Graphs with vertex-coloring and detectable 2-edge-weighting

N. Paramaguru ${ }^{\mathrm{a}}$, R. Sampathkumar ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Mathematics Wing, Directorate of Distance Education, Annamalai University, Annamalainagar 608 002, India
${ }^{\mathrm{b}}$ Mathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalainagar 608 002, India

Received 20 December 2012; accepted 18 March 2016
Available online 29 June 2016

Abstract

For a connected graph G of order $|V(G)| \geq 3$ and a k-edge-weighting $c: E(G) \rightarrow\{1,2, \ldots, k\}$ of the edges of G, the code, $\operatorname{code}_{c}(v)$, of a vertex v of G is the ordered k-tuple $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$, where ℓ_{i} is the number of edges incident with v that are weighted i. (i) The k-edge-weighting c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-edge-weighting is the detectable chromatic number $\operatorname{det}(G)$ of G. (ii) The k-edge-weighting c is a vertex-coloring if every two adjacent vertices u, v of G with $\operatorname{codes} \operatorname{code}_{c}(u)=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$ and $\operatorname{code}_{c}(v)=\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}, \ldots, \ell_{k}^{\prime}\right)$ have $1 \ell_{1}+2 \ell_{2}+\cdots+k \ell_{k} \neq 1 \ell_{1}^{\prime}+2 \ell_{2}^{\prime}+\cdots+k \ell_{k}^{\prime}$. The minimum positive integer k for which G has a vertex-coloring k-edge-weighting is denoted by $\mu(G)$. In this paper, we have enlarged the known families of graphs with $\operatorname{det}(G)=\mu(G)=2$. © 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Detectable edge-weighting; Vertex-coloring edge-weighting; Cartesian product; Tensor product

1. Introduction

For graph-theoretical terminology and notation, we in general follow [1]. In this paper, we assume that the graphs G in discussion are finite, connected, undirected and simple with order $|V(G)| \geq 3$.

Let $c: E(G) \rightarrow\{1,2, \ldots, k\}$ be a k-edge-weighting of G, where k is a positive integer. The color code of a vertex v of G is the ordered k-tuple $\operatorname{code}_{c}(v)=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$, where ℓ_{i} is the number of edges incident with v that are weighted i for $i \in\{1,2, \ldots, k\}$. Therefore, $\ell_{1}+\ell_{2}+\cdots+\ell_{k}=d_{G}(v)$, the degree of v in G. It follows that for $u, v \in V(G)$ if $d_{G}(u) \neq d_{G}(v)$, then $\operatorname{code}_{c}(u) \neq \operatorname{code}_{c}(v)$. The k-edge-weighting c of G is called detectable if every two adjacent vertices of G have distinct color codes. The detectable chromatic number $\operatorname{det}(G)$ of G is the minimum positive integer k for which G has a detectable k-edge-weighting.

Any k-edge-weighting $c: E(G) \rightarrow\{1,2, \ldots, k\}$ induces a vertex-weighting $f_{c}: V(G) \rightarrow \mathbb{N}$ defined by $f_{c}(v)=\sum_{e \text { is incident with } v} c(e)$. An edge-weighting c is a vertex-coloring if $f_{c}(u) \neq f_{c}(v)$ for any edge $u v$. Denote by $\mu(G)$ the minimum k for which G has a vertex-coloring k-edge-weighting.

[^0]If a graph has an edge as a component, then it neither has a detectable edge-weighting nor has a vertex-coloring edge-weighting. So in this paper, we only consider graphs without a K_{2} component and such graphs are called nice graphs. As the graph G in discussion is connected and as $|V(G)| \geq 3, G$ is nice.

Karoński et al. [2] initiated the study of vertex-coloring k-edge-weighting and they posed the following conjecture:

Conjecture 1.1 (1-2-3-Conjecture). Every nice graph admits a vertex-coloring 3-edge-weighting.

Consider a vertex-coloring k-edge-weighting c of G. For $u v \in E(G)$, let $\ell_{i}, \ell_{i}^{\prime}$, respectively, be the number of edges incident with u, v that are weighted i in c. Then $1 \ell_{1}+2 \ell_{2}+\cdots+k \ell_{k} \neq 1 \ell_{1}^{\prime}+2 \ell_{2}^{\prime}+\cdots+k \ell_{k}^{\prime}$ and hence $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right) \neq\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}, \ldots, \ell_{k}^{\prime}\right)$. So c is a detectable k-edge-weighting. Consequently, $\operatorname{det}(G) \leq \mu(G)$.

Proposition 1.1. $\operatorname{det}(G) \leq \mu(G)$.
Proposition 1.2. For every nice graph G, following three conditions are equivalent:
(i) $\operatorname{det}(G)=1$,
(ii) $\mu(G)=1$,
(iii) G has no adjacent vertices with the same degree.

Proposition 1.3. If $\mu(G)=2$, then $\operatorname{det}(G)=2$.
If c is a detectable 2-edge-weighting of a k-regular graph G with $k \geq 3$, then c is a vertex-coloring 2-edgeweighting. This follows from the fact that $\ell_{1}+\ell_{2}=k=\ell_{1}^{\prime}+\ell_{2}^{\prime}$ and $\left(\ell_{1}, \ell_{2}\right) \neq\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ imply $1 \ell_{1}+2 \ell_{2} \neq 1 \ell_{1}^{\prime}+2 \ell_{2}^{\prime}$.

Proposition 1.4. Let G be a k-regular graph with $k \geq 3$. If $\operatorname{det}(G)=2$, then $\mu(G)=2$.
In [2], Karoński et al. proved that: (i) $\operatorname{det}(G) \leq 183$, and (ii) if $d_{G}(v) \geq 10^{99}$ for every $v \in V(G)$, then $\operatorname{det}(G) \leq 30$.

In [3], Addario-Berry et al. proved that: (i) $\operatorname{det}(G) \leq 4$, (ii) if $d_{G}(v) \geq 1000$ for every $v \in V(G)$, then $\operatorname{det}(G) \leq 3$, and (iii) if $\chi(G) \leq 3$, then $\operatorname{det}(G) \leq 3$.

In [4], among other results, Escuadro et al. proved that: (i) $\operatorname{det}\left(K_{n_{1}, n_{2}, \ldots, n_{k}}\right)=1$ if $n_{1}<n_{2}<\cdots<n_{k}$, $\operatorname{det}\left(K_{n_{1}, n_{2}, \ldots, n_{k}}\right)=3$ if $n_{1}=n_{2}=\cdots=n_{k}=1$ and $\operatorname{det}\left(K_{n_{1}, n_{2}, \ldots, n_{k}}\right)=2$ otherwise, where $K_{n_{1}, n_{2}, \ldots, n_{k}}$ is the complete k-partite graph with partite sizes $n_{1}, n_{2}, \ldots, n_{k}\left(k \geq 3\right.$ and $n_{1} \leq n_{2} \leq \cdots \leq n_{k}$), (ii) $\operatorname{det}\left(C_{3} \square K_{2}\right)=3$, $\operatorname{det}\left(C_{5} \square K_{2}\right)=3$ and if $n \geq 7$ is an odd integer, then $\operatorname{det}\left(C_{n} \square K_{2}\right)=2$, where \square denotes the Cartesian product, and (iii) if G is a unicyclic graph that is not a cycle, then $\operatorname{det}(G) \leq 2$.

See Fig. 5 of [4]; detectable 3-edge-weighting of $C_{3} \square K_{2}$ and that of $C_{5} \square K_{2}$, in the figure, are vertex-coloring 3-edge-weightings. Hence, $\mu\left(C_{3} \square K_{2}\right)=3$ and $\mu\left(C_{5} \square K_{2}\right)=3$. If $n \geq 7$ is an odd integer, then it follows from $\operatorname{det}\left(C_{n} \square K_{2}\right)=2$ and Proposition 1.4 that $\mu\left(C_{n} \square K_{2}\right)=2$.

Theorem 1.1. $\operatorname{det}\left(C_{3} \square K_{2}\right)=\mu\left(C_{3} \square K_{2}\right)=3$, $\operatorname{det}\left(C_{5} \square K_{2}\right)=\mu\left(C_{5} \square K_{2}\right)=3$ and if $n \geq 7$ is an odd integer, then $\operatorname{det}\left(C_{n} \square K_{2}\right)=\mu\left(C_{n} \square K_{2}\right)=2$.

From [5,6], and [4], we have:
Theorem 1.2. For the path P_{n} on n vertices, $\operatorname{det}\left(P_{3}\right)=\mu\left(P_{3}\right)=1$ and $\operatorname{det}\left(P_{n}\right)=\mu\left(P_{n}\right)=2$ if $n \geq 4$.
Theorem 1.3. For the cycle C_{n} on n vertices, $\operatorname{det}\left(C_{n}\right)=\mu\left(C_{n}\right)=2$ if $n \equiv 0(\bmod 4)$ and $\operatorname{det}\left(C_{n}\right)=\mu\left(C_{n}\right)=3$ if $n \equiv 1$, $2 \operatorname{or} 3(\bmod 4)$.

Theorem 1.4. For the complete graph K_{n} on $n \geq 3 \operatorname{vertices,~} \operatorname{det}\left(K_{n}\right)=\mu\left(K_{n}\right)=3$.
Theorem 1.5. For $r+s \geq 3$, $\operatorname{det}\left(K_{r, s}\right)=\mu\left(K_{r, s}\right)=1$ if $r \neq s$ and $\operatorname{det}\left(K_{r, s}\right)=\mu\left(K_{r, s}\right)=2$ if $r=s$, where $K_{r, s}$ is the complete bipartite graph with partite sizes r and s.

The theta $\operatorname{graph} \theta\left(\ell_{1}, \ell_{2}, \ldots, \ell_{r}\right)$ is the graph obtained from r disjoint paths $P_{1}\left(u_{1}, v_{1}\right), P_{2}\left(u_{2}, v_{2}\right), \ldots, P_{r}\left(u_{r}, v_{r}\right)$ of lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{r}$, respectively, by identifying their end-vertices $u:=u_{1}=u_{2}=\cdots=u_{r}$ and $v:=v_{1}=$ $v_{2}=\cdots=v_{r}$, where $P_{i}\left(u_{i}, v_{i}\right)$ is a path of length ℓ_{i} with origin u_{i} and terminus v_{i}. Note that $\theta\left(\ell_{1}\right)=P_{\ell_{1}+1}$ and $\theta\left(\ell_{1}, \ell_{2}\right)=C_{\ell_{1}+\ell_{2}}$.

Theorem 1.6. Let $G=\theta\left(\ell_{1}, \ell_{2}, \ldots, \ell_{r}\right)$ with $r \geq 3, \ell_{1} \leq \ell_{2} \leq \cdots \leq \ell_{r}$, and $\ell_{1}=1$ implies $\ell_{2}>1$. Then $\operatorname{det}(G)=\mu(G)=1$ when $\ell_{i}=2$ for all $i ; \operatorname{det}(G)=\mu(G)=3$ when $\ell_{1}=1$ and $\ell_{i} \equiv 1(\bmod 4)$ for all $i \neq 1$; and $\operatorname{det}(G)=\mu(G)=2$ otherwise.

Proof of Theorem 1.6 follows from: the proof of Proposition 6 in [5], $\operatorname{det}(G) \leq \mu(G)$, and the following: For $\ell_{1}=1$ and $\ell_{i} \equiv 1(\bmod 4)$ for all $i \neq 1$, we claim that $\operatorname{det}(G) \geq 3$. Suppose, to the contrary that G admits a detectable 2-edge-weighting c. Then, in each path the k th edge must have different weight from the $(k+2)$ th edge, and has the same weight with the $(k+4)$ th edge. Consequently, the first edge has the same weight with the last edge in each path of the theta graph. Then, $\operatorname{code}_{c}(u)=\operatorname{code}_{c}(v)$, however, this is impossible as u and v are adjacent.

Theorem 1.7. Let G be a nice connected bipartite graph with bipartition (A, B) and G has at least one pair of adjacent vertices with the same degree. If one of the following conditions holds:
(i) $|A|$ or $|B|$ is even,
(ii) $\delta(G)=1$,
(iii) $\left\lfloor\frac{d(u)}{2}\right\rfloor+1 \neq d(v)$ for any edge $u v \in E(G)$,
then $\operatorname{det}(\vec{G})=\mu(G)=2$.
Consequently,
(i) if G is a tree, then $\operatorname{det}(G)=\mu(G)=2$;
(ii) if G is r-regular with $r \geq 3$, then $\operatorname{det}(G)=\mu(G)=2$; and
(iii) if $\delta(G) \geq 4$ and $\Delta(G)+3 \leq 2 \delta(G)$, then $\operatorname{det}(G)=\mu(G)=2$.

The converse of Theorem 1.7 is in general not true. Consider the cycle $C_{4 n+2}$ of length $4 n+2(n \geq 1)$. For $G=C_{4 n+2}$, both $|A|$ and $|B|$ are odd, $\delta(G) \neq 1,\left\lfloor\frac{d(u)}{2}\right\rfloor+1=d(v)$ for any edge $u v \in E(G)$, and $\operatorname{det}(G)=\mu(G)=3$. Next, consider the complete bipartite graph $\mathcal{K}_{2 n+1,4 n+1}(n \geq 1)$. For $G=K_{2 n+1,4 n+1}$, both $|A|$ and $|B|$ are odd, $\delta(G) \neq 1,\left\lfloor\frac{d(u)}{2}\right\rfloor+1=d(v)$ for any edge $u v \in E(G)$ with $d(u) \geq d(v)$ and $\operatorname{det}(G)=\mu(G)=2$.

Theorem 1.8. Let G be a nice graph and assume that G has at least one pair of adjacent vertices with the same degree. If $\delta(G) \geq 8 \chi(G)$, then $\operatorname{det}(G)=\mu(G)=2$.

Theorem 1.9. Let G be nice, bipartite, and G has at least one pair of adjacent vertices with the same degree. If one of the following conditions holds:
(i) there exists a vertex v such that $d_{G}(v) \notin\left\{d_{G}(x) \mid x \in N(v)\right\}$ and $G-v-N(v)$ is connected,
(ii) there exists a vertex v of degree $\delta(G)$ such that $d_{G}(v) \notin\left\{d_{G}(x) \mid x \in N(v)\right\}$ and $G-v$ is connected,
(iii) G is 3-connected,
(iv) $\delta(G) \geq 3$ and there exists a vertex v of degree $\delta(G)$ such that $G-v-N(v)$ is connected,
then $\operatorname{det}(G)=\mu(G)=2$.
In this paper, we have enlarged the known class of graphs with $\operatorname{det}(G)=\mu(G)=2$.
Let G_{1} and G_{2} be graphs. The Cartesian product $G_{1} \square G_{2}$ of G_{1} and G_{2} is the graph with $V\left(G_{1} \square G_{2}\right)=$ $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent in $G_{1} \square G_{2}$ if, and only if, either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E\left(G_{2}\right)$ or $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1}=v_{2}$. The tensor product $G_{1} \times G_{2}$ of G_{1} and G_{2} is the graph with $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent in $G_{1} \times G_{2}$ if, and only if, $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$.

2. Bipartite graphs

In this section, we find detectable 2-edge-weighting for some bipartite graphs.
Theorem 2.1. Let G be a bipartite graph with bipartition (X, Y). If Y has a partition into two nonempty subsets Y_{1} and Y_{2}, and if every vertex of X has at least one neighbor in Y_{1} and one neighbor in Y_{2}, then $\operatorname{det}(G) \leq 2$.

Proof. Assign weight 1 to the edges with one end in Y_{1} and 2 to the edges with one end in Y_{2}. Then, $\operatorname{code}\left(y_{1}\right)=$ $\left(d_{G}\left(y_{1}\right), 0\right)$ for every $y_{1} \in Y_{1}$, and $\operatorname{code}\left(y_{2}\right)=\left(0, d_{G}\left(y_{2}\right)\right)$ for every $y_{2} \in Y_{2}$. Now, let $x \in X$. If $\operatorname{code}(x)=\left(\ell_{1}, \ell_{2}\right)$, then by hypothesis $\ell_{1} \geq 1$ and $\ell_{2} \geq 1$. Hence G has a detectable 2 -edge-weighting.

Note that the partition in previous theorem is impossible for cycles $C_{4 n+2}, n \geq 1$, and it is known that $\operatorname{det}\left(C_{4 n+2}\right)=3$. Consider for $n \geq 1$, the graph $G_{4 n+2}$ obtained from $C_{4 n+2}$ by adding a pendant edge at only one vertex of $C_{4 n+2}$. Let $G_{4 n+2}:=x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} \ldots x_{2 n+1} y_{2 n+1} x_{1} \oplus x_{1} y$. Observe that the partition in previous theorem is impossible for $G_{4 n+2}$ and $\operatorname{det}\left(G_{4 n+2}\right)=2$. $\operatorname{det}\left(G_{4 n+2}\right)=2$ follows from the fact that $G_{4 n+2}$ is bipartite with $\delta\left(G_{4 n+2}\right)=1$.

3. Cartesian product of two graphs

Recently, in [7], we and Havet have shown that if G is bipartite and the minimum degree of G is at least 3, then $\operatorname{det}(G) \leq 2$.

In this section, we find some Cartesian products $G_{1} \square G_{2}$ of graphs G_{1} and G_{2} with $\operatorname{det}\left(G_{1} \square G_{2}\right)=2$ and some Cartesian products $H_{1} \square H_{2}$ of graphs H_{1} and H_{2} with $\operatorname{det}\left(H_{1} \square H_{2}\right)=\mu\left(H_{1} \square H_{2}\right)=2$.

Denote by \mathscr{G}_{3}, the set of tripartite graphs G with tripartition (X, Y, Z) such that for any $x \in X, y \in Y$ and $z \in Z, d_{G[X \cup Y]}(x)=r=d_{G[X \cup Y]}(y), d_{G[X \cup Z]}(x)=s=d_{G[X \cup Z]}(z)$ and $d_{G[Y \cup Z]}(y)=t=d_{G[Y \cup Z]}(z) ; r \geq 1$, $s \geq 1, t \geq 1$; i.e., the subgraphs induced by $X \cup Y, X \cup Z$ and $Y \cup Z$ are, respectively, r, s and t-regular.

Theorem 3.1. If $G_{1}, G_{2} \in \mathscr{G}_{3}$, then $\operatorname{det}\left(G_{1} \square G_{2}\right) \leq 2$.
Proof. Let $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$ be the tripartition of G_{1} such that for $x^{\prime} \in X^{\prime}, y^{\prime} \in Y^{\prime}$ and $z^{\prime} \in Z^{\prime}, d_{G_{1}\left[X^{\prime} \cup Y^{\prime}\right]}\left(x^{\prime}\right)=r^{\prime}=$ $d_{G_{1}\left[X^{\prime} \cup Y^{\prime}\right]}\left(y^{\prime}\right), d_{G_{1}\left[X^{\prime} \cup Z^{\prime}\right]}\left(x^{\prime}\right)=s^{\prime}=d_{G_{1}\left[X^{\prime} \cup Z^{\prime}\right]}\left(z^{\prime}\right)$ and $d_{G_{1}\left[Y^{\prime} \cup Z^{\prime}\right]}\left(y^{\prime}\right)=t^{\prime}=d_{G_{1}\left[Y^{\prime} \cup Z^{\prime}\right]}\left(z^{\prime}\right)$; and let $\left(X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}\right)$ be the tripartition of G_{2} such that for $x^{\prime \prime} \in X^{\prime \prime}, y^{\prime \prime} \in Y^{\prime \prime}$ and $z^{\prime \prime} \in Z^{\prime \prime}, d_{G_{2}\left[X^{\prime \prime} \cup Y^{\prime \prime}\right]}\left(x^{\prime \prime}\right)=r^{\prime \prime}=d_{G_{2}\left[X^{\prime \prime} \cup Y^{\prime \prime}\right]}\left(y^{\prime \prime}\right)$, $d_{G_{2}\left[X^{\prime \prime} \cup Z^{\prime \prime}\right]}\left(x^{\prime \prime}\right)=s^{\prime \prime}=d_{G_{2}\left[X^{\prime \prime} \cup Z^{\prime \prime}\right]}\left(z^{\prime \prime}\right)$ and $d_{G_{2}\left[Y^{\prime \prime} \cup Z^{\prime \prime}\right]}\left(y^{\prime \prime}\right)=t^{\prime \prime}=d_{G_{2}\left[Y^{\prime \prime} \cup Z^{\prime \prime}\right]}\left(z^{\prime \prime}\right)$. Define c as follows:

Assign weight 1 to edges having both ends in $X^{\prime} \times V\left(G_{2}\right)$, to edges having both ends in $V\left(G_{1}\right) \times X^{\prime \prime}$, to edges having one end in $Z^{\prime} \times X^{\prime \prime}$ and other end in $Z^{\prime} \times Y^{\prime \prime}$, and to edges having one end in $X^{\prime} \times Z^{\prime \prime}$ and other end in $Y^{\prime} \times Z^{\prime \prime}$; assign weight 2 to edges having both ends in $Y^{\prime} \times V\left(G_{2}\right)$, to edges having both ends in $V\left(G_{1}\right) \times Y^{\prime \prime}$, and to edges having one end in $Z^{\prime} \times Z^{\prime \prime}$ and other end in $\left(Z^{\prime} \times X^{\prime \prime}\right) \cup\left(Z^{\prime} \times Y^{\prime \prime}\right) \cup\left(X^{\prime} \times Z^{\prime \prime}\right) \cup\left(Y^{\prime} \times Z^{\prime \prime}\right)$.

Let $x^{\prime} \in X^{\prime}, y^{\prime} \in Y^{\prime}, z^{\prime} \in Z^{\prime}, x^{\prime \prime} \in X^{\prime \prime}, y^{\prime \prime} \in Y^{\prime \prime}$, and $z^{\prime \prime} \in Z^{\prime \prime}$.
Color code is given by:
$\operatorname{code}_{c}\left(\left(x^{\prime}, x^{\prime \prime}\right)\right)=\left(r^{\prime}+s^{\prime}+r^{\prime \prime}+s^{\prime \prime}, 0\right)$,
$\operatorname{code}_{c}\left(\left(x^{\prime}, y^{\prime \prime}\right)\right)=\left(r^{\prime \prime}+t^{\prime \prime}, r^{\prime}+s^{\prime}\right)$,
$\operatorname{code}_{c}\left(\left(x^{\prime}, z^{\prime \prime}\right)\right)=\left(r^{\prime}+s^{\prime \prime}+t^{\prime \prime}, s^{\prime}\right)$,
$\operatorname{code}_{c}\left(\left(y^{\prime}, x^{\prime \prime}\right)\right)=\left(r^{\prime}+t^{\prime}, r^{\prime \prime}+s^{\prime \prime}\right)$,
$\operatorname{code}_{c}\left(\left(y^{\prime}, y^{\prime \prime}\right)\right)=\left(0, r^{\prime}+t^{\prime}+r^{\prime \prime}+t^{\prime \prime}\right)$,
$\operatorname{code}_{c}\left(\left(y^{\prime}, z^{\prime \prime}\right)\right)=\left(r^{\prime}, t^{\prime}+s^{\prime \prime}+t^{\prime \prime}\right)$,
$\operatorname{code}_{c}\left(\left(z^{\prime}, x^{\prime \prime}\right)\right)=\left(s^{\prime}+t^{\prime}+r^{\prime \prime}, s^{\prime \prime}\right)$,
$\operatorname{code}_{c}\left(\left(z^{\prime}, y^{\prime \prime}\right)\right)=\left(r^{\prime \prime}, s^{\prime}+t^{\prime}+t^{\prime \prime}\right)$, and
$\operatorname{code}_{c}\left(\left(z^{\prime}, z^{\prime \prime}\right)\right)=\left(0, s^{\prime}+t^{\prime}+s^{\prime \prime}+t^{\prime \prime}\right)$.
Hence c is a detectable 2-edge-weighting of $G_{1} \square G_{2}$.
Theorem 3.2. If G is a k-regular bipartite graph, $k \geq 2$, and if $H \in \mathscr{G}_{3}$, then $\operatorname{det}(G \square H) \leq 2$.
Proof. Let (A, B) be the bipartition of G, and let (X, Y, Z) be the tripartition of H such that for $x \in X, y \in Y$ and $z \in Z, d_{H[X \cup Y]}(x)=r=d_{H[X \cup Y]}(y), d_{H[X \cup Z]}(x)=s=d_{H[X \cup Z]}(z)$ and $d_{H[Y \cup Z]}(y)=t=d_{H[Y \cup Z]}(z)$.

Define c as follows: Assign weight 1 to the edges having both ends in $A \times V(H)$, and edges having one end in $B \times Y$ and other end in $(A \times Y) \cup(B \times X)$; assign weight 2 to the edges having one end in $A \times X$ and other end in $B \times X$, and edges having one end in $B \times Z$ and other end in $(B \times X) \cup(B \times Y)$. Finally, we have to assign weights to the edges having one end in $A \times Z$ and other end in $B \times Z$.

For $a \in A, b \in B, x \in X, y \in Y$ and $z \in Z$, code e_{c} is given by:
$\operatorname{code}_{c}((a, x))=(r+s, k)$,
$\operatorname{code}_{c}((a, y))=(r+t+k, 0)$,
$\operatorname{code}_{c}((b, x))=(r, s+k)$, and
$\operatorname{code}_{c}((b, y))=(r+k, t)$.

Case $1 .|\{r, s, t\}| \geq 2$. Assume without loss of generality that $r \neq t$.
Assign weight 2 to the edges having one end in $A \times Z$ and other end in $B \times Z$. Now, $\operatorname{code}_{c}((a, z))=(s+t, k)$ and $\operatorname{code}_{c}((b, z))=(0, k+t+s)$.
Case 2. $r=s=t$.
$\operatorname{code}_{c}((a, x))=(2 r, k), \operatorname{code}_{c}((a, y))=(2 r+k, 0), \operatorname{code}_{c}((b, x))=(r, r+k)$, and $\operatorname{code} e_{c}((b, y))=(r+k, r)$.
Subcase 2.1. $r \geq 2$.
Find a 1 -factor F in the k-regular bipartite graph $(G \square H)[(A \times Z) \cup(B \times Z)]$. Assign weight 1 to the edges of F and the remaining edges having one end in $A \times Z$ and other end in $B \times Z$ are assigned weight 2 . Now, $\operatorname{code}_{c}((a, z))=(2 r+1, k-1)$ and $\operatorname{code}_{c}((b, z))=(1,2 r+k-1)$.
Subcase 2.2. $r=1$.
$\operatorname{code}_{c}((a, x))=(2, k), \operatorname{code}_{c}((a, y))=(k+2,0), \operatorname{code}_{c}((b, x))=(1, k+1)$, and $\operatorname{code}_{c}((b, y))=(k+1,1)$.
If $k \geq 3$, find two edge-disjoint 1-factors F_{1} and F_{2} in the k-regular bipartite graph $(G \square H)[(A \times Z) \cup(B \times Z)]$. Assign weight 1 to the edges of $F_{1} \cup F_{2}$ and the remaining edges having one end in $A \times Z$ and other end in $B \times Z$ are assigned weight 2 . Now, $\operatorname{code}_{c}((a, z))=(4, k-2)$ and $\operatorname{code}_{c}((b, z))=(2, k)$.

Finally, assume that $k=2$. Interchange the weight for the edges having one end in $B \times X$ and other end in $B \times Y$ by 2. Find two edge-disjoint 1 -factors F_{1} and F_{2} in the k-regular bipartite graph $(G \square H)[(A \times Z) \cup(B \times Z)]$. Assign weight 1 to the edges of F_{1} and the edges of F_{2} by 2 . Now, $\operatorname{code}_{c}((a, x))=(2,2), \operatorname{code}_{c}((a, y))=(4,0)$, $\operatorname{code}_{c}((a, z))=(3,1), \operatorname{code}_{c}((b, x))=(0,4), \operatorname{code}_{c}((b, y))=(2,2)$, and $\operatorname{code}_{c}((b, z))=(1,3)$.

In any case, c is a detectable 2-edge-weighting of $G \square H$.
For convenience, let $V\left(P_{r}\right)=V\left(C_{r}\right)=\{0,1,2, \ldots, r-1\}, E\left(P_{r}\right)=\{\{i, i+1\}: i \in\{0,1,2, \ldots, r-2\}\}$ and $E\left(C_{r}\right)=E\left(P_{r}\right) \cup\{\{r-1,0\}\}$.

For any $n \geq 0, C_{6 n+3} \in \mathscr{G}_{3}$; hence by previous theorem for any k-regular bipartite graph G with $k \geq 2$, we have $\operatorname{det}\left(G \square C_{6 n+3}\right) \leq 2$.

Theorem 3.3. If G is a k-regular bipartite graph, $k \geq 2$, and if $n \geq 1$, then $\operatorname{det}\left(G \square C_{2 n+1}\right)=\mu\left(G \square C_{2 n+1}\right)=2$.
Proof. Let (X, Y) be the bipartition of G. Define c as follows:
Case $1 . n \geq 2$.
Assign weight 1 to the edges having one end in $X \times\{0,2,4, \ldots, 2 n\}$ and the other end in $Y \times\{0,2,4, \ldots, 2 n\}$, edges having both ends in $X \times\{0,1,2, \ldots, 2 n-1\}$, and edges having both ends in $Y \times\{2 n-2,2 n-1,2 n\}$; and assign weight 2 to the edges having one end in $X \times\{1,3,5, \ldots, 2 n-1\}$ and the other end in $Y \times\{1,3,5, \ldots, 2 n-1\}$, edges having both ends in $X \times\{2 n-1,2 n, 0\}$, and edges having both ends in $Y \times\{2 n, 0,1,2, \ldots, 2 n-2\}$. code e_{c} is given by: for $x \in X$ and $y \in Y$,
$\operatorname{code}_{c}((x, i))=(2, k)$ if $i \in\{1,3,5, \ldots, 2 n-3\} ;$
$\operatorname{code}_{c}((x, i))=(k+2,0)$ if $i \in\{2,4,6, \ldots, 2 n-2\} ;$
$\operatorname{code}_{c}((x, 0))=(k+1,1) ;$
$\operatorname{code}_{c}((x, 2 n-1))=(1, k+1) ;$
$\operatorname{code}_{c}((x, 2 n))=(k, 2) ;$
$\operatorname{code}_{c}((y, i))=(0, k+2)$ if $i \in\{1,3,5, \ldots, 2 n-3\}$;
$\operatorname{code}_{c}((y, i))=(k, 2)$ if $i \in\{0,2,4, \ldots, 2 n-4\} ;$
$\operatorname{code}_{c}((y, 2 n-2))=(k+1,1)=\operatorname{code}_{c}((y, 2 n)) ;$ and
$\operatorname{code}_{c}((y, 2 n-1))=(2, k)$.
Case $2 . n=1$.
Subcase 2.1. $k \geq 3$.
Assign weight 1 to the edges having one end in $X \times\{1\}$ and the other end in $Y \times\{1\}$, edges having both ends in $X \times\{0,1,2\}$, and edges having both ends in $Y \times\{0,1\}$; and assign weight 2 to the edges having one end in $X \times\{0\}$ and the other end in $Y \times\{0\}$, edges having both ends in $Y \times\{1,2\}$, and edges having both ends in $Y \times\{2,0\}$. Find two edge-disjoint 1-factors F_{1} and F_{2} in the k-regular bipartite subgraph induced by the partite sets $X \times\{2\}$ and $Y \times\{2\}$. Assign weight 1 to the edges of $F_{1} \cup F_{2}$ and the remaining edges having one end in $X \times\{2\}$ and other end in $Y \times\{2\}$ are by 2 . code e_{c} is given by: for $x \in X$ and $y \in Y$,

$$
\operatorname{code}_{c}((x, 0))=(2, k) ; \operatorname{code}_{c}((x, 1))=(k+2,0) ; \operatorname{code}_{c}((x, 2))=(4, k-2) ;
$$

$\operatorname{code}_{c}((y, 0))=(1, k+1) ; \operatorname{code}_{c}((y, 1))=(k+1,1) ; \operatorname{code}_{c}((y, 2))=(2, k)$.
Subcase 2.2. $k=2$.
Assign weight 1 to the edges having one end in $X \times\{1\}$ and the other end in $Y \times\{1\}$, and edges having both ends in $X \times\{0,1,2\}$; and assign weight 2 to the edges having one end in $X \times\{0\}$ and the other end in $Y \times\{0\}$, and edges having both ends in $Y \times\{0,1,2\}$. Find two edge-disjoint 1-factors F_{1} and F_{2} in the 2-regular bipartite subgraph induced by the partite sets $X \times\{2\}$ and $Y \times\{2\}$. Assign weight 1 to the edges of F_{1} and 2 to the edges of F_{2}. Now,
$\operatorname{code}_{c}((x, 0))=(2,2) ; \operatorname{code}_{c}((x, 1))=(4,0) ; \operatorname{code}_{c}((x, 2))=(3,1) ;$
$\operatorname{code}_{c}((y, 0))=(0,4) ; \operatorname{code}_{c}((y, 1))=(2,2) ; \operatorname{code}_{c}((y, 2))=(1,3)$.
In any case, the 2-edge-weighting c of $G \square C_{2 n+1}$ is detectable and hence $\operatorname{det}\left(G \square C_{2 n+1}\right)=2$. By Proposition 1.4, $\mu\left(G \square C_{2 n+1}\right)=2$.

Theorem 3.4. If $m, n \geq 3$, then $\operatorname{det}\left(C_{m} \square C_{n}\right)=\mu\left(C_{m} \square C_{n}\right)=2$.
Proof. If both m and n are even, then $C_{m} \square C_{n}$ is a 4-regular bipartite graph and hence the result follows from the result quoted in the beginning of this section, and Propositions 1.2 and 1.4. If m and n are of opposite parity, say, m is odd and n is even, then the result follows from Theorem 3.3. Hence, assume that both m and n are odd.

Define c as follows:
Assign weight 1 to the edges having both ends in $\{0,2,4, \ldots, m-3\} \times V\left(C_{n}\right)$, and edges having both ends in $V\left(C_{m}\right) \times\{0,2,4, \ldots, n-3\}$; assign weight 2 to the edges having both ends in $\{1,3,5, \ldots, m-2\} \times V\left(C_{n}\right)$, and edges having both ends in $V\left(C_{m}\right) \times\{1,3,5, \ldots, n-2\}$;

```
c((m-1,j)(m-1,j+1))=1 if j\in{1,3,5,\ldots,n-2};
c((m-1,j)(m-1,j+1))=2 if j\in{0,2,4,\ldots,n-3};
c((m-1,n-1)(m-1,0)) = 1;
c((i,n-1)(i+1,n-1)) = 1 if i }\in{1,3,5,\ldots,m-2}
c((i,n-1)(i+1,n-1))=2 if i\in{0,2,4,\ldots,m-3}; and
c((m-1,n-1)(0,n-1))=1.
codec
\mp@subsup{\operatorname{codec}}{c}{}((i,j))=(4,0) if i\in{0,2,4,\ldots,m-3} and j\in{0,2,4,\ldots,n-3};
\mp@subsup{\operatorname{code}}{c}{}((i,j))=(0,4) if i\in{1,3,5,\ldots,m-2} and j\in{1,3,5,\ldots,n-2};
\mp@subsup{\operatorname{codec}}{c}{}((m-1,j))=(3,1) if j\in{0,2,4,\ldots,n-3};
\mp@subsup{\operatorname{code}}{c}{}((m-1,j))=(1,3) if j\in{1,3,5,\ldots,n-2};
\mp@subsup{code}{c}{}((i,n-1))=(3,1) if i\in{0,2,4,\ldots,m-3};
\mp@subsup{code}{c}{}((i,n-1))=(1,3) if i\in{1,3,5,\ldots,m-2};
\mp@subsup{code}{c}{}((m-1,n-1))=(4,0); and
code}c((i,j))=(2,2) otherwise
```

This 2-edge-weighting c is detectable and hence $\operatorname{det}\left(C_{m} \square C_{n}\right)=2$. By Proposition $1.4, \mu\left(C_{m} \square C_{n}\right)=2$.
Recently, in [8], Davoodi and Omoomi have shown that if G and H are two connected bipartite graphs and $G \square H \neq K_{2}$, then $\mu(G \square H) \leq 2$.

Theorem 3.5. If $m, n \geq 3$, then $\operatorname{det}\left(C_{m} \square P_{n}\right)=\mu\left(C_{m} \square P_{n}\right)=2$.
Proof. If m is even, then the result follows from the above result of Davoodi and Omoomi, and Propositions 1.2 and 1.3. Hence, assume that m is odd. We consider two cases.

Case 1. n is odd.
Define c as follows: Assign weight 1 to the edges having both ends in $\{1,3,5, \ldots, m-2\} \times V\left(P_{n}\right)$, and edges having both ends in $V\left(C_{m}\right) \times\{2,4,6, \ldots, n-3\}$; assign weight 2 to the edges having both ends in $\{0,2,4, \ldots, m-3\} \times V\left(P_{n}\right)$, and edges having both ends in $V\left(C_{m}\right) \times\{1,3,5, \ldots, n-2\}$;
$c((m-1, j)(m-1, j+1))=1$ if $j \in\{0,2,4, \ldots, n-3\} ;$
$c((m-1, j)(m-1, j+1))=2$ if $j \in\{1,3,5, \ldots, n-2\} ;$
$c((i, 0)(i+1,0))=1$ if $i \in\{0,1,2, \ldots, m-2\}$;
$c((m-1,0)(0,0))=2$;
$c((i, n-1)(i+1, n-1))=1$ if $i \in\{0,2,4, \ldots, m-3\}$;

```
\(c((i, n-1)(i+1, n-1))=2\) if \(i \in\{1,3,5, \ldots, m-2\}\); and
\(c((m-1, n-1)(0, n-1))=2\).
\(f_{c}\) is given by:
\(f_{c}((i, j))=8\) if \(i \in\{0,2,4, \ldots, m-3\}\) and \(j \in\{1,3,5, \ldots, n-2\}\);
\(f_{c}((i, j))=4\) if \(i \in\{1,3,5, \ldots, m-2\}\) and \(j \in\{2,4,6, \ldots, n-3\}\);
\(f_{c}((0,0))=5\);
\(f_{c}((i, 0))=3\) if \(i \in\{1,3,5, \ldots, m-2\}\);
\(f_{c}((i, 0))=4\) if \(i \in\{2,4,6, \ldots, m-1\}\);
\(f_{c}((i, n-1))=5\) if \(i \in\{0,2,4, \ldots, m-3\}\);
\(f_{c}((i, n-1))=4\) if \(i \in\{1,3,5, \ldots, m-2\}\);
\(f_{c}((m-1, n-1))=6\);
\(f_{c}((m-1, j))=7\) if \(j \in\{1,3,5, \ldots, n-2\}\);
\(f_{c}((m-1, j))=5\) if \(j \in\{2,4,6, \ldots, n-3\}\);
\(f_{c}((i, j))=6\) otherwise.
```

Case 2. n is even.
Define c as follows: Assign weight 1 to the edges having both ends in $\{0,2,4, \ldots, m-3\} \times V\left(P_{n}\right)$, and edges having both ends in $V\left(C_{m}\right) \times\{2,4,6, \ldots, n-2\}$; assign weight 2 to the edges having both ends in $\{1,3,5, \ldots, m-2\} \times V\left(P_{n}\right)$, and edges having both ends in $V\left(C_{m}\right) \times\{1,3,5, \ldots, n-3\} ;$

$$
\begin{aligned}
& c((m-1, j)(m-1, j+1))=1 \text { if } j \in\{0,2,4, \ldots, n-2\} ; \\
& c((m-1, j)(m-1, j+1))=2 \text { if } j \in\{1,3,5, \ldots, n-3\} ; \\
& c((i, 0)(i+1,0))=1 \text { if } i \in\{0,1,2, \ldots, m-3\} ; \\
& c((m-2,0)(m-1,0))=2 ; \\
& c((m-1,0)(0,0))=1 ; \\
& c((i, n-1)(i+1, n-1))=1 \text { if } i \in\{0,1,2, \ldots, m-3\} ; \\
& c((m-2, n-1)(m-1, n-1))=2 ; \text { and } \\
& c((m-1, n-1)(0, n-1))=1 .
\end{aligned}
$$

f_{c} is given by:
$f_{c}((i, j))=8$ if $i \in\{1,3,5, \ldots, m-2\}$ and $j \in\{1,3,5, \ldots, n-3\}$;
$f_{c}((i, j))=4$ if $i \in\{0,2,4, \ldots, m-3\}$ and $j \in\{2,4,6, \ldots, n-2\}$;
$f_{c}((i, 0))=3$ if $i \in\{0,2,4, \ldots, m-3\}$;
$f_{c}((i, 0))=4$ if $i \in\{1,3,5, \ldots, m-4\}$;
$f_{c}((m-2,0))=5$;
$f_{c}((m-1,0))=4$;
$f_{c}((i, n-1))=3$ if $i \in\{0,2,4, \ldots, m-3\}$;
$f_{c}((i, n-1))=4$ if $i \in\{1,3,5, \ldots, m-4\}$;
$f_{c}((m-2, n-1))=5$;
$f_{c}((m-1, n-1))=4$;
$f_{c}((m-1, j))=7$ if $j \in\{1,3,5, \ldots, n-3\}$;
$f_{c}((m-1, j))=5$ if $j \in\{2,4,6, \ldots, n-2\}$;
$f_{c}((i, j))=6$ otherwise.
In any case, the 2-edge-weighting c is a vertex-coloring and hence $\mu\left(C_{m} \square P_{n}\right)=2$. By Proposition 1.3, $\operatorname{det}\left(C_{m} \square P_{n}\right)=2$.

Denote by $\mathscr{G}_{b}^{(2)}$, the set of graphs $G=(V, E)$ for which there exists a partition (X, Y) of V such that
(i) if $x^{\prime}, x^{\prime \prime} \in X$ and $x^{\prime} x^{\prime \prime} \in E$, then $\left|d_{G}\left(x^{\prime}\right)-d_{G}\left(x^{\prime \prime}\right)\right| \geq 2$; and
(ii) if $y^{\prime}, y^{\prime \prime} \in Y$ and $y^{\prime} y^{\prime \prime} \in E$, then $\left|d_{G}\left(y^{\prime}\right)-d_{G}\left(y^{\prime \prime}\right)\right| \geq 2$.

Clearly, (i) if G is bipartite, then $G \in \mathscr{G}_{b}^{(2)}$; and (ii) if $G \in \mathscr{G}_{b}^{(2)}$ is regular, then G is bipartite.
Theorem 3.6. If $G \in \mathscr{G}_{b}^{(2)}$, then $\operatorname{det}\left(G \square K_{2}\right)=\mu\left(G \square K_{2}\right) \leq 2$.
Proof. Let $V(G)=V, E(G)=E, \Delta(G)=\Delta$, the maximum degree of G, and $V\left(K_{2}\right)=\{0,1\}$. By the definition of $\mathscr{G}_{b}^{(2)}$, there exists a partition (X, Y) of V such that: if $x^{\prime}, x^{\prime \prime} \in X$ and $x^{\prime} x^{\prime \prime} \in E$, then $\left|d_{G}\left(x^{\prime}\right)-d_{G}\left(x^{\prime \prime}\right)\right| \geq 2$; and if $y^{\prime}, y^{\prime \prime} \in Y$ and $y^{\prime} y^{\prime \prime} \in E$, then $\left|d_{G}\left(y^{\prime}\right)-d_{G}\left(y^{\prime \prime}\right)\right| \geq 2$. For $1 \leq i \leq \Delta$, set $X_{i}=\left\{x \in X: d_{G}(x)=i\right\}$ and $Y_{i}=\left\{y \in Y: d_{G}(y)=i\right\}$.

Now we give a 2-edge-weighting c for $G \square K_{2}$. Assign:
weight 1 to the edges with ends in $V \times\{0\}$;
weight 2 to the edges with ends in $V \times\{1\}$;
for odd i, weight 1 to the edges with one end in $X_{i} \times\{0\}$ and other end in $X_{i} \times\{1\}$;
for even i, weight 2 to the edges with one end in $X_{i} \times\{0\}$ and other end in $X_{i} \times\{1\}$;
for odd i, weight 2 to the edges with one end in $Y_{i} \times\{0\}$ and other end in $Y_{i} \times\{1\}$;
for even i, weight 1 to the edges with one end in $Y_{i} \times\{0\}$ and other end in $Y_{i} \times\{1\}$.
Next, we compute f_{c} for adjacent vertices of $G \square K_{2}$.

- Let $x \in X$. Then $x \in X_{i}$ for some i with $1 \leq i \leq \Delta$. Hence,

$$
f_{c}((x, 0))=\left\{\begin{array}{ll}
i+1 & \text { if } i \text { is odd, } \\
i+2 & \text { if } i \text { is even; }
\end{array} \quad \text { and } \quad f_{c}((x, 1))= \begin{cases}2 i+1 & \text { if } i \text { is odd, } \\
2 i+2 & \text { if } i \text { is even. }\end{cases}\right.
$$

Consequently, $f_{c}((x, 0)) \neq f_{c}((x, 1))$.

- Let $y \in Y$. Then $y \in Y_{i}$ for some i with $1 \leq i \leq \Delta$. Hence,

$$
f_{c}((y, 0))=\left\{\begin{array}{ll}
i+2 & \text { if } i \text { is odd, } \\
i+1 & \text { if } i \text { is even; }
\end{array} \quad \text { and } \quad f_{c}((y, 1))= \begin{cases}2 i+2 & \text { if } i \text { is odd, } \\
2 i+1 & \text { if } i \text { is even. }\end{cases}\right.
$$

Consequently, $f_{c}((y, 0)) \neq f_{c}((y, 1))$.

- Let $x^{\prime}, x^{\prime \prime} \in X$ and $x^{\prime} x^{\prime \prime} \in E$. Then $\left|d_{G}\left(x^{\prime}\right)-d_{G}\left(x^{\prime \prime}\right)\right| \geq 2$. Without loss of generality, assume that $x^{\prime} \in X_{i}$, $x^{\prime \prime} \in X_{j}$ with $1 \leq i<j \leq \Delta$. As $\left|d_{G}\left(x^{\prime}\right)-d_{G}\left(x^{\prime \prime}\right)\right| \geq 2, j-i \geq 2$. Hence,

$$
\begin{aligned}
& f_{c}\left(\left(x^{\prime}, 0\right)\right)=\left\{\begin{array}{ll}
i+1 & \text { if } i \text { is odd, } \\
i+2 & \text { if } i \text { is even; }
\end{array} \quad f_{c}\left(\left(x^{\prime}, 1\right)\right)= \begin{cases}2 i+1 & \text { if } i \text { is odd, } \\
2 i+2 & \text { if } i \text { is even; }\end{cases} \right. \\
& f_{c}\left(\left(x^{\prime \prime}, 0\right)\right)=\left\{\begin{array}{lll}
j+1 & \text { if } j \text { is odd, } \\
j+2 & \text { if } j \text { is even; }
\end{array} \quad \text { and } \quad f_{c}\left(\left(x^{\prime \prime}, 1\right)\right)= \begin{cases}2 j+1 & \text { if } j \text { is odd, } \\
2 j+2 & \text { if } j \text { is even. }\end{cases} \right.
\end{aligned}
$$

As $j \geq i+2, f_{c}\left(\left(x^{\prime}, 0\right)\right) \neq f_{c}\left(\left(x^{\prime \prime}, 0\right)\right)$ and $f_{c}\left(\left(x^{\prime}, 1\right)\right) \neq f_{c}\left(\left(x^{\prime \prime}, 1\right)\right)$.

- Let $y^{\prime}, y^{\prime \prime} \in Y$ and $y^{\prime} y^{\prime \prime} \in E$. Then $\left|d_{G}\left(y^{\prime}\right)-d_{G}\left(y^{\prime \prime}\right)\right| \geq 2$. Without loss of generality, assume that $y^{\prime} \in Y_{i}, y^{\prime \prime} \in Y_{j}$ with $1 \leq i<j \leq \Delta$. As $\left|d_{G}\left(y^{\prime}\right)-d_{G}\left(y^{\prime \prime}\right)\right| \geq 2, j-i \geq 2$. Hence,

$$
\begin{aligned}
& f_{c}\left(\left(y^{\prime}, 0\right)\right)=\left\{\begin{array}{ll}
i+2 & \text { if } i \text { is odd, } \\
i+1 & \text { if } i \text { is even; }
\end{array} \quad f_{c}\left(\left(y^{\prime}, 1\right)\right)= \begin{cases}2 i+2 & \text { if } i \text { is odd, } \\
2 i+1 & \text { if } i \text { is even; }\end{cases} \right. \\
& f_{c}\left(\left(y^{\prime \prime}, 0\right)\right)=\left\{\begin{array}{lll}
j+2 & \text { if } j \text { is odd, } \\
j+1 & \text { if } j \text { is even; }
\end{array} \quad \text { and } \quad f_{c}\left(\left(y^{\prime \prime}, 1\right)\right)= \begin{cases}2 j+2 & \text { if } j \text { is odd, } \\
2 j+1 & \text { if } j \text { is even. }\end{cases} \right.
\end{aligned}
$$

As $j \geq i+2, f_{c}\left(\left(y^{\prime}, 0\right)\right) \neq f_{c}\left(\left(y^{\prime \prime}, 0\right)\right)$ and $f_{c}\left(\left(y^{\prime}, 1\right)\right) \neq f_{c}\left(\left(y^{\prime \prime}, 1\right)\right)$.
\bullet Let $x \in X, y \in Y$ and $x y \in E$. Then, $x \in X_{i}, y \in Y_{j}$ with $1 \leq i, j \leq \Delta$.

$$
\begin{aligned}
& f_{c}((x, 0))=\left\{\begin{array}{ll}
i+1 & \text { if } i \text { is odd, } \\
i+2 & \text { if } i \text { is even; }
\end{array} \quad f_{c}((y, 0))= \begin{cases}j+2 & \text { if } j \text { is odd, } \\
j+1 & \text { if } j \text { is even; }\end{cases} \right. \\
& f_{c}((x, 1))=\left\{\begin{array}{ll}
2 i+1 & \text { if } i \text { is odd, } \\
2 i+2 & \text { if } i \text { is even; }
\end{array} \quad \text { and } \quad f_{c}((y, 1))= \begin{cases}2 j+2 & \text { if } j \text { is odd, } \\
2 j+1 & \text { if } j \text { is even. }\end{cases} \right.
\end{aligned}
$$

Since $f_{c}((x, 0))$ is even and $f_{c}((y, 0))$ is odd, we have $f_{c}((x, 0)) \neq f_{c}((y, 0))$. Since $f_{c}((x, 1)) \equiv 2$ or $3(\bmod 4)$ and $f_{c}((y, 1)) \equiv 0$ or $1(\bmod 4)$, we have $f_{c}((x, 1)) \neq f_{c}((y, 1))$.

This completes the proof of $\mu\left(G \square K_{2}\right) \leq 2$ and $\operatorname{det}\left(G \square K_{2}\right)=\mu\left(G \square K_{2}\right)$ follows from this inequality and Propositions 1.2 and 1.3.

Theorem 3.7. For positive integers n_{1}, n_{2}, n_{3}, with $\left(n_{1}, n_{2}, n_{3}\right) \neq(1,1,1)$, $\operatorname{det}\left(K_{n_{1}, n_{2}, n_{3}} \square K_{2}\right)=\mu\left(K_{n_{1}, n_{2}, n_{3}}\right.$ $\left.K_{2}\right)=2$.

Proof. Let $V\left(K_{2}\right)=\{0,1\}$ and $V=V\left(K_{n_{1}, n_{2}, n_{3}}\right)=V_{1} \cup V_{2} \cup V_{3}$, where, for $i \in\{1,2,3\}, V_{i}$ is an independent set of cardinality n_{i}. Without loss of generality, assume that $n_{1} \leq n_{2} \leq n_{3}$. If $n_{3}-n_{1} \geq 2$, then $K_{n_{1}, n_{2}, n_{3}} \in \mathscr{G}_{b}^{(2)}$, to see this take the set V_{2} for one part and $V_{1} \cup V_{3}$ for other part. In this case, theorem follows from Theorem 3.6. Hence, assume that $n_{3}-n_{1} \leq 1$. We consider three cases and in each case we give a 2-edge-weighting c for $K_{n_{1}, n_{2}, n_{3}} \square K_{2}$.
Case 1. $n_{1}+1=n_{2}=n_{3}$.
Let $n=n_{1}+1=n_{2}=n_{3}$. Assign:
weight 1 to the edges with ends in $V \times\{0\}$;
weight 2 to the edges with ends in $V \times\{1\}$;
weight 1 to the edges with one end in $V_{2} \times\{0\}$ and other end in $V_{2} \times\{1\}$;
weight 2 to the edges with one end in $\left(V_{1} \cup V_{3}\right) \times\{0\}$ and other end in $\left(V_{1} \cup V_{3}\right) \times\{1\}$.
Next, we compute f_{c}. For $v_{1} \in V_{1}, v_{2} \in V_{2}, v_{3} \in V_{3}, f_{c}\left(\left(v_{1}, 0\right)\right)=2 n+2, f_{c}\left(\left(v_{2}, 0\right)\right)=2 n, f_{c}\left(\left(v_{3}, 0\right)\right)=2 n+1$, $f_{c}\left(\left(v_{1}, 1\right)\right)=4 n+2, f_{c}\left(\left(v_{2}, 1\right)\right)=4 n-1, f_{c}\left(\left(v_{3}, 1\right)\right)=4 n$. As $n \neq 1$, the 2-edge-weighting c is a vertex-coloring. Case 2. $n_{1}=n_{2}=n_{3}-1$.

Let $n=n_{1}=n_{2}=n_{3}-1$. Assign:
weight 1 to the edges with ends in $V \times\{0\}$;
weight 2 to the edges with ends in $V \times\{1\}$;
weight 1 to the edges with one end in $\left(V_{1} \cup V_{3}\right) \times\{0\}$ and other end in $\left(V_{1} \cup V_{3}\right) \times\{1\}$;
weight 2 to the edges with one end in $V_{2} \times\{0\}$ and other end in $V_{2} \times\{1\}$.
Next, we compute f_{c}. For $v_{1} \in V_{1}, v_{2} \in V_{2}, v_{3} \in V_{3}, f_{c}\left(\left(v_{1}, 0\right)\right)=2 n+2, f_{c}\left(\left(v_{2}, 0\right)\right)=2 n+3$, $f_{c}\left(\left(v_{3}, 0\right)\right)=2 n+1, f_{c}\left(\left(v_{1}, 1\right)\right)=4 n+3, f_{c}\left(\left(v_{2}, 1\right)\right)=4 n+4, f_{c}\left(\left(v_{3}, 1\right)\right)=4 n+1$. For any n, the 2 -edgeweighting c is a vertex-coloring. Note that for $n=1, f_{c}\left(\left(v_{2}, 0\right)\right)=5=f_{c}\left(\left(v_{3}, 1\right)\right)$ and the set $\left(V_{2} \times\{0\}\right) \cup\left(V_{3} \times\{1\}\right)$ is an independent set in $K_{n_{1}, n_{2}, n_{3}} \square K_{2}$.
Case 3. $n_{1}=n_{2}=n_{3}$.
Let $n=n_{1}=n_{2}=n_{3} \geq 2$. Choose two edge-disjoint 1 -factors F_{1}, F_{2} in the subgraph induced by the edges with one end in $V_{2} \times\{0\}$ and other end in $V_{3} \times\{0\}$ and choose a 1-factor F in the subgraph induced by the edges with one end in $V_{2} \times\{1\}$ and other end in $V_{3} \times\{1\}$. Assign:
weight 2 to the edges of $F_{1} \cup F_{2}$;
weight 1 to the edges with ends in $V \times\{0\}$ but not belonging to $F_{1} \cup F_{2}$;
weight 1 to the edges of F;
weight 2 to the edges with ends in $V \times\{1\}$ but not belonging to F;
weight 1 to the edges with one end in $V_{2} \times\{0\}$ and other end in $V_{2} \times\{1\}$;
weight 2 to the edges with one end in $\left(V_{1} \cup V_{3}\right) \times\{0\}$ and other end in $\left(V_{1} \cup V_{3}\right) \times\{1\}$.
Next, we compute f_{c}. For $v_{1} \in V_{1}, v_{2} \in V_{2}, v_{3} \in V_{3}, f_{c}\left(\left(v_{1}, 0\right)\right)=2 n+2, f_{c}\left(\left(v_{2}, 0\right)\right)=2 n+3$, $f_{c}\left(\left(v_{3}, 0\right)\right)=2 n+4, f_{c}\left(\left(v_{1}, 1\right)\right)=4 n+2, f_{c}\left(\left(v_{2}, 1\right)\right)=4 n, f_{c}\left(\left(v_{3}, 1\right)\right)=4 n+1$. For any n, the 2-edge-weighting c is a vertex-coloring. Note that for $n=2, f_{c}\left(\left(v_{3}, 0\right)\right)=8=f_{c}\left(\left(v_{2}, 1\right)\right)$ and the set $\left(V_{3} \times\{0\}\right) \cup\left(V_{2} \times\{1\}\right)$ is an independent set in $K_{2,2,2} \square K_{2}$.

4. Tensor product of two graphs

In this section, we find some tensor product $G_{1} \times G_{2}$ of graphs G_{1} and G_{2} with $\operatorname{det}\left(G_{1} \times G_{2}\right)=\mu\left(G_{1} \times G_{2}\right)=2$.
For $i \in\{0,1, \ldots, m-1\}$, let $R_{i}=\{(i, j) \mid j \in\{0,1, \ldots, n-1\}\}$; and for $j \in\{0,1, \ldots, n-1\}$, let $C_{j}=\{(i, j) \mid i \in\{0,1, \ldots, m-1\}\}$.

Consider $C_{m} \times G$, where G is any graph with $V(G)=\{0,1, \ldots, n-1\}$. For $i \in\{0,1, \ldots, m-2\}$, we denote by E_{i} the set of edges having one end in R_{i} and other end in R_{i+1}; and denote by E_{m-1} the set of edges having one end in R_{m-1} and other end in R_{0}.

Theorem 4.1. Let G be a k-regular graph, $k \geq 2$, containing a 2 -factor F. Then $\operatorname{det}\left(C_{m} \times G\right)=\mu\left(C_{m} \times G\right)=2$.
Proof. If $m \equiv 0(\bmod 2)$, then as $C_{m} \times G$ is bipartite and $2 k$-regular, the result follows from the result quoted in the beginning of Section 3, and Propositions 1.2 and 1.4. For $m \equiv 1(\bmod 2)$, we consider two cases.

Case $1 . m \equiv 1(\bmod 4)$.
Define c as follows:
If $i \in\{0,4,8, \ldots, m-5, m-1\} \cup\{3,7,11, \ldots, m-6\}$, then assign weight 1 to the edges of E_{i}. If $i \in$ $\{1,5,9, \ldots, m-4\} \cup\{2,6,10, \ldots, m-3\}$, then assign weight 2 to the edges of E_{i}.

Finally, consider E_{m-2}. For each cycle $j_{0} j_{1} j_{2} \ldots j_{k} j_{0}$ in F, assign weight 2 to the edges $\left(m-2, j_{0}\right)\left(m-1, j_{1}\right)$, $\left(m-2, j_{1}\right)\left(m-1, j_{2}\right),\left(m-2, j_{2}\right)\left(m-1, j_{3}\right), \ldots,\left(m-2, j_{k-1}\right)\left(m-1, j_{k}\right)$ and $\left(m-2, j_{k}\right)\left(m-1, j_{0}\right)$. Assign weight 1 to the remaining edges of E_{m-2}. In other words, the edges of a 1-factor of the subgraph induced by E_{m-2} are assigned weight 2 and the edges of the remaining $(k-1)$-factor of the subgraph are assigned weight 1.
code_{c} is given by: for $j \in V(G)$,
$\operatorname{code}_{c}((i, j))=(k, k)$ if $i \in\{1,3,5, \ldots, m-4\}$,
$\operatorname{code}_{c}((i, j))=(2 k, 0)$ if $i \in\{0,4,8, \ldots, m-5\}$,
$\operatorname{code}_{c}((i, j))=(0,2 k)$ if $i \in\{2,6,10, \ldots, m-3\}$,
$\operatorname{code}_{c}((m-2, j))=(k-1, k+1)$, and
$\operatorname{code}_{c}((m-1, j))=(2 k-1,1)$.
Case $2 . m \equiv 3(\bmod 4)$.
First, assume that $m \neq 3$.
Define c as follows:
If $i \in\{0,4,8, \ldots, m-7\} \cup\{3,7,11, \ldots, m-8\} \cup\{m-1\}$, then assign weight 1 to the edges of E_{i}. If $i \in\{1,5,9, \ldots, m-6, m-2\} \cup\{2,6,10, \ldots, m-5\}$, then assign weight 2 to the edges of E_{i}.

Now, consider E_{m-4}. For each cycle $j_{0} j_{1} j_{2} \ldots j_{k} j_{0}$ in F, assign weight 1 to the edges $\left(m-4, j_{0}\right)\left(m-3, j_{1}\right)$, $\left(m-4, j_{1}\right)\left(m-3, j_{2}\right),\left(m-4, j_{2}\right)\left(m-3, j_{3}\right), \ldots,\left(m-4, j_{k-1}\right)\left(m-3, j_{k}\right)$ and $\left(m-4, j_{k}\right)\left(m-3, j_{0}\right)$. Assign weight 2 to the remaining edges of E_{m-4}.

Finally, consider E_{m-3}. For each cycle $j_{0} j_{1} j_{2} \ldots j_{k} j_{0}$ in F, assign weight 1 to the edges $\left(m-3, j_{0}\right)\left(m-2, j_{1}\right)$, $\left(m-3, j_{1}\right)\left(m-2, j_{2}\right),\left(m-3, j_{2}\right)\left(m-2, j_{3}\right), \ldots,\left(m-3, j_{k-1}\right)\left(m-2, j_{k}\right)$ and $\left(m-3, j_{k}\right)\left(m-2, j_{0}\right)$. Assign weight 2 to the remaining edges of E_{m-3}.
code_{c} is given by: for $j \in V(G)$,
$\operatorname{code}_{c}((i, j))=(k, k)$ if $i \in\{1,3,5, \ldots, m-6\} \cup\{m-1\}$,
$\operatorname{code}_{c}((i, j))=(2 k, 0)$ if $i \in\{0,4,8, \ldots, m-7\}$,
$\operatorname{code}_{c}((i, j))=(0,2 k)$ if $i \in\{2,6,10, \ldots, m-5\}$,
$\operatorname{code}_{c}((m-4, j))=\operatorname{code}_{c}((m-2, j))=(1,2 k-1)$, and
$\operatorname{code}_{c}((m-3, j))=(2,2 k-2)$.
Finally, assume that $m=3$.
Define c as follows:
Assign weight 2 to all the edges of E_{1}, and assign weight 1 to all the edges of E_{2}.
Now consider E_{0}. For each cycle $j_{0} j_{1} j_{2} \ldots j_{k} j_{0}$ in F, assign weight 2 to the edges $\left(0, j_{0}\right)\left(1, j_{1}\right),\left(0, j_{1}\right)\left(1, j_{2}\right)$, $\left(0, j_{2}\right)\left(1, j_{3}\right), \ldots,\left(0, j_{k-1}\right)\left(1, j_{k}\right)$ and $\left(0, j_{k}\right)\left(1, j_{0}\right)$. Assign weight 1 to the remaining edges of E_{0}.
code_{c} is given by: for $j \in V(G)$,
$\operatorname{code}_{c}((0, j))=(2 k-1,1)$,
$\operatorname{code}_{c}((1, j))=(k-1, k+1)$, and
$\operatorname{code}_{c}((2, j))=(k, k)$.
In any case, the 2-edge-weighting c of $C_{m} \times G$ is detectable. Hence, $\operatorname{det}\left(C_{m} \times G\right)=2$. By Proposition 1.4, $\mu\left(C_{m} \times G\right)=2$.

Corollary 4.1. For $m, n \geq 3$, $\operatorname{det}\left(C_{m} \times C_{n}\right)=\mu\left(C_{m} \times C_{n}\right)=2$.

5. Conclusion

In conclusion, we ask: does there exist a graph G with $\operatorname{det}(G) \neq \mu(G)$?

References

[1] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, second ed., Springer-Verlag, New York, 2012.
[2] M. Karoński, T. Luczak, A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004) 151-157.
[3] L. Addario-Berry, R.E.L. Aldred, K. Dalal, B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory Ser. B 94 (2005) $237-244$.
[4] H. Escuadro, F. Okamoto, P. Zhang, A three-color problem in graph theory, Bull. ICA 52 (2008) 65-82.
[5] G.J. Chang, C. Lu, J. Wu, Q.L. Yu, Vertex-coloring edge-weightings of graphs, Taiwanese J. Math. 15 (4) (2011) $1807-1813$.
[6] H. Lu, Q.L. Yu, C.-Q. Zhang, Vertex-coloring 2-edge-weighting of graphs, European J. Combin. 32 (2011) 21-27.
[7] F. Havet, N. Paramaguru, R. Sampathkumar, Detection number of bipartite graphs and cubic graphs, Discrete Math. Theor. Comput. Sci. 16 (3) (2014) 333-342.
[8] A. Davoodi, B. Omoomi, On the 1-2-3-conjecture, Discrete Math. Theor. Comput. Sci. 17 (1) (2015) 67-78.

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: npguru@gmail.com (N. Paramaguru), sampathmath@gmail.com (R. Sampathkumar).

