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Abstract

For a connected graph G of order |V (G)| ≥ 3 and a k-edge-weighting c : E(G) → {1, 2, . . . , k} of the edges of G, the
code, codec(v), of a vertex v of G is the ordered k-tuple (ℓ1, ℓ2, . . . , ℓk), where ℓi is the number of edges incident with v that
are weighted i . (i) The k-edge-weighting c is detectable if every two adjacent vertices of G have distinct codes. The minimum
positive integer k for which G has a detectable k-edge-weighting is the detectable chromatic number det (G) of G. (ii) The
k-edge-weighting c is a vertex-coloring if every two adjacent vertices u, v of G with codes codec(u) = (ℓ1, ℓ2, . . . , ℓk) and
codec(v) = (ℓ′

1, ℓ′
2, . . . , ℓ′

k) have 1ℓ1 + 2ℓ2 + · · · + kℓk ≠ 1ℓ′
1 + 2ℓ′

2 + · · · + kℓ′
k . The minimum positive integer k for which

G has a vertex-coloring k-edge-weighting is denoted by µ(G). In this paper, we have enlarged the known families of graphs with
det (G) = µ(G) = 2.

c⃝ 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

For graph-theoretical terminology and notation, we in general follow [1]. In this paper, we assume that the graphs
G in discussion are finite, connected, undirected and simple with order |V (G)| ≥ 3.

Let c : E(G) → {1, 2, . . . , k} be a k-edge-weighting of G, where k is a positive integer. The color code of a
vertex v of G is the ordered k-tuple codec(v) = (ℓ1, ℓ2, . . . , ℓk), where ℓi is the number of edges incident with v that
are weighted i for i ∈ {1, 2, . . . , k}. Therefore, ℓ1 + ℓ2 + · · · + ℓk = dG(v), the degree of v in G. It follows that for
u, v ∈ V (G) if dG(u) ≠ dG(v), then codec(u) ≠ codec(v). The k-edge-weighting c of G is called detectable if every
two adjacent vertices of G have distinct color codes. The detectable chromatic number det (G) of G is the minimum
positive integer k for which G has a detectable k-edge-weighting.

Any k-edge-weighting c : E(G) → {1, 2, . . . , k} induces a vertex-weighting fc : V (G) → N defined by
fc(v) =


e is incident with v c(e). An edge-weighting c is a vertex-coloring if fc(u) ≠ fc(v) for any edge uv. Denote

by µ(G) the minimum k for which G has a vertex-coloring k-edge-weighting.
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If a graph has an edge as a component, then it neither has a detectable edge-weighting nor has a vertex-coloring
edge-weighting. So in this paper, we only consider graphs without a K2 component and such graphs are called nice
graphs. As the graph G in discussion is connected and as |V (G)| ≥ 3, G is nice.

Karoński et al. [2] initiated the study of vertex-coloring k-edge-weighting and they posed the following conjecture:

Conjecture 1.1 (1-2-3-Conjecture). Every nice graph admits a vertex-coloring 3-edge-weighting.

Consider a vertex-coloring k-edge-weighting c of G. For uv ∈ E(G), let ℓi , ℓ′

i , respectively, be the number of
edges incident with u, v that are weighted i in c. Then 1ℓ1 + 2ℓ2 + · · · + kℓk ≠ 1ℓ′

1 + 2ℓ′

2 + · · · + kℓ′

k and hence
(ℓ1, ℓ2, . . . , ℓk) ≠ (ℓ′

1, ℓ
′

2, . . . , ℓ
′

k). So c is a detectable k-edge-weighting. Consequently, det (G) ≤ µ(G).

Proposition 1.1. det (G) ≤ µ(G).

Proposition 1.2. For every nice graph G, following three conditions are equivalent:
(i) det (G) = 1,

(ii) µ(G) = 1,

(iii) G has no adjacent vertices with the same degree.

Proposition 1.3. If µ(G) = 2, then det (G) = 2.

If c is a detectable 2-edge-weighting of a k-regular graph G with k ≥ 3, then c is a vertex-coloring 2-edge-
weighting. This follows from the fact that ℓ1 +ℓ2 = k = ℓ′

1 +ℓ′

2 and (ℓ1, ℓ2) ≠ (ℓ′

1, ℓ
′

2) imply 1ℓ1 +2ℓ2 ≠ 1ℓ′

1 +2ℓ′

2.

Proposition 1.4. Let G be a k-regular graph with k ≥ 3. If det (G) = 2, then µ(G) = 2.

In [2], Karoński et al. proved that: (i) det (G) ≤ 183, and (ii) if dG(v) ≥ 1099 for every v ∈ V (G), then
det (G) ≤ 30.

In [3], Addario-Berry et al. proved that: (i) det (G) ≤ 4, (ii) if dG(v) ≥ 1000 for every v ∈ V (G), then det (G) ≤ 3,
and (iii) if χ(G) ≤ 3, then det (G) ≤ 3.

In [4], among other results, Escuadro et al. proved that: (i) det (Kn1,n2,...,nk ) = 1 if n1 < n2 < · · · < nk ,
det (Kn1,n2,...,nk ) = 3 if n1 = n2 = · · · = nk = 1 and det (Kn1,n2,...,nk ) = 2 otherwise, where Kn1,n2,...,nk is the
complete k-partite graph with partite sizes n1, n2, . . . , nk (k ≥ 3 and n1 ≤ n2 ≤ · · · ≤ nk), (ii) det (C3 � K2) = 3,
det (C5 � K2) = 3 and if n ≥ 7 is an odd integer, then det (Cn � K2) = 2, where � denotes the Cartesian product,
and (iii) if G is a unicyclic graph that is not a cycle, then det (G) ≤ 2.

See Fig. 5 of [4]; detectable 3-edge-weighting of C3 � K2 and that of C5 � K2, in the figure, are vertex-coloring
3-edge-weightings. Hence, µ(C3 � K2) = 3 and µ(C5 � K2) = 3. If n ≥ 7 is an odd integer, then it follows from
det (Cn � K2) = 2 and Proposition 1.4 that µ(Cn � K2) = 2.

Theorem 1.1. det (C3 � K2) = µ(C3 � K2) = 3, det (C5 � K2) = µ(C5 � K2) = 3 and if n ≥ 7 is an odd integer,
then det (Cn � K2) = µ(Cn � K2) = 2.

From [5,6], and [4], we have:

Theorem 1.2. For the path Pn on n vertices, det (P3) = µ(P3) = 1 and det (Pn) = µ(Pn) = 2 if n ≥ 4.

Theorem 1.3. For the cycle Cn on n vertices, det (Cn) = µ(Cn) = 2 if n ≡ 0 (mod 4) and det (Cn) = µ(Cn) = 3 if
n ≡ 1, 2 or 3 (mod 4).

Theorem 1.4. For the complete graph Kn on n ≥ 3 vertices, det (Kn) = µ(Kn) = 3.

Theorem 1.5. For r + s ≥ 3, det (Kr,s) = µ(Kr,s) = 1 if r ≠ s and det (Kr,s) = µ(Kr,s) = 2 if r = s, where Kr,s
is the complete bipartite graph with partite sizes r and s.

The theta graph θ(ℓ1, ℓ2, . . . , ℓr ) is the graph obtained from r disjoint paths P1(u1, v1), P2(u2, v2), . . . , Pr (ur , vr )

of lengths ℓ1, ℓ2, . . . , ℓr , respectively, by identifying their end-vertices u := u1 = u2 = · · · = ur and v := v1 =

v2 = · · · = vr , where Pi (ui , vi ) is a path of length ℓi with origin ui and terminus vi . Note that θ(ℓ1) = Pℓ1+1 and
θ(ℓ1, ℓ2) = Cℓ1+ℓ2 .
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Theorem 1.6. Let G = θ(ℓ1, ℓ2, . . . , ℓr ) with r ≥ 3, ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓr , and ℓ1 = 1 implies ℓ2 > 1. Then
det (G) = µ(G) = 1 when ℓi = 2 for all i; det (G) = µ(G) = 3 when ℓ1 = 1 and ℓi ≡ 1 (mod 4) for all i ≠ 1; and
det (G) = µ(G) = 2 otherwise.

Proof of Theorem 1.6 follows from: the proof of Proposition 6 in [5], det (G) ≤ µ(G), and the following: For
ℓ1 = 1 and ℓi ≡ 1 (mod 4) for all i ≠ 1, we claim that det (G) ≥ 3. Suppose, to the contrary that G admits a
detectable 2-edge-weighting c. Then, in each path the kth edge must have different weight from the (k + 2)th edge,
and has the same weight with the (k + 4)th edge. Consequently, the first edge has the same weight with the last edge
in each path of the theta graph. Then, codec(u) = codec(v), however, this is impossible as u and v are adjacent.

Theorem 1.7. Let G be a nice connected bipartite graph with bipartition (A, B) and G has at least one pair of
adjacent vertices with the same degree. If one of the following conditions holds:

(i) |A| or |B| is even,
(ii) δ(G) = 1,

(iii)


d(u)
2


+ 1 ≠ d(v) for any edge uv ∈ E(G),

then det (G) = µ(G) = 2.

Consequently,
(i) if G is a tree, then det (G) = µ(G) = 2;

(ii) if G is r -regular with r ≥ 3, then det (G) = µ(G) = 2; and
(iii) if δ(G) ≥ 4 and ∆(G) + 3 ≤ 2δ(G), then det (G) = µ(G) = 2.

The converse of Theorem 1.7 is in general not true. Consider the cycle C4n+2 of length 4n + 2 (n ≥ 1).

For G = C4n+2, both |A| and |B| are odd, δ(G) ≠ 1,


d(u)
2


+ 1 = d(v) for any edge uv ∈ E(G), and

det (G) = µ(G) = 3. Next, consider the complete bipartite graph K2n+1,4n+1 (n ≥ 1). For G = K2n+1,4n+1, both |A|

and |B| are odd, δ(G) ≠ 1,


d(u)
2


+ 1 = d(v) for any edge uv ∈ E(G) with d(u) ≥ d(v) and det (G) = µ(G) = 2.

Theorem 1.8. Let G be a nice graph and assume that G has at least one pair of adjacent vertices with the same
degree. If δ(G) ≥ 8χ(G), then det (G) = µ(G) = 2.

Theorem 1.9. Let G be nice, bipartite, and G has at least one pair of adjacent vertices with the same degree. If one
of the following conditions holds:

(i) there exists a vertex v such that dG(v) ∉ {dG(x) | x ∈ N (v)} and G − v − N (v) is connected,
(ii) there exists a vertex v of degree δ(G) such that dG(v) ∉ {dG(x) | x ∈ N (v)} and G − v is connected,
(iii) G is 3-connected,
(iv) δ(G) ≥ 3 and there exists a vertex v of degree δ(G) such that G − v − N (v) is connected,
then det (G) = µ(G) = 2.

In this paper, we have enlarged the known class of graphs with det (G) = µ(G) = 2.

Let G1 and G2 be graphs. The Cartesian product G1 � G2 of G1 and G2 is the graph with V (G1 � G2) =

V (G1) × V (G2) and two vertices (u1, v1) and (u2, v2) are adjacent in G1 � G2 if, and only if, either u1 = u2
and v1v2 ∈ E(G2) or u1u2 ∈ E(G1) and v1 = v2. The tensor product G1 × G2 of G1 and G2 is the graph with
V (G1 × G2) = V (G1) × V (G2) and two vertices (u1, v1) and (u2, v2) are adjacent in G1 × G2 if, and only if,
u1u2 ∈ E(G1) and v1v2 ∈ E(G2).

2. Bipartite graphs

In this section, we find detectable 2-edge-weighting for some bipartite graphs.

Theorem 2.1. Let G be a bipartite graph with bipartition (X, Y ). If Y has a partition into two nonempty subsets Y1
and Y2, and if every vertex of X has at least one neighbor in Y1 and one neighbor in Y2, then det (G) ≤ 2.

Proof. Assign weight 1 to the edges with one end in Y1 and 2 to the edges with one end in Y2. Then, code(y1) =

(dG(y1), 0) for every y1 ∈ Y1, and code(y2) = (0, dG(y2)) for every y2 ∈ Y2. Now, let x ∈ X . If code(x) = (ℓ1, ℓ2),
then by hypothesis ℓ1 ≥ 1 and ℓ2 ≥ 1. Hence G has a detectable 2-edge-weighting. �
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Note that the partition in previous theorem is impossible for cycles C4n+2, n ≥ 1, and it is known that
det (C4n+2) = 3. Consider for n ≥ 1, the graph G4n+2 obtained from C4n+2 by adding a pendant edge at only
one vertex of C4n+2. Let G4n+2 := x1 y1x2 y2x3 y3 . . . x2n+1 y2n+1x1 ⊕ x1 y. Observe that the partition in previous
theorem is impossible for G4n+2 and det (G4n+2) = 2. det (G4n+2) = 2 follows from the fact that G4n+2 is bipartite
with δ(G4n+2) = 1.

3. Cartesian product of two graphs

Recently, in [7], we and Havet have shown that if G is bipartite and the minimum degree of G is at least 3, then
det(G) ≤ 2.

In this section, we find some Cartesian products G1 � G2 of graphs G1 and G2 with det (G1 � G2) = 2 and some
Cartesian products H1 � H2 of graphs H1 and H2 with det (H1 � H2) = µ(H1 � H2) = 2.

Denote by G3, the set of tripartite graphs G with tripartition (X, Y, Z) such that for any x ∈ X , y ∈ Y and
z ∈ Z , dG[X∪Y ](x) = r = dG[X∪Y ](y), dG[X∪Z ](x) = s = dG[X∪Z ](z) and dG[Y∪Z ](y) = t = dG[Y∪Z ](z); r ≥ 1,
s ≥ 1, t ≥ 1; i.e., the subgraphs induced by X ∪ Y , X ∪ Z and Y ∪ Z are, respectively, r , s and t-regular.

Theorem 3.1. If G1, G2 ∈ G3, then det (G1 � G2) ≤ 2.

Proof. Let (X ′, Y ′, Z ′) be the tripartition of G1 such that for x ′
∈ X ′, y′

∈ Y ′ and z′
∈ Z ′, dG1[X ′∪Y ′](x ′) = r ′

=

dG1[X ′∪Y ′](y′), dG1[X ′∪Z ′](x ′) = s′
= dG1[X ′∪Z ′](z′) and dG1[Y ′∪Z ′](y′) = t ′ = dG1[Y ′∪Z ′](z′); and let (X ′′, Y ′′, Z ′′)

be the tripartition of G2 such that for x ′′
∈ X ′′, y′′

∈ Y ′′ and z′′
∈ Z ′′, dG2[X ′′∪Y ′′](x ′′) = r ′′

= dG2[X ′′∪Y ′′](y′′),

dG2[X ′′∪Z ′′](x ′′) = s′′
= dG2[X ′′∪Z ′′](z′′) and dG2[Y ′′∪Z ′′](y′′) = t ′′ = dG2[Y ′′∪Z ′′](z′′). Define c as follows:

Assign weight 1 to edges having both ends in X ′
× V (G2), to edges having both ends in V (G1) × X ′′, to edges

having one end in Z ′
× X ′′ and other end in Z ′

×Y ′′, and to edges having one end in X ′
× Z ′′ and other end in Y ′

× Z ′′
;

assign weight 2 to edges having both ends in Y ′
× V (G2), to edges having both ends in V (G1) × Y ′′, and to edges

having one end in Z ′
× Z ′′ and other end in (Z ′

× X ′′) ∪ (Z ′
× Y ′′) ∪ (X ′

× Z ′′) ∪ (Y ′
× Z ′′).

Let x ′
∈ X ′, y′

∈ Y ′, z′
∈ Z ′, x ′′

∈ X ′′, y′′
∈ Y ′′, and z′′

∈ Z ′′.

Color code is given by:
codec((x ′, x ′′)) = (r ′

+ s′
+ r ′′

+ s′′, 0),

codec((x ′, y′′)) = (r ′′
+ t ′′, r ′

+ s′),

codec((x ′, z′′)) = (r ′
+ s′′

+ t ′′, s′),

codec((y′, x ′′)) = (r ′
+ t ′, r ′′

+ s′′),

codec((y′, y′′)) = (0, r ′
+ t ′ + r ′′

+ t ′′),
codec((y′, z′′)) = (r ′, t ′ + s′′

+ t ′′),
codec((z′, x ′′)) = (s′

+ t ′ + r ′′, s′′),

codec((z′, y′′)) = (r ′′, s′
+ t ′ + t ′′), and

codec((z′, z′′)) = (0, s′
+ t ′ + s′′

+ t ′′).
Hence c is a detectable 2-edge-weighting of G1�G2. �

Theorem 3.2. If G is a k-regular bipartite graph, k ≥ 2, and if H ∈ G3, then det (G � H) ≤ 2.

Proof. Let (A, B) be the bipartition of G, and let (X, Y, Z) be the tripartition of H such that for x ∈ X , y ∈ Y and
z ∈ Z , dH [X∪Y ](x) = r = dH [X∪Y ](y), dH [X∪Z ](x) = s = dH [X∪Z ](z) and dH [Y∪Z ](y) = t = dH [Y∪Z ](z).

Define c as follows: Assign weight 1 to the edges having both ends in A × V (H), and edges having one end in
B × Y and other end in (A × Y ) ∪ (B × X); assign weight 2 to the edges having one end in A × X and other end in
B × X , and edges having one end in B × Z and other end in (B × X) ∪ (B × Y ). Finally, we have to assign weights
to the edges having one end in A × Z and other end in B × Z .

For a ∈ A, b ∈ B, x ∈ X , y ∈ Y and z ∈ Z , codec is given by:
codec((a, x)) = (r + s, k),

codec((a, y)) = (r + t + k, 0),

codec((b, x)) = (r, s + k), and
codec((b, y)) = (r + k, t).
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Case 1. |{r, s, t}| ≥ 2. Assume without loss of generality that r ≠ t.
Assign weight 2 to the edges having one end in A × Z and other end in B × Z . Now, codec((a, z)) = (s + t, k)

and codec((b, z)) = (0, k + t + s).

Case 2. r = s = t.
codec((a, x)) = (2r, k), codec((a, y)) = (2r + k, 0), codec((b, x)) = (r, r + k), and codec((b, y)) = (r + k, r).

Subcase 2.1. r ≥ 2.

Find a 1-factor F in the k-regular bipartite graph (G � H)[(A × Z) ∪ (B × Z)]. Assign weight 1 to the edges
of F and the remaining edges having one end in A × Z and other end in B × Z are assigned weight 2. Now,
codec((a, z)) = (2r + 1, k − 1) and codec((b, z)) = (1, 2r + k − 1).

Subcase 2.2. r = 1.

codec((a, x)) = (2, k), codec((a, y)) = (k + 2, 0), codec((b, x)) = (1, k + 1), and codec((b, y)) = (k + 1, 1).

If k ≥ 3, find two edge-disjoint 1-factors F1 and F2 in the k-regular bipartite graph (G � H)[(A × Z) ∪ (B × Z)].

Assign weight 1 to the edges of F1 ∪ F2 and the remaining edges having one end in A × Z and other end in B × Z
are assigned weight 2. Now, codec((a, z)) = (4, k − 2) and codec((b, z)) = (2, k).

Finally, assume that k = 2. Interchange the weight for the edges having one end in B × X and other end in B × Y
by 2. Find two edge-disjoint 1-factors F1 and F2 in the k-regular bipartite graph (G � H)[(A × Z) ∪ (B × Z)].

Assign weight 1 to the edges of F1 and the edges of F2 by 2. Now, codec((a, x)) = (2, 2), codec((a, y)) = (4, 0),

codec((a, z)) = (3, 1), codec((b, x)) = (0, 4), codec((b, y)) = (2, 2), and codec((b, z)) = (1, 3).

In any case, c is a detectable 2-edge-weighting of G � H. �

For convenience, let V (Pr ) = V (Cr ) = {0, 1, 2, . . . , r − 1}, E(Pr ) = {{i, i + 1} : i ∈ {0, 1, 2, . . . , r − 2}} and
E(Cr ) = E(Pr ) ∪ {{r − 1, 0}}.

For any n ≥ 0, C6n+3 ∈ G3; hence by previous theorem for any k-regular bipartite graph G with k ≥ 2, we have
det (G � C6n+3) ≤ 2.

Theorem 3.3. If G is a k-regular bipartite graph, k ≥ 2, and if n ≥ 1, then det (G � C2n+1) = µ(G � C2n+1) = 2.

Proof. Let (X, Y ) be the bipartition of G. Define c as follows:

Case 1. n ≥ 2.

Assign weight 1 to the edges having one end in X × {0, 2, 4, . . . , 2n} and the other end in Y × {0, 2, 4, . . . , 2n},
edges having both ends in X × {0, 1, 2, . . . , 2n − 1}, and edges having both ends in Y × {2n − 2, 2n − 1, 2n}; and
assign weight 2 to the edges having one end in X ×{1, 3, 5, . . . , 2n −1} and the other end in Y ×{1, 3, 5, . . . , 2n −1},

edges having both ends in X × {2n − 1, 2n, 0}, and edges having both ends in Y × {2n, 0, 1, 2, . . . , 2n − 2}. codec is
given by: for x ∈ X and y ∈ Y,

codec((x, i)) = (2, k) if i ∈ {1, 3, 5, . . . , 2n − 3};

codec((x, i)) = (k + 2, 0) if i ∈ {2, 4, 6, . . . , 2n − 2};

codec((x, 0)) = (k + 1, 1);

codec((x, 2n − 1)) = (1, k + 1);

codec((x, 2n)) = (k, 2);

codec((y, i)) = (0, k + 2) if i ∈ {1, 3, 5, . . . , 2n − 3};

codec((y, i)) = (k, 2) if i ∈ {0, 2, 4, . . . , 2n − 4};

codec((y, 2n − 2)) = (k + 1, 1) = codec((y, 2n)); and
codec((y, 2n − 1)) = (2, k).

Case 2. n = 1.

Subcase 2.1. k ≥ 3.

Assign weight 1 to the edges having one end in X × {1} and the other end in Y × {1}, edges having both ends in
X × {0, 1, 2}, and edges having both ends in Y × {0, 1}; and assign weight 2 to the edges having one end in X × {0}

and the other end in Y ×{0}, edges having both ends in Y ×{1, 2}, and edges having both ends in Y ×{2, 0}. Find two
edge-disjoint 1-factors F1 and F2 in the k-regular bipartite subgraph induced by the partite sets X × {2} and Y × {2}.
Assign weight 1 to the edges of F1 ∪ F2 and the remaining edges having one end in X × {2} and other end in Y × {2}

are by 2. codec is given by: for x ∈ X and y ∈ Y,

codec((x, 0)) = (2, k); codec((x, 1)) = (k + 2, 0); codec((x, 2)) = (4, k − 2);
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codec((y, 0)) = (1, k + 1); codec((y, 1)) = (k + 1, 1); codec((y, 2)) = (2, k).

Subcase 2.2. k = 2.

Assign weight 1 to the edges having one end in X × {1} and the other end in Y × {1}, and edges having both
ends in X × {0, 1, 2}; and assign weight 2 to the edges having one end in X × {0} and the other end in Y × {0}, and
edges having both ends in Y ×{0, 1, 2}. Find two edge-disjoint 1-factors F1 and F2 in the 2-regular bipartite subgraph
induced by the partite sets X × {2} and Y × {2}. Assign weight 1 to the edges of F1 and 2 to the edges of F2. Now,

codec((x, 0)) = (2, 2); codec((x, 1)) = (4, 0); codec((x, 2)) = (3, 1);

codec((y, 0)) = (0, 4); codec((y, 1)) = (2, 2); codec((y, 2)) = (1, 3).

In any case, the 2-edge-weighting c of G � C2n+1 is detectable and hence det (G � C2n+1) = 2. By Proposition 1.4,
µ(G � C2n+1) = 2. �

Theorem 3.4. If m, n ≥ 3, then det (Cm � Cn) = µ(Cm � Cn) = 2.

Proof. If both m and n are even, then Cm � Cn is a 4-regular bipartite graph and hence the result follows from the
result quoted in the beginning of this section, and Propositions 1.2 and 1.4. If m and n are of opposite parity, say, m is
odd and n is even, then the result follows from Theorem 3.3. Hence, assume that both m and n are odd.

Define c as follows:
Assign weight 1 to the edges having both ends in {0, 2, 4, . . . , m − 3} × V (Cn), and edges having both ends in

V (Cm) × {0, 2, 4, . . . , n − 3}; assign weight 2 to the edges having both ends in {1, 3, 5, . . . , m − 2} × V (Cn), and
edges having both ends in V (Cm) × {1, 3, 5, . . . , n − 2};

c((m − 1, j)(m − 1, j + 1)) = 1 if j ∈ {1, 3, 5, . . . , n − 2};

c((m − 1, j)(m − 1, j + 1)) = 2 if j ∈ {0, 2, 4, . . . , n − 3};

c((m − 1, n − 1)(m − 1, 0)) = 1;
c((i, n − 1)(i + 1, n − 1)) = 1 if i ∈ {1, 3, 5, . . . , m − 2};

c((i, n − 1)(i + 1, n − 1)) = 2 if i ∈ {0, 2, 4, . . . , m − 3}; and
c((m − 1, n − 1)(0, n − 1)) = 1.
codec is given by:
codec((i, j)) = (4, 0) if i ∈ {0, 2, 4, . . . , m − 3} and j ∈ {0, 2, 4, . . . , n − 3};

codec((i, j)) = (0, 4) if i ∈ {1, 3, 5, . . . , m − 2} and j ∈ {1, 3, 5, . . . , n − 2};

codec((m − 1, j)) = (3, 1) if j ∈ {0, 2, 4, . . . , n − 3};

codec((m − 1, j)) = (1, 3) if j ∈ {1, 3, 5, . . . , n − 2};

codec((i, n − 1)) = (3, 1) if i ∈ {0, 2, 4, . . . , m − 3};

codec((i, n − 1)) = (1, 3) if i ∈ {1, 3, 5, . . . , m − 2};

codec((m − 1, n − 1)) = (4, 0); and
codec((i, j)) = (2, 2) otherwise.
This 2-edge-weighting c is detectable and hence det (Cm � Cn) = 2. By Proposition 1.4, µ(Cm � Cn) = 2. �

Recently, in [8], Davoodi and Omoomi have shown that if G and H are two connected bipartite graphs and
G�H ≠ K2, then µ(G�H) ≤ 2.

Theorem 3.5. If m, n ≥ 3, then det (Cm � Pn) = µ(Cm � Pn) = 2.

Proof. If m is even, then the result follows from the above result of Davoodi and Omoomi, and Propositions 1.2 and
1.3. Hence, assume that m is odd. We consider two cases.

Case 1. n is odd.
Define c as follows: Assign weight 1 to the edges having both ends in {1, 3, 5, . . . , m − 2} × V (Pn), and

edges having both ends in V (Cm) × {2, 4, 6, . . . , n − 3}; assign weight 2 to the edges having both ends in
{0, 2, 4, . . . , m − 3} × V (Pn), and edges having both ends in V (Cm) × {1, 3, 5, . . . , n − 2};

c((m − 1, j)(m − 1, j + 1)) = 1 if j ∈ {0, 2, 4, . . . , n − 3};

c((m − 1, j)(m − 1, j + 1)) = 2 if j ∈ {1, 3, 5, . . . , n − 2};

c((i, 0)(i + 1, 0)) = 1 if i ∈ {0, 1, 2, . . . , m − 2};

c((m − 1, 0)(0, 0)) = 2;

c((i, n − 1)(i + 1, n − 1)) = 1 if i ∈ {0, 2, 4, . . . , m − 3};
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c((i, n − 1)(i + 1, n − 1)) = 2 if i ∈ {1, 3, 5, . . . , m − 2}; and
c((m − 1, n − 1)(0, n − 1)) = 2.
fc is given by:
fc((i, j)) = 8 if i ∈ {0, 2, 4, . . . , m − 3} and j ∈ {1, 3, 5, . . . , n − 2};

fc((i, j)) = 4 if i ∈ {1, 3, 5, . . . , m − 2} and j ∈ {2, 4, 6, . . . , n − 3};

fc((0, 0)) = 5;

fc((i, 0)) = 3 if i ∈ {1, 3, 5, . . . , m − 2};

fc((i, 0)) = 4 if i ∈ {2, 4, 6, . . . , m − 1};

fc((i, n − 1)) = 5 if i ∈ {0, 2, 4, . . . , m − 3};

fc((i, n − 1)) = 4 if i ∈ {1, 3, 5, . . . , m − 2};

fc((m − 1, n − 1)) = 6;

fc((m − 1, j)) = 7 if j ∈ {1, 3, 5, . . . , n − 2};

fc((m − 1, j)) = 5 if j ∈ {2, 4, 6, . . . , n − 3};

fc((i, j)) = 6 otherwise.

Case 2. n is even.
Define c as follows: Assign weight 1 to the edges having both ends in {0, 2, 4, . . . , m − 3} × V (Pn), and

edges having both ends in V (Cm) × {2, 4, 6, . . . , n − 2}; assign weight 2 to the edges having both ends in
{1, 3, 5, . . . , m − 2} × V (Pn), and edges having both ends in V (Cm) × {1, 3, 5, . . . , n − 3};

c((m − 1, j)(m − 1, j + 1)) = 1 if j ∈ {0, 2, 4, . . . , n − 2};

c((m − 1, j)(m − 1, j + 1)) = 2 if j ∈ {1, 3, 5, . . . , n − 3};

c((i, 0)(i + 1, 0)) = 1 if i ∈ {0, 1, 2, . . . , m − 3};

c((m − 2, 0)(m − 1, 0)) = 2;

c((m − 1, 0)(0, 0)) = 1;

c((i, n − 1)(i + 1, n − 1)) = 1 if i ∈ {0, 1, 2, . . . , m − 3};

c((m − 2, n − 1)(m − 1, n − 1)) = 2; and
c((m − 1, n − 1)(0, n − 1)) = 1.
fc is given by:
fc((i, j)) = 8 if i ∈ {1, 3, 5, . . . , m − 2} and j ∈ {1, 3, 5, . . . , n − 3};

fc((i, j)) = 4 if i ∈ {0, 2, 4, . . . , m − 3} and j ∈ {2, 4, 6, . . . , n − 2};

fc((i, 0)) = 3 if i ∈ {0, 2, 4, . . . , m − 3};

fc((i, 0)) = 4 if i ∈ {1, 3, 5, . . . , m − 4};

fc((m − 2, 0)) = 5;

fc((m − 1, 0)) = 4;

fc((i, n − 1)) = 3 if i ∈ {0, 2, 4, . . . , m − 3};

fc((i, n − 1)) = 4 if i ∈ {1, 3, 5, . . . , m − 4};

fc((m − 2, n − 1)) = 5;

fc((m − 1, n − 1)) = 4;

fc((m − 1, j)) = 7 if j ∈ {1, 3, 5, . . . , n − 3};

fc((m − 1, j)) = 5 if j ∈ {2, 4, 6, . . . , n − 2};

fc((i, j)) = 6 otherwise.
In any case, the 2-edge-weighting c is a vertex-coloring and hence µ(Cm � Pn) = 2. By Proposition 1.3,

det (Cm � Pn) = 2. �

Denote by G (2)
b , the set of graphs G = (V, E) for which there exists a partition (X, Y ) of V such that

(i) if x ′, x ′′
∈ X and x ′x ′′

∈ E , then |dG(x ′) − dG(x ′′)| ≥ 2; and
(ii) if y′, y′′

∈ Y and y′y′′
∈ E , then |dG(y′) − dG(y′′)| ≥ 2.

Clearly, (i) if G is bipartite, then G ∈ G (2)
b ; and (ii) if G ∈ G (2)

b is regular, then G is bipartite.

Theorem 3.6. If G ∈ G (2)
b , then det (G � K2) = µ(G � K2) ≤ 2.

Proof. Let V (G) = V , E(G) = E , ∆(G) = ∆, the maximum degree of G, and V (K2) = {0, 1}. By the definition
of G (2)

b , there exists a partition (X, Y ) of V such that: if x ′, x ′′
∈ X and x ′x ′′

∈ E , then |dG(x ′) − dG(x ′′)| ≥ 2;

and if y′, y′′
∈ Y and y′y′′

∈ E , then |dG(y′) − dG(y′′)| ≥ 2. For 1 ≤ i ≤ ∆, set X i = {x ∈ X : dG(x) = i} and
Yi = {y ∈ Y : dG(y) = i}.
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Now we give a 2-edge-weighting c for G � K2. Assign:
weight 1 to the edges with ends in V × {0};

weight 2 to the edges with ends in V × {1};

for odd i , weight 1 to the edges with one end in X i × {0} and other end in X i × {1};

for even i , weight 2 to the edges with one end in X i × {0} and other end in X i × {1};

for odd i , weight 2 to the edges with one end in Yi × {0} and other end in Yi × {1};

for even i , weight 1 to the edges with one end in Yi × {0} and other end in Yi × {1}.

Next, we compute fc for adjacent vertices of G � K2.

• Let x ∈ X . Then x ∈ X i for some i with 1 ≤ i ≤ ∆. Hence,

fc((x, 0)) =


i + 1 if i is odd,
i + 2 if i is even;

and fc((x, 1)) =


2i + 1 if i is odd,
2i + 2 if i is even.

Consequently, fc((x, 0)) ≠ fc((x, 1)).

• Let y ∈ Y . Then y ∈ Yi for some i with 1 ≤ i ≤ ∆. Hence,

fc((y, 0)) =


i + 2 if i is odd,
i + 1 if i is even;

and fc((y, 1)) =


2i + 2 if i is odd,
2i + 1 if i is even.

Consequently, fc((y, 0)) ≠ fc((y, 1)).

• Let x ′, x ′′
∈ X and x ′x ′′

∈ E . Then |dG(x ′) − dG(x ′′)| ≥ 2. Without loss of generality, assume that x ′
∈ X i ,

x ′′
∈ X j with 1 ≤ i < j ≤ ∆. As |dG(x ′) − dG(x ′′)| ≥ 2, j − i ≥ 2. Hence,

fc((x ′, 0)) =


i + 1 if i is odd,
i + 2 if i is even;

fc((x ′, 1)) =


2i + 1 if i is odd,
2i + 2 if i is even;

fc((x ′′, 0)) =


j + 1 if j is odd,
j + 2 if j is even;

and fc((x ′′, 1)) =


2 j + 1 if j is odd,
2 j + 2 if j is even.

As j ≥ i + 2, fc((x ′, 0)) ≠ fc((x ′′, 0)) and fc((x ′, 1)) ≠ fc((x ′′, 1)).

• Let y′, y′′
∈ Y and y′y′′

∈ E . Then |dG(y′) − dG(y′′)| ≥ 2. Without loss of generality, assume that y′
∈ Yi , y′′

∈ Y j
with 1 ≤ i < j ≤ ∆. As |dG(y′) − dG(y′′)| ≥ 2, j − i ≥ 2. Hence,

fc((y′, 0)) =


i + 2 if i is odd,
i + 1 if i is even;

fc((y′, 1)) =


2i + 2 if i is odd,
2i + 1 if i is even;

fc((y′′, 0)) =


j + 2 if j is odd,
j + 1 if j is even;

and fc((y′′, 1)) =


2 j + 2 if j is odd,
2 j + 1 if j is even.

As j ≥ i + 2, fc((y′, 0)) ≠ fc((y′′, 0)) and fc((y′, 1)) ≠ fc((y′′, 1)).

• Let x ∈ X , y ∈ Y and xy ∈ E . Then, x ∈ X i , y ∈ Y j with 1 ≤ i, j ≤ ∆.

fc((x, 0)) =


i + 1 if i is odd,
i + 2 if i is even;

fc((y, 0)) =


j + 2 if j is odd,
j + 1 if j is even;

fc((x, 1)) =


2i + 1 if i is odd,
2i + 2 if i is even;

and fc((y, 1)) =


2 j + 2 if j is odd,
2 j + 1 if j is even.

Since fc((x, 0)) is even and fc((y, 0)) is odd, we have fc((x, 0)) ≠ fc((y, 0)). Since fc((x, 1)) ≡ 2 or 3 (mod 4)
and fc((y, 1)) ≡ 0 or 1 (mod 4), we have fc((x, 1)) ≠ fc((y, 1)).

This completes the proof of µ(G � K2) ≤ 2 and det (G � K2) = µ(G � K2) follows from this inequality and
Propositions 1.2 and 1.3. �

Theorem 3.7. For positive integers n1, n2, n3, with (n1, n2, n3) ≠ (1, 1, 1), det (Kn1,n2,n3 � K2) = µ(Kn1,n2,n3

� K2) = 2.



154 N. Paramaguru, R. Sampathkumar / AKCE International Journal of Graphs and Combinatorics 13 (2016) 146–156

Proof. Let V (K2) = {0, 1} and V = V (Kn1,n2,n3) = V1 ∪ V2 ∪ V3, where, for i ∈ {1, 2, 3}, Vi is an independent set
of cardinality ni . Without loss of generality, assume that n1 ≤ n2 ≤ n3. If n3 − n1 ≥ 2, then Kn1,n2,n3 ∈ G (2)

b , to see
this take the set V2 for one part and V1 ∪ V3 for other part. In this case, theorem follows from Theorem 3.6. Hence,
assume that n3 − n1 ≤ 1. We consider three cases and in each case we give a 2-edge-weighting c for Kn1,n2,n3 � K2.

Case 1. n1 + 1 = n2 = n3.

Let n = n1 + 1 = n2 = n3. Assign:
weight 1 to the edges with ends in V × {0};

weight 2 to the edges with ends in V × {1};

weight 1 to the edges with one end in V2 × {0} and other end in V2 × {1};

weight 2 to the edges with one end in (V1 ∪ V3) × {0} and other end in (V1 ∪ V3) × {1}.

Next, we compute fc. For v1 ∈ V1, v2 ∈ V2, v3 ∈ V3, fc((v1, 0)) = 2n+2, fc((v2, 0)) = 2n, fc((v3, 0)) = 2n+1,
fc((v1, 1)) = 4n + 2, fc((v2, 1)) = 4n − 1, fc((v3, 1)) = 4n. As n ≠ 1, the 2-edge-weighting c is a vertex-coloring.

Case 2. n1 = n2 = n3 − 1.

Let n = n1 = n2 = n3 − 1. Assign:
weight 1 to the edges with ends in V × {0};

weight 2 to the edges with ends in V × {1};

weight 1 to the edges with one end in (V1 ∪ V3) × {0} and other end in (V1 ∪ V3) × {1};

weight 2 to the edges with one end in V2 × {0} and other end in V2 × {1}.

Next, we compute fc. For v1 ∈ V1, v2 ∈ V2, v3 ∈ V3, fc((v1, 0)) = 2n + 2, fc((v2, 0)) = 2n + 3,

fc((v3, 0)) = 2n + 1, fc((v1, 1)) = 4n + 3, fc((v2, 1)) = 4n + 4, fc((v3, 1)) = 4n + 1. For any n, the 2-edge-
weighting c is a vertex-coloring. Note that for n = 1, fc((v2, 0)) = 5 = fc((v3, 1)) and the set (V2 ×{0})∪ (V3 ×{1})

is an independent set in Kn1,n2,n3 � K2.

Case 3. n1 = n2 = n3.

Let n = n1 = n2 = n3 ≥ 2. Choose two edge-disjoint 1-factors F1, F2 in the subgraph induced by the edges with
one end in V2 × {0} and other end in V3 × {0} and choose a 1-factor F in the subgraph induced by the edges with one
end in V2 × {1} and other end in V3 × {1}. Assign:

weight 2 to the edges of F1 ∪ F2;

weight 1 to the edges with ends in V × {0} but not belonging to F1 ∪ F2;

weight 1 to the edges of F;

weight 2 to the edges with ends in V × {1} but not belonging to F;

weight 1 to the edges with one end in V2 × {0} and other end in V2 × {1};

weight 2 to the edges with one end in (V1 ∪ V3) × {0} and other end in (V1 ∪ V3) × {1}.

Next, we compute fc. For v1 ∈ V1, v2 ∈ V2, v3 ∈ V3, fc((v1, 0)) = 2n + 2, fc((v2, 0)) = 2n + 3,

fc((v3, 0)) = 2n + 4, fc((v1, 1)) = 4n + 2, fc((v2, 1)) = 4n, fc((v3, 1)) = 4n + 1. For any n, the 2-edge-weighting
c is a vertex-coloring. Note that for n = 2, fc((v3, 0)) = 8 = fc((v2, 1)) and the set (V3 × {0}) ∪ (V2 × {1}) is an
independent set in K2,2,2 � K2. �

4. Tensor product of two graphs

In this section, we find some tensor product G1 ×G2 of graphs G1 and G2 with det (G1 ×G2) = µ(G1 ×G2) = 2.

For i ∈ {0, 1, . . . , m − 1}, let Ri = {(i, j) | j ∈ {0, 1, . . . , n − 1}}; and for j ∈ {0, 1, . . . , n − 1}, let
C j = {(i, j) | i ∈ {0, 1, . . . , m − 1}}.

Consider Cm × G, where G is any graph with V (G) = {0, 1, . . . , n − 1}. For i ∈ {0, 1, . . . , m − 2}, we denote by
Ei the set of edges having one end in Ri and other end in Ri+1; and denote by Em−1 the set of edges having one end
in Rm−1 and other end in R0.

Theorem 4.1. Let G be a k-regular graph, k ≥ 2, containing a 2-factor F. Then det (Cm × G) = µ(Cm × G) = 2.

Proof. If m ≡ 0 (mod 2), then as Cm × G is bipartite and 2k-regular, the result follows from the result quoted in the
beginning of Section 3, and Propositions 1.2 and 1.4. For m ≡ 1 (mod 2), we consider two cases.
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Case 1. m ≡ 1 (mod 4).

Define c as follows:
If i ∈ {0, 4, 8, . . . , m − 5, m − 1} ∪ {3, 7, 11, . . . , m − 6}, then assign weight 1 to the edges of Ei . If i ∈

{1, 5, 9, . . . , m − 4} ∪ {2, 6, 10, . . . , m − 3}, then assign weight 2 to the edges of Ei .

Finally, consider Em−2. For each cycle j0 j1 j2 . . . jk j0 in F , assign weight 2 to the edges (m − 2, j0)(m − 1, j1),
(m − 2, j1)(m − 1, j2), (m − 2, j2)(m − 1, j3), . . ., (m − 2, jk−1)(m − 1, jk) and (m − 2, jk)(m − 1, j0). Assign
weight 1 to the remaining edges of Em−2. In other words, the edges of a 1-factor of the subgraph induced by Em−2
are assigned weight 2 and the edges of the remaining (k − 1)-factor of the subgraph are assigned weight 1.

codec is given by: for j ∈ V (G),

codec((i, j)) = (k, k) if i ∈ {1, 3, 5, . . . , m − 4},

codec((i, j)) = (2k, 0) if i ∈ {0, 4, 8, . . . , m − 5},

codec((i, j)) = (0, 2k) if i ∈ {2, 6, 10, . . . , m − 3},

codec((m − 2, j)) = (k − 1, k + 1), and
codec((m − 1, j)) = (2k − 1, 1).

Case 2. m ≡ 3 (mod 4).

First, assume that m ≠ 3.

Define c as follows:
If i ∈ {0, 4, 8, . . . , m − 7} ∪ {3, 7, 11, . . . , m − 8} ∪ {m − 1}, then assign weight 1 to the edges of Ei . If

i ∈ {1, 5, 9, . . . , m − 6, m − 2} ∪ {2, 6, 10, . . . , m − 5}, then assign weight 2 to the edges of Ei .

Now, consider Em−4. For each cycle j0 j1 j2 . . . jk j0 in F , assign weight 1 to the edges (m − 4, j0)(m − 3, j1),
(m − 4, j1)(m − 3, j2), (m − 4, j2)(m − 3, j3), . . ., (m − 4, jk−1)(m − 3, jk) and (m − 4, jk)(m − 3, j0). Assign
weight 2 to the remaining edges of Em−4.

Finally, consider Em−3. For each cycle j0 j1 j2 . . . jk j0 in F , assign weight 1 to the edges (m − 3, j0)(m − 2, j1),
(m − 3, j1)(m − 2, j2), (m − 3, j2)(m − 2, j3), . . ., (m − 3, jk−1)(m − 2, jk) and (m − 3, jk)(m − 2, j0). Assign
weight 2 to the remaining edges of Em−3.

codec is given by: for j ∈ V (G),

codec((i, j)) = (k, k) if i ∈ {1, 3, 5, . . . , m − 6} ∪ {m − 1},

codec((i, j)) = (2k, 0) if i ∈ {0, 4, 8, . . . , m − 7},

codec((i, j)) = (0, 2k) if i ∈ {2, 6, 10, . . . , m − 5},

codec((m − 4, j)) = codec((m − 2, j)) = (1, 2k − 1), and
codec((m − 3, j)) = (2, 2k − 2).

Finally, assume that m = 3.

Define c as follows:
Assign weight 2 to all the edges of E1, and assign weight 1 to all the edges of E2.

Now consider E0. For each cycle j0 j1 j2 . . . jk j0 in F , assign weight 2 to the edges (0, j0)(1, j1), (0, j1)(1, j2),
(0, j2)(1, j3), . . ., (0, jk−1)(1, jk) and (0, jk)(1, j0). Assign weight 1 to the remaining edges of E0.

codec is given by: for j ∈ V (G),

codec((0, j)) = (2k − 1, 1),

codec((1, j)) = (k − 1, k + 1), and
codec((2, j)) = (k, k).

In any case, the 2-edge-weighting c of Cm × G is detectable. Hence, det (Cm × G) = 2. By Proposition 1.4,
µ(Cm × G) = 2. �

Corollary 4.1. For m, n ≥ 3, det (Cm × Cn) = µ(Cm × Cn) = 2.

5. Conclusion

In conclusion, we ask: does there exist a graph G with det (G) ≠ µ(G)?
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