, x_{s}\right)\right| d s \\
& +\int_{t-\epsilon}^{t}\left|C(t-s) \int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau\right| d s \\
\leq & \left|g\left(t, x_{t}\right)-C(\epsilon) g\left(t-\epsilon, x_{t-\epsilon}\right)\right|+\int_{t-\epsilon}^{t}|A S(t-s)|\left\{c_{1}| | x_{s}| |+c_{2}\right\} d s \\
& +\int_{t-\epsilon}^{t}|C(t-s)| \alpha_{k}(s) d s \rightarrow 0, \quad \text { as } \epsilon \rightarrow 0 .
\end{aligned}
$$

Therefore, there are precompact sets arbitrarily close to the set $\left\{(\Phi x)(t): x \in B_{k}\right\}$. Hence, the set $\left\{(\Phi x)(t): x \in B_{k}\right\}$ is precompact in X.

It remains to show that $\Phi: Z \rightarrow Z$ is continuous. Let $\left\{x_{n}\right\}_{0}^{\infty} \subseteq Z$ with $x_{n} \rightarrow x$ in Z. Then there is an integer q such that $\left|x_{n}(t)\right| \leq q,\left|x_{n}^{\prime}(t)\right| \leq q$ for all n and $t \in J$, so $|x(t)| \leq q,\left|x^{\prime}(t)\right| \leq q$,
and $x, x^{\prime} \in Z$. By $\left(\mathrm{H}_{5}\right)$ and $\left(\mathrm{H}_{8}\right)$,

$$
\begin{aligned}
\int_{0}^{t} F\left(t, s, x_{n s}, x_{n}{ }^{\prime}(s), \int_{0}^{s} f\left(s, \tau, x_{n \tau},\right.\right. & \left.\left.x_{n}{ }^{\prime}(\tau)\right) d \tau\right) d s \\
& \longrightarrow \int_{0}^{t} F\left(t, s, x_{s}, x^{\prime}(s), \int_{0}^{s} f\left(s, \tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right) d s
\end{aligned}
$$

for each $t \in J$ and since

$$
\begin{aligned}
& \mid \int_{0}^{t} F\left(t, s, x_{n s}, x_{n}{ }^{\prime}(s), \int_{0}^{s} f\left(s, \tau, x_{n \tau}, x_{n}{ }^{\prime}(\tau)\right) d \tau\right) d s \\
& \quad-\int_{0}^{t} F\left(t, s, x_{s}, x^{\prime}(s), \int_{0}^{s} f\left(s, \tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right) d s \mid \leq 2 \alpha_{q}(t)
\end{aligned}
$$

we have by the dominated convergence theorem,

$$
\begin{aligned}
\left\|\Phi x_{n}-\Phi x\right\|= & \sup _{t \in J} \mid \int_{0}^{t} C(t-s)\left[g\left(s, x_{n s}\right)-g\left(s, x_{s}\right)\right] d s \\
& +\int_{0}^{t} S(t-s)\left[\int_{0}^{s} F\left(s, \tau, x_{n \tau}, x_{n}{ }^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{n \theta}, x_{n}{ }^{\prime}(\theta)\right) d \theta\right) d \tau\right. \\
& \left.-\int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau\right] d s \mid \\
\leq & \int_{0}^{T}\left|C(t-s)\left[g\left(s, x_{n s}\right)-g\left(s, x_{s}\right)\right]\right| d s \\
& +\int_{0}^{T} \mid S(t-s)\left[\int_{0}^{s} F\left(s, \tau, x_{n \tau}, x_{n}{ }^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{n \theta}, x_{n}{ }^{\prime}(\theta)\right) d \theta\right) d \tau\right. \\
& \left.-\int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau\right] d s \mid \rightarrow 0, \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

and

$$
\begin{aligned}
\| & \left(\Phi x_{n}\right)^{\prime}-(\Phi x)^{\prime} \| \\
= & \sup _{t \in J} \mid\left[g\left(t, x_{n t}\right)-g\left(t, x_{t}\right)\right]+\int_{0}^{t} A S(t-s)\left[g\left(s, \dot{x_{n s}}\right)-g\left(s, x_{s}\right)\right] d s \\
& +\int_{0}^{t} C(t-s)\left[\int_{0}^{s} F\left(s, \tau, x_{n \tau}, x_{n}{ }^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{n \theta}, x_{n}{ }^{\prime}(\theta)\right) d \theta\right) d \tau\right. \\
& \left.-\int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau\right] d s \mid \\
\leq & \left|g\left(t, x_{n t}\right)-g\left(t, x_{t}\right)\right| d s+\int_{0}^{t}\left|A S(t-s)\left[g\left(s, x_{n s}\right)-g\left(s, x_{s}\right)\right]\right| d s \\
& +\int_{0}^{T} \mid C(t-s)\left[\int_{0}^{s} F\left(s, \tau, x_{n \tau}, x_{n}{ }^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{n \theta}, x_{n}{ }^{\prime}(\theta)\right) d \theta\right) d \tau\right. \\
& \left.-\int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau\right] d s \mid \rightarrow 0, \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus, Φ is continuous. This completes the proof that Φ is completely continuous.
Obviously, the set $\xi(\Phi)=\{x \in Z: x=\lambda \Phi x, \lambda \in(0,1)\}$ is bounded, as we proved in the first step. Consequently, by Schaefer's theorem the operator Φ has a fixed point in Z. This means that any fixed point of Φ is a mild solution of (1) on $[-r, T]$ satisfying $(\Phi x)(t)=x(t)$. Thus, IVP (1) has at least one mild solution on $[-r, T]$.

4. EXAMPLE

Consider the following partial differential equation:

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\frac{\partial}{\partial t} z(y, t)-\mu(t, z(y, t-r))\right)=\frac{\partial^{2}}{\partial y^{2}} z(y, t)+\int_{0}^{t} \sigma\left(t, s, z(y, s-r), \frac{\partial}{\partial s} z(y, s),\right. \\
&\left.\int_{0}^{s} \eta\left(s, \tau, z(y, \tau-r), \frac{\partial}{\partial \tau} z(y, \tau)\right) d \tau\right) d s, \tag{6}\\
& z(0, t)= z(\pi, t)=0, \quad \text { for } t>0, \\
& z(y, t)=\phi(y, t), \quad \text { for }-r \leq t \leq 0, \\
& z_{t}(y, 0)= z_{1}(y), \quad t \in J=[0, T], \quad \text { for } 0<y<\pi
\end{align*}
$$

where ϕ is continuous and the functions μ, σ, η are defined below.
Let $X=L^{2}[0, \pi]$ and let $A: X \rightarrow X$ be defined by

$$
A w=w^{\prime \prime}, \quad w \in D(A)
$$

where $D(A)=\left\{w \in X: w, w^{\prime}\right.$ are absolutely continuous, $\left.w^{\prime \prime} \in X, w(0)=w(\pi)=0\right\}$. Then, $A w=\sum_{n=1}^{\infty}-n^{2}\left(w, w_{n}\right) w_{n}, w \in D(A)$, where $w_{n}(s)=\sqrt{2 / \pi} \sin n s, n=1,2,3, \ldots$ is the orthogonal set of eigenvalues of A.
It can be easily shown that A is the infinitesimal generator of a strongly continuous cosine family $C(t), t \in R$, in X and is given by

$$
C(t) w=\sum_{n=1}^{\infty} \cos n t\left(w, w_{n}\right) w_{n}, \quad w \in X
$$

The associated sine family is given by

$$
S(t) w=\sum_{n=1}^{\infty} \frac{1}{n} \sin n t\left(w, w_{n}\right) w_{n}, \quad w \in X .
$$

Let $g: J \times C \rightarrow X$ be defined by

$$
g(t, u)(y)=\mu(t, u(y)), \quad u \in C, \quad y \in[0, \pi]
$$

where $\mu: J \times[0, \pi] \rightarrow[0, \pi]$ is continuous and strongly measurable. Also there exist positive constants c_{1} and c_{2} such that

$$
\|\mu(t, \phi)\| \leq c_{1}\|\phi\|+c_{2}
$$

Let $f: J \times J \times C \times X \rightarrow X$ be defined by

$$
f(t, s, u, v)(y)=\eta(t, s, u(y), v(y)), \quad u \in C, \quad v \in X, \quad y \in[0, \pi]
$$

where $\eta: J \times J \times[0, \pi] \times[0, \pi] \rightarrow[0, \pi]$ is continuous and strongly measurable. Also, the function η satisfies the following condition: there exists a continuous function $\hat{q}: J \times J \rightarrow[0, \infty)$ such that

$$
\|\eta(t, s, x, y)\| \leq \hat{q}(t, s) \Omega(\|x\|+|y|), \quad t \in J, \quad x \in C, \quad y \in X
$$

where $\Omega_{1}:[0, \infty) \rightarrow(0, \infty)$ is a continuous nondecreasing function.
Let $F: J \times J \times C \times X \times X \rightarrow X$ be defined by

$$
F(t, s, u, v, w)(y)=\sigma(t, s, u(y), v(y), w(y)), \quad u \in C, \quad v \in X, \quad w \in X, \quad y \in[0, \pi]
$$

where $\sigma: J \times J \times[0, \pi] \times[0, \pi] \times[0, \pi] \rightarrow[0, \pi]$ is continuous and strongly measurable.

Further, the function σ satisfies the following condition: there exists a continuous function $\hat{p}: J \times J \rightarrow[0, \infty)$ such that

$$
\|\sigma(t, s, x, y, z)\| \leq \hat{p}(t, s) \Omega(\|x\|+|y|+|z|), \quad t \in J, \quad x \in C, \quad y, z \in X
$$

where $\Omega_{2}:[0, \infty) \rightarrow(0, \infty)$ is a continuous nondecreasing function such that

$$
\int_{0}^{T} \hat{m}(s) d s<\int_{c}^{\infty} \frac{d s}{s+\Omega_{2}(s)+\Omega_{1}(s)}<\infty
$$

where

$$
\hat{m}(t) \doteq \max \left\{c_{1}\left[M c_{1}+M+M^{*}\right], M\left(c_{1} T+T+1\right) \int_{0}^{t} \hat{p}(t, s) d s, \hat{q}(t, t)\right\}
$$

and c is a known constant.
With this choice of A, g, f, and $F,(1)$ is an abstract formulation of (6). Furthermore, all the conditions stated in the above theorem are satisfied. Hence, equation (6) has at least one mild solution on $[-r, T]$.

5. APPLICATION

As an application of Theorem 3.1, we shall consider the system with a control variable such as

$$
\begin{align*}
\frac{d}{d t}\left[x^{\prime}(t)-g\left(t, x_{t}\right)\right]= & A x(t)+B u(t) \\
& +\int_{0}^{t} F\left(t, s, x_{s}, x^{\prime}(s), \int_{0}^{s} f\left(s, \tau, x_{\tau}, x^{\prime}(\tau)\right) d \tau\right) d s, \quad t \in(0, T) \tag{7}\\
x_{0}= & \phi, \quad x^{\prime}(0)=y_{0}
\end{align*}
$$

where B is a bounded linear operator from a Banach space U to X and $u \in L^{2}(J, U)$.
A continuous function $x:[-r, T] \rightarrow X, T>0$, is called a mild solution of (7) if $x_{0}=\phi$, and if it satisfies the integral equation

$$
\begin{gather*}
x(t)=C(t) \phi(0)+S(t)\left[y_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, x_{s}\right) d s \\
+\int_{0}^{t} S(t-s)\left[B u(s)+\int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau\right] d s, \quad t \in J \tag{8}
\end{gather*}
$$

Definition 5.1. System (7) is said to be controllable on J if for every $\phi \in C$ with $\phi(0) \in D(A)$, $y_{0} \in E$, and $x_{1} \in X$, there exists a control $u \in L^{2}(J, U)$ such that the solution $x(\cdot)$ of (7) satisfies $x(T)=x_{1}$.

For the controllability of second-order systems, one can refer to paper [15] and the references cited therein. To establish the controllability result, we need the following additional assumptions.
$\left(\mathrm{H}_{12}\right) B u(t)$ is continuous in t and $\|B\| \leq M_{1}$ for some constant $M_{1}>0$.
$\left(\mathrm{H}_{13}\right)$ The linear operator $W: L^{2}(J, U) \rightarrow X$ defined by

$$
W u=\int_{0}^{T} S(T-s) B u(s) d s
$$

induces a bounded invertible operator $\tilde{W}: L^{2}(J, U) / \operatorname{ker} W \rightarrow X$ such that $\left\|\tilde{W}^{-1}\right\| \leq M_{2}$ for some constant $M_{2}>0$.
$\left(\mathrm{H}_{14}\right)$

$$
\int_{0}^{T} m^{*}(s) d s<\int_{a}^{\infty} \frac{d s}{s+\Omega(s)+\Omega_{0}(s)}<\infty
$$

where

$$
\begin{aligned}
m^{*}(t)= & \max \left\{c_{1}\left[M c_{1}+M+M^{*}\right], M\left(c_{1} T+T+1\right) \int_{0}^{t} l(t, s) d s, h(t, t)\right\} \\
a= & \left(M+M^{*}+c_{1}\right)\|\phi\|+(1+T) M\left\{\left|y_{0}\right|+c_{1}\|\phi\|+c_{2}\right\} \\
& +\left(M+M^{*}\right) c_{2} T+\left(T^{2}+T\right) M N+c_{2} \\
N= & M_{1} M_{2}\left[\left|x_{1}\right|+M\|\phi\|+M T\left\{\left|y_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right\}+M c_{1} \int_{0}^{T}\left\|x_{\tau}\right\| d \tau\right. \\
& \left.+M T \int_{0}^{T} \int_{0}^{s} l(s, \tau) \Omega\left(\left\|x_{\tau}\right\|+\left|x^{\prime}(\tau)\right|+\int_{0}^{\tau} h(\tau, \theta) \Omega_{0}\left(\left\|x_{\theta}\right\|+\left|x^{\prime}(\theta)\right|\right) d \theta\right) d \tau d s\right] .
\end{aligned}
$$

Theorem 5.1. If the hypotheses $\left(H_{1}\right)-\left(H_{14}\right)$ hold, then system (7) is controllable on J. Proof. Using $\left(\mathrm{H}_{13}\right)$, for an arbitrary function $x(\cdot)$, we define the control

$$
\begin{aligned}
u(t)=\tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]-\int_{0}^{T}\right. & C(T-s) g\left(s, x_{s}\right) d s \\
& \left.-\int_{0}^{T} S(T-s) f\left(s, x_{s}, x^{\prime}(s)\right) d s\right](t)
\end{aligned}
$$

Using this control, we will show that the operator $\Psi: Z \rightarrow Z$ defined by

$$
\begin{aligned}
(\Psi x)(t)= & \phi(t), \quad-r \leq t \leq 0 \\
(\Psi x)(t)= & C(t) \phi(0)+S(t)\left[y_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, x_{s}\right) d s \\
& +\int_{0}^{t} S(t-s) B \tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[y_{0}-g(0, \phi)\right]-\int_{0}^{T} C(T-\tau) g\left(\tau, x_{\tau}\right) d \tau\right. \\
& \left.-\int_{0}^{T} S(T-a) \int_{0}^{a} F\left(a, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau d a\right](s) d s \\
& +\int_{0}^{t} S(t-s) \int_{0}^{s} F\left(s, \tau, x_{\tau}, x^{\prime}(\tau), \int_{0}^{\tau} f\left(\tau, \theta, x_{\theta}, x^{\prime}(\theta)\right) d \theta\right) d \tau d s, \quad t \in J
\end{aligned}
$$

has a fixed point. This fixed point is then a solution of equation (8).
Clearly, $(\Psi x)(T)=x_{1}$, which means that the control u steers the system from the initial state x_{0} to x_{1} in time T, provided we oblain a fixed point of the nonlinear operator Ψ. The remaining part of the proof is similar to Theorem 3.1, and hence it is omitted.

REFERENCES

1. K. Balachandran and R. Sakthivel, Existence of solutions of neutral functional integrodifferential equations in Banach spaces, Proceedings of the Indian Academy of Sciences (Mathematical Sciences) 109, 325-332, (1999).
2. J.P. Dauer and K. Balachandran, Existence of solutions of nonlinear neutral integrodifferential equations in Banach spaces, Journal of Mathematical Analysis and Applications 251, 93-105, (2000).
3. E. Hernández and H.R. Henríquez, Existence results for partial neutral functional integrodifferential equations with unbounded delay, Journal of Mathematical Analysis and Applications 221, 452-475, (1998).
4. S.K. Ntouyas and P.Ch. Tsamatos, Global existence for functional integrodifferential equations of delay and neutral type, Applicable Analysis 54, 251-262, (1994).
5. K. Balachandran and S. Marshal Anthoni, Existence of solutions of second order neutral functional differential equations, Tamkang Journal of Mathematics 30, 299-309, (1999).
6. K. Balachandran and S. Marshal Anthoni, Existence of solutions of second order Volterra integrodifferential equations in Banach spaces, Nonlinear Functional Analysis and Applications 5, 113-121, (2000).
7. S.K. Ntouyas, Global existence for neutral functional integrodifferential equations, Nonlinear Analysis: Theory, Methods and Applications 30, 2133-2142, (1997).
8. S.K. Ntouyas and P.Ch. Tsamatos, Global existence for second order semilinear ordinary and delay integrodifferential equations with nonlocal conditions, Applicable Analysis 67, 245-257, (1997).
9. C.C. Travis and G.F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Mathematica Academiae Scientiarum Hungaricae 32, 75-96, (1978).
10. C.C. Travis and G.F. Webb, Compactness, regularity and uniform continuity properties of strongly continuous cosine families, Houston Journal of Mathematics 3, 555-567, (1977).
11. J. Ball, Initial boundary value problems for an extensible beam, Journal of Mathematical Analysis and Applications 42, 61-90, (1973).
12. W.E. Fitzgibbon, Global existence and boundedness of solutions to the extensible beam equation, SIAM Journal of Mathematical Analysis 13, 739-745, (1982).
13. J. Bochenek, An abstract nonlinear second order differential equation, Annales Polonici Mathematici 54, 155-166, (1991).
14. H. Schaefer, Über die Methode der a priori Schranken, Mathematische Annalem 129, 415-416, (1955).
15. K. Balachandran and S. Marshal Anthoni, Controllability of second order semilinear ordinary differential systems in Banach spaces, Journal of Applied Mathematics and Stochastic Analysis 12, 265-277, (1999).

[^0]: S. Marshal Anthoni is thankful to CSIR, New Delhi, India, for its financial support.

