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Abstract-The choice of control strategies to improve estimation of the parameters in 
a model of a simultaneous equations system with time-varying parameters is considered. 
Open-loop feedback (OLF) sequential procedures for handling nonlinear restrictions on 
reduced form parameters implied by the structural form are suggested, and the com- 
bination of sequential estimation and design control strategies feature a marked im- 
provement in the behavior of estimates over the nonsequential [open-loop (OL)] for- 
mulation. The maximum accuracy control problem considered in this paper can also 
be treated as an initial phase of a forecasting and/or stochastic control problem. This 
will avoid solution to a more difficult problem such as the dual control problem. 

1. INTRODUCTION 

It seems a little time ago that economists viewed experimentation as a tool available to 
physical scientists and psychologists, educators and sociologists, but not to them. Econ- 
omists are beginning to see, however, that experiences generated from simple controlled 
settings can be used as criteria for determining the relative acceptability of general theories 
and related models of complex economic systems. Although there still are economists 
who think that experimental methods are in principle not applicable in economics, con- 
trolled experimentation in economics is becoming more and more common and scientific 
thinking is shifting to a qualified acknowledgment that the experimental methods are 
applicable when the economic problems are carefully defined. 

Several large-scale experiments in negative income taxation have been conducted, 
including the New Jersey-Pennsylvania (Orcutt and Orcutt[l], Orr[2], Conlick and 
Watts[3], Watts[4, 51, Kershaw and Fair[6] and Watts and Rees[7, S]), Rural (Bawden[9, 
lo]); Gary (Kelly and Singer[ll]) and Seattle and Denver Income Maintenance Experi- 
ments (Kurz and Spiegelman[l2, 131). 

Other examples of real-world experiments, attempting to measure responsiveness to 
various types of economic incentive programs, are (1) the housing demand experiment, 
which was designed to find out how household expenditures for housing were related to 
various forms and levels of housing allowance (Abt Associates[l4]); (2) the health insur- 
ance experiments, whose concern centered on finding out how individual use of medical 
care relates to the coinsurance and deductible features of health insurance policies (New- 
house[l5]) and (3) the peak-load pricing of electricity experiments, whose principal goal 
was (or is) the measurement of residential customer responsiveness to charging higher 
rates during hours and seasons of higher demand (Wenders and Taylor[ 161, Ferbert and 
Hirsh[l71, Manning and others[l8] and Aigner and Hausman[l9]). In the environmental 
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area, the experimental method is being explored as a tool to elicit individual preferences 
about environmental variables (Brookshire and others[20]), and experiments on the ef- 
fectiveness of various pollution taxes could now be laying the foundation of new anti- 
pollution laws (Papakyriazis[21]). Finally, game experiments (Rousseas and Hart[22], 
Yaari[231, MacCrimmon and Toda[24], Friedman[25-271, Shubik[28], Smith[29-331, Car- 
son[341, Dolbear and others[35], Frahm and Schrander[36], Fisher[37] and Review of 
Economic Studies[38]) and computer simulation experiments (Naylor, Balintfy, Burdick 
and Chu[39], Naylor, Burdick and Sasser[40] and Naylor[41, 421) are other economic 
contexts in which experimentation is applicable. 

A properly designed and executed social experiment can provide the strongest evidence 
that a certain intervention (policy action) actually causes or, if implemented, would cause, 
a given result. The great cost, size and administrative complexity of such experiments, 
however, make them different from the classical experiments in physical sciences, ag- 
riculture or psychology where they were developed for simpler situations. Thus the prob- 
lems of controlled experimentation in economics provide an opportunity for economists 
to extend design theory to handle peculiarities of economic experimentation and hence 
have them contribute to the literature of experimental design. 

When the purpose of the experiment is to generate data for estimation of a behavioral 
relation in the context of a linear regression model where the experimenter determines 
the settings of the control variables, and then observations are made on a single response 
or dependent variable, the analysis of experimental design is straightforward and has been 
discussed by Kiefer[43,44], Conlick and Watts[3] and Aigner[45]. Also the book by Fedo- 
rov[461 summarizes many of the key results. The first systematic attempt at obtaining 
an optimal design outside the context of linear regression model seems to have been that 
of Box and Jenkins ([47], pp. 416-420). Recently, the Box-Jenkins approach has been 
utilized by Papakyriazis[48] to obtain optimal design processes in terms of certain func- 
tions of their moments for various time series models. 

Extension of the design theory to the multivariate case, where the experimenter is 
faced with more than one dependent variable or response for each experimental setting, 
has been discussed in Conlisk and Watts[3] and Papakyriazis[49]. For example, in the 
New Jersey negative tax experiment, the experimenter might observe work response, 
savings response and different types of expenditures (spending on food, durables, travel, 
entertainment and so on). Similarly, in a study of the effectiveness of advertising on sales, 
the experimenter might observe demand for good one, demand for good two, and so on. 
It is not difficult conceptually, although the method suggested requires a guessed value 
for the variance-covariance matrix of the disturbance terms. 

In designing experiments in the context of multiple response models, emphasis is placed 
on the overall effect of treatments on the response of dependent variables. In many ex- 
perimental situations, however, especially in economics, apart from the direct effects of 
the control variables on the response variables, there is the question of indirect or struc- 
tural effects (the simultaneous equations problem). A primary source of potential simul- 
taneity in the context of the widely discussed New Jersey negative tax experiment, for 
example, lies in the fact that interrelations of labor supply decisions among family mem- 
bers can affect the labor supply quantities. In particular, suppose the objective of the 
experiment is to estimate the aggregate (family) labor supply response of a negative income 
tax. The main reason for interest in family labor supply response is that, in reality, any 
negative income tax or similar income subsidy is likely to be defined in terms of family 
income and need. The Federal Income Tax essentially applies to the family as a unit, and 
certainly the experimental treatments in the New Jersey negative income tax experiment 
were so defined. This is a simultaneous equations design problem, since there are thee- 
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retical reasons for expecting the labor supply choices of family members to be a simul- 
taneous decision rather than a collection of independent choices. Another source of po- 
tential simultaneity in the labor supply model involves the wage variable. In particular, 
it is likely that the amount of time offered by a worker will partly determine the wage the 
worker receives. Full-time workers, for example, may be able to command a higher wage 
than part-time workers. Hence, both the decision about the wage earned and the decision 
about hours of work may be simultaneously determined. 

Finally, simultaneous equations experimental design may be exemplified also by pol- 
lution control and monitoring in the environmental area, where the purpose of a (pollution 
producing) firm (electric power plant, for example) is to discover the functional relation 
between the various amounts of pollution it generates and the level of different control 
techniques. In particular, suppose that a model for pollution control exists that is capable 
of describing atmospheric diffusion and chemical reaction, thus relating the various 
amounts of pollution (measured in terms of concentrations at certain monitoring points) 
to the level of control techniques and realizations of stochastic noise sequences denoting 
the effects of uncontrollable exogenous factors such as climate conditions and geography. 
There is one equation for each monitored point and pollution type existing at that point. 
Although it seems reasonable to assume that the different types of pollution are uncoupled 
from one receptor to another, local attenuation of pollution due to chemical reactions and 
diffusion as well as description of the movement of pollutants from one receptor location 
to another should be allowed. 

The above situations, and undoubtedly many others, represent typical situations in 
which the design for simultaneous equations is important. The purpose of this paper is 
to extend the design theory in the context of simultaneous equations and hence help 
remedy deficiencies of existing design theory. 

The design theory for estimation of structural effects has been considered only by 
Conlisk[SO] and Papakyriazis[Sl, 521. Conlisk[SO] has discussed the problem of designing 
experiments for parameter estimation in a structural regression model; his proposed cri- 
terion is based on the three-stage least-squares/full information maximum-likelihood 
(3SLSFIML) asymptotic variance-covariance matrix. But, as Conlisk has pointed out, 
the optimal design cannot be derived, because the design criterion function depends upon 
the unknown parameters to be estimated. A possible approach that can be used to gain 
insight into the experimental design problem is to assume knowledge of the true param- 
eters. However, in practice, the true parameter values are unknown and “prior beliefs” 
are therefore used. But one may be hesitant to design all observations on the basis of 
questionable “prior beliefs.” The need for prior beliefs of the unknown parameters is of 
less concern when a sequential approach is feasible. Then we can improve the design as 
we find out more about the unknown parameters. Papakyriazis[Sl, 521 formulates the 
single structural equation design problem adaptively, and thus helps resolve the above 
conceptual difficulty. 

The choice of estimation control strategies which is optimal from the viewpoint of 
estimating our structural equation, however, may not be optimal from the viewpoint of 
estimating other structural equations. Extensions of the design theory to cover such com- 
plications would be useful. This paper is concerned with extension of the single equation 
sequential design theory of Papakyriazis[Sl, 521 to the whole system of structural equa- 
tions with time-varying parameters. 

The organization of the paper is as follows: In Section 2 a brief statement of the ex- 
perimental design problem in the context of a model of a simultaneous equations system 
is presented. Extensions of the design theory to the simultaneous equations econometric 
models follow in Section 3, and the paper ends with some concluding remarks. 
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2. PROBLEM STATEMENT 

Yti = YtiP.i + XtiY.i + Eti 

= Xz.6.i + E*i (i = 1, 2, . . . , N; f = 1,2, . . . ) T) (1) 

be the ith of N structural equations in a simultaneous equations model where yti is an (1 
x NJ vector of endogenous variables whose elements are endogenous variables other 
than yti; xti is a (1 x Ki) subvector of the (1 x K) vector of exogenous variables xI ; p.i 
and y.i are (Ni x 1) and (Ki x 1) vectors of parameters, respectively; l ti is a zero mean 
error term; and x2 = (y,i, xri), & = (B!i, y!i)‘. Assume the absence of serial correlation 
in the sense that, if l r = (Ed, ... Ebb)‘, then E(E&) = W,,, where a,,, is the Kronecker 
delta. Identifiability of all equations is assumed. Further, let 

yti = XtIIi + Vri (i = 1, 2, . . . , N; t = 1, 2, . . . , T), (2) 

where Iii is the (K x Ni) reduced form coefficients matrix and vti is an (1 x Ni) reduced 
form disturbances. 

In this paper we investigate the class of control strategies that are optimal for estimation, 
where optimality is defined in some appropriate sense. Even though no control aspect is 
included in the analysis, the estimation control problem can be treated as an initial phase 
of a general control problem. Before the control policies are implemented, a fast and 
efficient estimation phase, by means of carefully designing experiments, is preceded to 
determine the unknown structural parameters up to the desirable accuracy and the com- 
plete learning will eventually take place during the control phase. Such a procedure will 
avoid solution to a costly and time-consuming dual control problem. 

Once the structural form simultaneous equations model (1) has been selected and the 
experimental variables xt may be set by the experimenter subject to constraints dictated 
by the nature of the experiment (such as sample size constraints, budget constraints and 
so on), the general experimental design problem discussed in this paper can be stated as 
follows: Find {x,}f=, such that a suitable criterion function related to the (asymptotic) 
variance-covariance matrix of the structural parameters is optimized. In the sequel, in 
order to use generally accepted notions of optimality, the trace criterion will be used for 
optimal experimental design. The trace criterion is discussed, along with the determinant 
and other (classical and Bayesian) criteria, in Papakyriazis[48, 511. 

3. EXTENSION OF ESTIMATION CONTROL THEORY TO THE 
SIMULTANEOUS EQUATIONS CASE 

3.1. Prior information problem 

A variety of techniques are available for estimating the parameters in models of si- 
multaneous equations systems, However, the achievable estimation accuracy for all meth- 
ods is a function of the experimental conditions which are chosen so that the information 
provided by the experiment is maximal in some sense. This paper is concerned with the 
problem of designing the experimental conditions for maximum estimation accuracy. 

For the most part, those interested in using the results of large-scale public policy 
experiments plan to use them as parameters in models which have broad policy impli- 
cations. This means, of course, that the design of experiments itself must be developed 
in a manner which reflects the underlying economic theory. Thus any systematic design 
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procedure for precise parameter estimation in the context of an econometric model in 
general, and in the simultaneous equations context in particular, requires a heavy dose 
of prior information. The requirement that the experimenter knows something ahead of 
time above the very phenomenon (model) which it is the purpose of the experiment to 
discover is a vexing problem, but a common one in design contexts (see, for example, 
Box and Lucas[53], Box and Jenkins[47] (pp. 416-420), Conlisk[SO, 541, Papakyriazis.1481 
and Aigner[45]). 

At the heart of the matter of designing experiments in the context of a simultaneous 
equation model is functional form specification. Note that the problem here is one of 
specifying a priori the appropriate structural form for the equations of a model. AS 
Conlisk[54] and Aigner[55] demonstrate in the context of a single equation regression 
model, significant efficiencies of design can be obtained if the model intended for ultimate 
use during the data analysis phase is used at the experimental stage. On the other hand, 
the efficiency cost of designing for one model when some other is the “true” one may 
be very high. It is apparent that in a public policy experiment the potential benefits and 
risks of exploiting prior structural form specitication in the sample design are related to 
both the internal and external validity of the experiment. Reducing the risk associated 
with incorrectly specifying the structural form in the experimental design phase (by means 
of noninformative analysis of covariance structure, perhaps), may increase the risk of 
incorrect extrapolation to the nonexperimental situation by reducing the information 
needed by our methodological strategy for extrapolating the results. Hence, designing an 
experiment under the assumption that no prior knowledge of structural relationships exists 
introduces the risk of losing information in the event some specific structure is correct 
in exactly the same way that designing an experiment according to an “inappropriate” 
criterion function, for example, introduces risk. It is apparent, therefore, that a sensitive 
compromise among risks must be struck. Various approaches for making the compromise 
have been suggested. In particular, Conlisk[54] has proposed three such approaches, 
including a decision theoretic one in which the experimenter assigns probabilities to func- 
tional forms and then minimizes expected loss. Presumably this information is often avail- 
able. Information from other studies, for example, might be available. If it is not, a se- 
quential approach is a possibility worth further investigation. 

Once an appropriate model is selected, the objective of the experiment changes. In 
particular, the experimenter now wishes to estimate the model parameters according to 
an experimental design he is free to choose. It is the main purpose of this paper to show 
how, in the context of a simultaneous equation model, the experimental conditions for 
maximum estimation accuracy can be obtained. 

A second example of prior information in the context of a simultaneous equation model 
is knowledge of the model’s true parameters. In particular, in the usual regression case, 
the choice of optimal design does not depend on the values of the unknown parameters, 
and the independent variables can be set to the values required by the design without 
knowledge of the unknown values being estimated. The determination of optimal designs 
for simultaneous equations models, however, is more similar to the nonlinear estimation 
case than to the classical linear regression, and the parameters also appear in the solution 
to the design problem. Thus the optimal design cannot be implemented without knowledge 
of the model parameters. On the other hand, designing under a wrong assumption about 
parameter values can lead to a disastrous design (efficiency-wise). 

Intuitively, the need for prior knowledge of the unknown parameters in the context of 
the simultaneous equations model (1) arises from the fact that to solve the design problem, 
the experimenter must specify the values of Iii (i = 1, 2, . . . , N), which depend on the 
structural parameters and R,, . In particular, in a typical structural equation, the dependent 
variables yi cannot be controlled directly, but only indirectly by controlling the exogenous 
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variables. Since the unknown parameters II, determine how the exogenous variables in- 
fluence the endogenous variables yi, it is not possible to get the optimal relationships 
among the regressors unless IL is known. Finally, the choice of the design variables, 
{x,}T= I, which is optimal from the point of view of estimating a particular structural equa- 
tion may not be optimal from the point of view of estimating other structural equations. 
It is in compromising these conflicting goals that the contemporaneous variance-covar- 
iance matrix a,, enters. 

Since the efficiency cost of designing under a wrong assumption about parameter values 
may be very high, a sequential approach, where we improve the design as we find more 
about the parameters, immediately suggests itself. In this paper we formulate the simul- 
taneous equations design problems sequentially, and hence help resolve the “unknown 
parameters” conceptual difficulty. But first we formulate the experimental design problem 
as an optimal control problem. 

3.2. Open-loop (OL) estimation control 

Combining (1) and (2) we obtain 

yti = XtIIif3.i + XtiY.j + VR 

= XrHi6.i + ~12, (3) 

yti = X,IIi + Vii (i = 1, 2, . . . , IV; t = 1, 2, . . . , T), (4) 

where Hi = (II, i Ji); Ji is a matrix of unit vectors such that xri = x+Zi; and ~2 is the error 
term in the reduced form equation for yti (i.e. vyi = Eti + vtil3.i). In a more compact form 
(3) and (4) can be written as follows: 

Y, = (Z 8 x,)H,& + v:, (5) 

Y, = (I 8 x,,n, + vt, (6) 

where Y, = (ytlyR ... YN)‘, H, = diag(Htl, Ht2 ... HIN), 6, = (i3!,,8!,, .+a 8!NT)‘, v? = 
(GIG* *.* GN)‘, K = (nr,,II!zz **a II!,,)‘, lI.,i = (IIIrilIIfi2 *** IIriK), vt = (u~~u~I .*. ur,x,)' and 
(I @ x,) is the Kronecker product of the identity matrix I, and the vector of design vari- 
ables, xr. Alternatively, the systems corresponding to (5) and (6) can be written as 

Y, = Hw),& + vi’, (7) 

Y, = Huw,J& + vt, (8) 

where HcSF),r = (I 63 x,)H, and HCRFj,r = (I 8 x,). Finally, 

E(v:) = E(v,) = 0, (94 

E(v:v:‘) = .n,$,,,, (9b) 

E(v,v:,) = l&,6,,,. (9c) 

The “state” equation system corresponding to (7) and (8) is assumed to evolve according 
to 

6, = @S,_, + a:; a: - MO; %;I; &I - N&J; Cd, (10) 

where {@, O,;, &, &}~=, are assumed known and the sequences vy and a: are assumed 
uncorrelated. 
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For any given HtSFj,r and 0,~ the “reduced form” model (7) and the “state” equation 
system (10) are in the standard discrete dynamic linear form and the Kalman filter (Kal- 
man[56]) can be constructed. The Kalman filter will generate the estimate 6, of the “state” 
6, and the variance-covariance matrix of the error vector e, = (6, - &), recursively. It 
is well known that the estimate 6, is the minimum variance (and unbiased under appropriate 
assumptions) estimate of 6,. Hence, 

Now suppose that attention is limited to I admissible design points which have been 
chosen by the experimenter so that the relevant region of the design space is adequately 
covered and that, at each period of time t, the experimenter is able to choose only one 
out of the 1 admissible design points. Limiting our attention to 1 admissible design points 
may be viewed as a two-part assumption: first, that observations must be restricted to a 
given region in the design space (a matter of necessity); second, that within that region 
they must fall at only 1 points (a matter of convenience). It should be clear, however, that 
actual determination of the number of design points and their exact specification is not 
a trivial task and depends on many factors, including a prior knowledge of the appropriate 
range of variation for policy purposes of each design variable (see, for example, Conlisk 
and Watts[3]). Mathematically, we can express this by the following constraints 
(Wagner[60]): 

nj, = 1, if the jth design point is chosen at time t, 
0, otherwise, (134 

j&r = 1. Wb) 

The system corresponding to the model (7) can be written as 

Yt = i njtH(sF),jr 
[ j=l 1 

6, + vy. 

It is apparent that, since 

H(sF),~ = i njrH(sF),jt 
j=l 

we can write the Kalman filter and its variance-covariance matrix as follows: 

(14) 
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where use has been made of the fact that $, = nj, and njrnht(H/sFljr * [@,“V(h,_ ,)@F + 

flaplH~~~,ht) = ~jt~ht(HtsFl,jtflnv, ?I’ H,s~I.~~) = 0, since either nj, or nhr is zero, for all j # 
h. 

Finally, if different design points have different costs and the experimenter has a budget 
constraint to worry about (the typical situation in economics), the experimenter has to 
specify the unit cost of an observation at thejth design point and the total budget available 
for all c = 1, 2, . . . , T. Specifically, we shall assume that the budget constraint for our 
estimation control problem is 

{~,[~~nj~~~,}=~~;~j~>O forall j= 1,2,...,1;t= 1,2,. . .,T, (17) 

where Cj, is the cost of the jth design point at time t, and MT is the total budget associated 
with the use of the design sequence {n T = (n,)T= I}. To keep the problem from becoming 
trivial, we assume cYT > MT where c;” is the cost of the most expensive design point. 

It is clear that given the initial condition V(&J = Z&, and given any design sequence 
which satisfies the constraints (13) and (17), we can obtain by straightforward calculation 
the values of the matrix V(b,) for all t. Of course the values of the elements of this matrix 
will depend on the design sequence which was chosen. In this context the experimenter 
may view the equations (12) or (16) as defining a dynamical system whose state variables 
are the elements of the matrix V(&) and where the elements of the design sequence play 
the role of the control variables. In this manner the design sequence controls the time 
evolution of the elements of the error covariance matrix. 

Since the variance-covariance matrix of the estimated structural parameters depends 
through HcSF),jt on the various design points, it is reasonable to require that a scalar 
functional of the estimation error covariance matrix is minimized. Obviously, the 
“smaller” the estimation error covariance is, the better the estimates. 

A sensible design objective function can be built around V&). Suitable scalar func- 
tions were discussed in Papakyriazis[48, 511. This paper will focus on the trace criterion. 
Suppose the experimenter’s goal is accurate estimation of a vector S”, = PST of linear 
combinations of the elements of &- where P is a known matrix of dimensions {p 
x [c:, (Ni + IQ]}. In particular, suppose the experimenter (or the sponsor of the 
experiment) is interested in predicting the expected values of the left-hand variable of 
each structural equation evaluated at each of the admissible design points: (xi, . . . , xl). 
Then the expected values of all structural equations is (I CG xO)HS, where x0 = diag(xr , 
. . . , x!). The dimension p may be larger or smaller than (CE, [IV; + ZGI). The estimate 
of S”, and its variance-covariance matrix are: & - ^’ - P&-and V& = [PV&)P’], respec- 
tively. If the experimenter wishes to minimize the weighted sum of variances of the ele- 
ments of 6% the objective function may be written: tr{Q< V[@]>} where tr (.) is the trace, 
Q = (P' WP), and W denotes the (P x P) diagonal matrix whose diagonal elements (WI, 

(P&i. 
wp) indicate the policy importance to the experimenter of the elements of S”, = 

Finally, since V(S,) = &, it is apparent from (12) that maximizing tr{Q( V[&])} with 
respect to {HcSFj,r or nj,}T=, is equivalent to maximizing the following expression: 
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where 

(18) 

(19) 

with respect to HcSF),r or nj,. 
There are now all the “essential ingredients” for the statement of the estimation control 

problem, which can be formulated in a manner that suggests the use of the discrete max- 
imum principle of Pontryagin (see Halkin[%], for example). In particular, the estimation 
control problem can be stated as follows: For a given terminal time T > 0, determine the 
optimal {?Zj,; j = 1, 2, . . . , 1}7= 1 such that the objective function given by (18), I, is 
maximized subject to: (i) (16); (ii) (13) and (17); (iii) V(&) = Z&, (given positive definite 
matrix) and V(&-): unrestricted. Note that this estimation control (design) problem is a 
standard (discrete time) optimal control problem where the elements V(8,),,c, {k, k’ = 1, 
2 7.. -3 (CE 1 [Mi + Kj])} of the covariance matrix V(&) play the role of the state variables 
of a dynamical system whose “equation of motion” is governed by the matrix variance- 
covariance difference equation (16), nj,‘s play the role of control variables, and the “cost 
functional” (objective function) depends on the values of the control and state variables 
nj,, V(6,)kkr, for all t. 

We shall use the discrete Maximum Principle to derive a set of necessary conditions 
for optimality. The discrete maximum principle is essentially equivalent to the Kuhn- 
Tucker theorem (see, for example, Chow[59, 601). Before we apply the maximum_prin- 
cipje, however, it, is necessary to have the “state” equation (16) in the form: (V[&) - 
V[6,-11) = F(V@,_1[, {njl}j=l) and also to transform the total budget constraint ET= I 
(c,!= I nj,cj,) = MT into a difference equation type constraint. To have the “state” equa- 
tion (16) in the appropriate form, V(b,_ 1) will be subtracted from both sides of (16) to 
give the tinal “state” equation. To transform the total budget constraint, on the other 
hand, we define a new state variable $ot = EL=1 (x=i ni,cj,). It is apparent that & 
satisfies the first-order difference equation (4, - &,_ 1) = x= I njtcjt with I&~ = 0 (initial 
condition) and Got = MT (terminal condition). 

We now define the real-valued function H, called the Hamiltonian, as follows: 

+ (Por[Jlor - qJot- II> , 
> 

(20) 
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where {pot; t = 1, 2, . . . , 
&,and{$,;t = 1,2 ,..., 

T} is the costate at time t corresponding to the state variable 
T} is the costate matrix (whose kk’th element is the costate 

which corresponds to the V[&lkk, state variable) corresponding to the variance-covariance 
matrix V(&). 

Alternatively, utilizing the properties of the trace function, the Hamiltonian can be 
written as 

H = H(a) 

+ ~a~)l)l + trN@FWL~)@’ + %;I - [WLI)l)*:) 
I 

. (21) 

The necessary conditions for optimality of the estimation control problem can now be 
stated. Assume that an optimal control sequence exists. Let {n?,} denote the optimal (esti- 
mation) control sequence; let {V(&),} be the resultant variance-covariance matrix and 
let {\?I&} be the resulting state variable. Then there exist costate variables {px} and 
NJ& ; k, k’ = 1, 2, . . . , [XI”=, (Nj + K,)]} such that the following conditions hold: 

(1) Hamiltonian maximization 

The inequality 

or [see eqn (21)1, 

i nj*,[(PZtcjt) + NH (SF).jt(H[SFl,jt[~‘r)V(~t- I)*@:’ + fL~IHiSFl,jt 
j=l 

+ flvp)-lH~~~~,jtl [(@V[b,-,I&’ + .n,;) (K, - ‘JJ:‘) (%‘V[&,l&; + &;)I)] 

3 
( 

Ii, nj,[(&hj,) + W[HLsF),jt (HrSFl,jf[@‘T)V(hf- I)*@ + QWiSFl,jt 

+ IR,$-‘HcsF,,jJ [(@‘V[8,-,I& + 1Rz.f) (K, - ‘8’) (@~V@L,l,@~’ + &)l)l (22) 

must hold for each t = .l, 2, . . . , T and for all nj, E (0, l), cj= I nj, = 1. 
In view of the above constraints on nj,, we have the following result: 

* 
ilj, = 

(23) 
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(2) Canonical equations 

(Vhl, - VLI,) = (mmJt1 I*) 

= ([@V[&-,)*a?’ + n,:1 - ML>*l) 

- ([@V(L)*@ + nap1 i njwisFl,jr 
[ j=l 

x [H(SF),jt(@T)V[iL ,I*@' + a3:w;sF,,jr + fQ-’ 

X ~$.sF),.o III 1 ww&-,I*@,: + apI>, (24) 

(25) 

(yrT - VT_,) = - 

=- 

X 

(3) Boundary conditions 

V(h) = %u and I& = 0 at the initial time t = 0, 

*; = 0, i& = MT at the terminal time t = T. 

(28) 

(29) 

The necessary conditions given above can be used to determine in each particular case 
the optimal design sequence ({nj*,ij= I,2,...,l}T’ ,). A number of computational algorithms 
that use the necessary conditions of the maximum principle to obtain in an iterative manner 
numerical solutions to the optimal control problem that have been proposed in the lit- 
erature (standard gradient techniques, for example) cannot be used in our case because 
of the constraints on nj,. Other techniques, however, could be used to obtain numerical 
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solutions for the optimal design problem. The essence of one such technique can be 
outlined as follows: (i) an initial guess is made for the values of nj, (say $ for all j = Al, 

T). (ii) the initial guess permits the solution for &,r and V(S,) 
&ward i’n :ime l(6t$&& at the known condition V[S,] = I$,,) as well as for +, backward 
in time (using the known condition +T = 0); (iii) the maximization condition (23) may now 
be used to determine new.values for nj, (say nj’,); (iv) steps two and three are repeated 
until a suitable criterion (based on the change in the objective function with successive 
iterations, perhaps) is satisfied. 

The obvious difficulty with using the maximum principle to solve the experimental 
design problem is that it is basically an open-loop technique in the sense that it uses only 
the initial a priori knowledge about the parameters to compute all future designs. Since 
in practice the true parameter values are unknown and the a priori means are therefore 
used, it is apparent, that one may be hesitant to design all observations on the basis of 
questionable prior means. A sequential approach, where we improve the design as we 
find out more about the parameters seems to be more appropriate. In the next subsection 
we will consider feedback designs; that is, designs that are generated with the knowledge 
of measurements. In particular, we consider open-loop feedback designs. At each time 
t, the future design is obtained by replacing the unknown parameters by their most recent 
estimates. Since the feedback approach uses all the information up to the current time to 
determine the future designs, it has the merit of giving improved parameter estimates. 

3.3. Open-loop feedback (OLF) estimation control 

Since HCSF),r = (I 8 xr)Hr, H, = diag(H,rHt2 ..* HrN) and H,; = (I& i JJ, i = 1, 2, 
. . . ) N, the objective function I is a function of the design sequence A, = {nj,; j = 1, 
2 . . 7 I}T= I and the unknown parameters {II,}: I or II, = (TI!,,IIr,, *** II!,,)‘. One way 
aidund the unknown parameters problem is to approximate the estimation control problem 
in real time; that is, at the beginning of the design process, the experimenter calculates 
a series of estimation controls, {n,9 ;j = 1, 2, . . . , I}T= 1, utilizing the prior guesses about 
&, (i.e. & and &J, and hence about II, (i.e. I& and $r,,). Only the first of these estimation 
(design) controls {Q, ; j = 1, 2, . . . , 1}, will actually be implemented, of course; it is 
necessary to make tentative plans, however, as to what will be done later in the experiment 
in order to make an optimal choice of what is to be done in the first period. As the 
observations of the endogenous variables of the first period, Y,, become available, the 
experimenter estimates 8,) V(h,), and hence fir, and recalculates the optimum values for 
the remaining estimation controls, {njl,; j = 1, 2, . . . , l}:=2. Thus, as the experimental 
process progresses, more and more observations become available and the initial param- 
eters may be replaced by better estimates, which in turn are used to update the design 
of the remainder of the experiment. 

Formally, the open-loop feedback (OSF) estimation control procedure can be described 
as follows: Denote the current period by t. Let us assume that the estimation control 
sequence {n$; j = 1, 2, . . . , I}l has been applied and the corresponding observation 
sequence {Yk}k=, is obtained. We wish to choose the future estimation control sequence 
{n,*,+,, . * * 5 nj*7; j = 1, 2, . . . , f} based on the information up to time t. Let us denote 
the maximization at this point as follows: 

RF._, = Maximize 

{I = I([{nj*k; j = 1,2, . . . , l}i=,; j = I,&. . . , G=c,+II; III I n = fL>I 



Adaptive optimal estimation control strategies 253 

subject to 

(3) njk E (0, 1); k = (t + I), . . . , T , 

(4) Vbo) = &J, V&): unrestricted, $00 = 0 and $0~ = MT, 

where 0, is the estimate of TI based on the observations {Yk&= 1 and I is defined in (18). 
The maximization carried out by (30) yields the following sequence of parameter es- 

timation controls 

hk I tl ; j = 1, 2, . . . , 1; t = 1, 2, . . . , T; k = (t + I), . . . , T}. (31) 

The optimal OLF estimation control sequence is obtained from (31) by choosing those 
design points for which k = t; that is, 

{$ = nj(, ) f) ; j = 1, 2, . . . , 1; t = 1, 2, . . . , T}. (32) 

3.4. One-step-ahead (OSA) estimation control 

The main problem with the implementation of the OLF estimation control scheme stems 
from the fact that, for each period t, we have to solve a deterministic constrained max- 
imization problem where the sequential equations of the error covariance matrix act as 
the state equations. Hence, determining the OLF estimation control sequence reduces to 
solving, for each period t, a nonlinear optimization problem and has all the difficulties 
associated with this type of problem. In this subsection an approximation of the deter- 
ministic constrained maximization problem will be given which is easy to implement. We 
call this computationally efficient design one-step-ahead (OSA) estimation control. 

The procedure for one-step-ahead (recursive) estimation control can be described as 
follows: First, a preliminary experiment is conducted with t observations; t is the minimum 
number of observations which is necessary for a single-valued estimate of the unknown 
structural and the variance-covariance of the 6 estimates. Since the optimal estimation 
control scheme cannot be used to generate these preliminary observations, a random 
selection of the t observations may be used. The preliminary observations can now be ^ 1 
used to obtain {S,, Q,p, fiIr, V(b,)} by the method of three-stage least-squares (3SLS), or 
any other full-information (system) estimation method. Second, the optimal values of 
{nj(t+i,;j = 1, 2, . . . , /} are determined from the solution of the following problem: 
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subject to 

i nj(t+l) = 1; nj(,+l) E (0, 1); j = 1, 2, . . . , I, (34) 
j=l 

wherecjo+& = 1,2,. . . , I) is the cost of thejth design point. It is clear that if different design 
points have different costs and the experimenter has a budget constraint to worry about, it 
may be “optimal” (cheaper) to gain a certain amount of information by performing several 
cheap though inefficient experiments, rather than a single efficient though expensive one. In 
this case, one solution is to divide the expected gain from one more observation by the cost of 
that observation, and maximize the expected information per unit cost (“benefit-cost” 
ratio). When the optimum {&+ 1j f= 1 > have been chosen, the (t + 1)-st observation (i.e. 
Yt,+ir) can be processed toobtain: {&+ i, fi,,, , V(&+ ,), ~,~+,}. 

For the purpose of sequentially estimating the structural form parameters, we can use 
a two-step system (3SLS alike) Kalman filtering method which can be described as follows: 
(1) Estimates of the structural form parameters 6, 8,, and their variance-covariance ma- 
trix, V&), are computed based on the initial observations, {Y,, x,}, using the 3SLS or 
any other full information method. During this computation a consistent estimate of the 
covariance Q, fi,p, is obtained. Estimates of the reduced form parameters II, fi, are also 
obtained from the structural estimates 6,. In addition, Yet+ i) = HcRF),,+ ifi is computed. 
(2)A The Kalman filter (Kalman[S6]) is applied to (7) and (10) to obtain &+ I and 
VP,+ J, where {YQ+ i& 1 in HcSF),t+ 1 are replaced by {Q (t+ i)}K 1 and the covariance 
matrix fi,o is replaced by fi,p. Also, a new estimate of f&o, based on A,+ 1, is obtained. 
Finally, estimates of the updated reduced form parameters TI, ficr+ ,), are obtained from 
the structural form estimates i$+,; furthermore Yet+>) = H~RF),r+2fi~t+ I) is computed. 
(3) Go to step (2) and the whole procedure can be repeated. When the structural form 
parameters are constant (i.e. 6, = 6,_ ,), the above sequential procedure closely resembles 
the 3SLS method. The two estimation methods, however, are not identical: first, the 
estimates of R,o are going to be different under the two methods and, second, in the case 
of the 3SLS method, Y’ = {[HcsFJ,r fiJ ..e (HcSF&], while in the sequential procedure 
suggested above, Y’ = {(HcSF),,TIZI] .a. [HcSF),rIIr]}. An iterative procedure which uses 
the full set of data available each time to estimate Y and R,o could be combined with the 
sequential procedure to improve on parameter estimates. Since in the post-experiment 
estimation phase, we are free to disown the sequential estimates on which we based the 
design, the use of noniterative sequential estimates of the structural form parameters is 
in a way “safer” in estimation control (design) than in estimation. This procedure can be 
repeated until the budget constraint is met or until a desired degree of accuracy is obtained. 

4. CONCLUSIONS 

The problem of choosing optimal estimation control strategies in the context of a si- 
multaneous equations system with time-varying parameters for the special case (typical 
in public policy experimentation) in which attention is limited to 1 admissible design points, 
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has been considered in this paper. Since the nonlinear restrictions on reduced form coef- 
ficients implied by the structural form cause the design objective function to depend on 
unknown parameters, an adaptive procedure, where we improve the design as we find 
out more about the parameters immediately suggests itself. 

Two sequential approaches to the simultaneous equations estimation control problem 
are looked at in the paper: (1) the “open-loop-feedback design” (OLFD) approach in 
which, at each time t, a dynamic optimization technique such as the Maximum Principle 
of Pontryagin is utilized to obtain the optimal design by replacing the unknown parameters 
by their most recent estimates, and (2) the “recursive (one-step-ahead) estimation control” 
approach in which the weighted sum of variances of the estimated structural form pa- 
rameters in every period is minimized. Since the feedback approach uses all the infor- 
mation up to the current time to determine the future design and at the same time takes 
into account future designs, it has the merit of giving improved estimation control se- 
quences. However, determining the optimal OLFD sequence reduces to solving, for each 
period t, a nonlinear dynamic optimization problem and has all the difficulties associated 
with this type of problem. The one-step-ahead (OSA) estimation control procedure, on 
the other hand, is relatively easy to implement and thus computationally efficient. 

The estimation control sequential procedures suggested in this paper could be extended 
in several directions. For example, one might wish to consider the case of dynamic si- 
multaneous equations systems where the predetermined variables in a particular structural 
equation include not only current exogenous but also lagged endogenous and/or exogenous 
variables. Also, the parameters {@ and &;},T=, in the “state equation” (10) might be 
unknown and hence have to be estimated along with the structural form (“measurement 
equation”) parameters. Finally, using t-period estimated parameters for the true ones is 
a “seat-of-the-pants” device that might be replaced by a Bayesian or other more elaborate 
device which allows the application of the stochastic maximum principle (Kushner and 
Schweppe[611) to solve the intertemporal estimation control problem. These extensions, 
however, carry heavy informational and computational costs and are beyond the scope 
of this paper. 
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