

Available online at www.sciencedirect.com ScienceDirect

AKCE International Journal of Graphs and Combinatorics

AKCE International Journal of Graphs and Combinatorics 13 (2016) 146-156

www.elsevier.com/locate/akcej

Graphs with vertex-coloring and detectable 2-edge-weighting

N. Paramaguru^a, R. Sampathkumar^{b,*}

^a Mathematics Wing, Directorate of Distance Education, Annamalai University, Annamalainagar 608 002, India ^b Mathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalainagar 608 002, India

> Received 20 December 2012; accepted 18 March 2016 Available online 29 June 2016

Abstract

For a connected graph G of order $|V(G)| \ge 3$ and a k-edge-weighting $c : E(G) \to \{1, 2, ..., k\}$ of the edges of G, the code, $code_c(v)$, of a vertex v of G is the ordered k-tuple $(\ell_1, \ell_2, ..., \ell_k)$, where ℓ_i is the number of edges incident with v that are weighted i. (i) The k-edge-weighting c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-edge-weighting is the detectable chromatic number det(G) of G. (ii) The k-edge-weighting c is a vertex-coloring if every two adjacent vertices u, v of G with codes $code_c(u) = (\ell_1, \ell_2, ..., \ell_k)$ and $code_c(v) = (\ell'_1, \ell'_2, ..., \ell'_k)$ have $1\ell_1 + 2\ell_2 + \cdots + k\ell_k \neq 1\ell'_1 + 2\ell'_2 + \cdots + k\ell'_k$. The minimum positive integer k for which G has a vertex-coloring k-edge-weighting is denoted by $\mu(G)$. In this paper, we have enlarged the known families of graphs with $det(G) = \mu(G) = 2$.

© 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Detectable edge-weighting; Vertex-coloring edge-weighting; Cartesian product; Tensor product

1. Introduction

For graph-theoretical terminology and notation, we in general follow [1]. In this paper, we assume that the graphs G in discussion are finite, connected, undirected and simple with order $|V(G)| \ge 3$.

Let $c : E(G) \rightarrow \{1, 2, ..., k\}$ be a k-edge-weighting of G, where k is a positive integer. The *color code* of a vertex v of G is the ordered k-tuple $code_c(v) = (\ell_1, \ell_2, ..., \ell_k)$, where ℓ_i is the number of edges incident with v that are weighted i for $i \in \{1, 2, ..., k\}$. Therefore, $\ell_1 + \ell_2 + \cdots + \ell_k = d_G(v)$, the degree of v in G. It follows that for $u, v \in V(G)$ if $d_G(u) \neq d_G(v)$, then $code_c(u) \neq code_c(v)$. The k-edge-weighting c of G is called *detectable* if every two adjacent vertices of G have distinct color codes. The *detectable chromatic number det*(G) of G is the minimum positive integer k for which G has a detectable k-edge-weighting.

Any k-edge-weighting $c : E(G) \to \{1, 2, ..., k\}$ induces a vertex-weighting $f_c : V(G) \to \mathbb{N}$ defined by $f_c(v) = \sum_{e \text{ is incident with } v} c(e)$. An edge-weighting c is a vertex-coloring if $f_c(u) \neq f_c(v)$ for any edge uv. Denote by $\mu(G)$ the minimum k for which G has a vertex-coloring k-edge-weighting.

* Corresponding author.

http://dx.doi.org/10.1016/j.akcej.2016.06.008

Peer review under responsibility of Kalasalingam University.

E-mail addresses: npguru@gmail.com (N. Paramaguru), sampathmath@gmail.com (R. Sampathkumar).

^{0972-8600/© 2016} Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Karoński et al. [2] initiated the study of vertex-coloring k-edge-weighting and they posed the following conjecture:

Conjecture 1.1 (1-2-3-Conjecture). Every nice graph admits a vertex-coloring 3-edge-weighting.

Consider a vertex-coloring k-edge-weighting c of G. For $uv \in E(G)$, let ℓ_i , ℓ'_i , respectively, be the number of edges incident with u, v that are weighted i in c. Then $1\ell_1 + 2\ell_2 + \cdots + k\ell_k \neq 1\ell'_1 + 2\ell'_2 + \cdots + k\ell'_k$ and hence $(\ell_1, \ell_2, \ldots, \ell_k) \neq (\ell'_1, \ell'_2, \ldots, \ell'_k)$. So c is a detectable k-edge-weighting. Consequently, $det(G) \leq \mu(G)$.

Proposition 1.1. $det(G) \leq \mu(G)$.

Proposition 1.2. For every nice graph G, following three conditions are equivalent:

(i) det(G) = 1,

(ii) $\mu(G) = 1$,

(iii) G has no adjacent vertices with the same degree.

Proposition 1.3. *If* $\mu(G) = 2$ *, then* det(G) = 2*.*

If c is a detectable 2-edge-weighting of a k-regular graph G with $k \ge 3$, then c is a vertex-coloring 2-edgeweighting. This follows from the fact that $\ell_1 + \ell_2 = k = \ell'_1 + \ell'_2$ and $(\ell_1, \ell_2) \ne (\ell'_1, \ell'_2)$ imply $1\ell_1 + 2\ell_2 \ne 1\ell'_1 + 2\ell'_2$.

Proposition 1.4. Let G be a k-regular graph with $k \ge 3$. If det(G) = 2, then $\mu(G) = 2$.

In [2], Karoński et al. proved that: (i) $det(G) \leq 183$, and (ii) if $d_G(v) \geq 10^{99}$ for every $v \in V(G)$, then $det(G) \leq 30$.

In [3], Addario-Berry et al. proved that: (i) $det(G) \le 4$, (ii) if $d_G(v) \ge 1000$ for every $v \in V(G)$, then $det(G) \le 3$, and (iii) if $\chi(G) \le 3$, then $det(G) \le 3$.

In [4], among other results, Escuadro et al. proved that: (i) $det(K_{n_1,n_2,...,n_k}) = 1$ if $n_1 < n_2 < \cdots < n_k$, $det(K_{n_1,n_2,...,n_k}) = 3$ if $n_1 = n_2 = \cdots = n_k = 1$ and $det(K_{n_1,n_2,...,n_k}) = 2$ otherwise, where $K_{n_1,n_2,...,n_k}$ is the complete k-partite graph with partite sizes n_1, n_2, \ldots, n_k ($k \ge 3$ and $n_1 \le n_2 \le \cdots \le n_k$), (ii) $det(C_3 \square K_2) = 3$, $det(C_5 \square K_2) = 3$ and if $n \ge 7$ is an odd integer, then $det(C_n \square K_2) = 2$, where \square denotes the Cartesian product, and (iii) if G is a unicyclic graph that is not a cycle, then $det(G) \le 2$.

See Fig. 5 of [4]; detectable 3-edge-weighting of $C_3 \Box K_2$ and that of $C_5 \Box K_2$, in the figure, are vertex-coloring 3-edge-weightings. Hence, $\mu(C_3 \Box K_2) = 3$ and $\mu(C_5 \Box K_2) = 3$. If $n \ge 7$ is an odd integer, then it follows from $det(C_n \Box K_2) = 2$ and Proposition 1.4 that $\mu(C_n \Box K_2) = 2$.

Theorem 1.1. $det(C_3 \Box K_2) = \mu(C_3 \Box K_2) = 3$, $det(C_5 \Box K_2) = \mu(C_5 \Box K_2) = 3$ and if $n \ge 7$ is an odd integer, then $det(C_n \Box K_2) = \mu(C_n \Box K_2) = 2$.

From [5,6], and [4], we have:

Theorem 1.2. For the path P_n on n vertices, $det(P_3) = \mu(P_3) = 1$ and $det(P_n) = \mu(P_n) = 2$ if $n \ge 4$.

Theorem 1.3. For the cycle C_n on n vertices, $det(C_n) = \mu(C_n) = 2$ if $n \equiv 0 \pmod{4}$ and $det(C_n) = \mu(C_n) = 3$ if $n \equiv 1, 2$ or $3 \pmod{4}$.

Theorem 1.4. For the complete graph K_n on $n \ge 3$ vertices, $det(K_n) = \mu(K_n) = 3$.

Theorem 1.5. For $r + s \ge 3$, $det(K_{r,s}) = \mu(K_{r,s}) = 1$ if $r \ne s$ and $det(K_{r,s}) = \mu(K_{r,s}) = 2$ if r = s, where $K_{r,s}$ is the complete bipartite graph with partite sizes r and s.

The *theta graph* $\theta(\ell_1, \ell_2, \ldots, \ell_r)$ is the graph obtained from *r* disjoint paths $P_1(u_1, v_1), P_2(u_2, v_2), \ldots, P_r(u_r, v_r)$ of lengths $\ell_1, \ell_2, \ldots, \ell_r$, respectively, by identifying their end-vertices $u := u_1 = u_2 = \cdots = u_r$ and $v := v_1 = v_2 = \cdots = v_r$, where $P_i(u_i, v_i)$ is a path of length ℓ_i with origin u_i and terminus v_i . Note that $\theta(\ell_1) = P_{\ell_1+1}$ and $\theta(\ell_1, \ell_2) = C_{\ell_1+\ell_2}$.

Theorem 1.6. Let $G = \theta(\ell_1, \ell_2, ..., \ell_r)$ with $r \ge 3$, $\ell_1 \le \ell_2 \le \cdots \le \ell_r$, and $\ell_1 = 1$ implies $\ell_2 > 1$. Then $det(G) = \mu(G) = 1$ when $\ell_i = 2$ for all i; $det(G) = \mu(G) = 3$ when $\ell_1 = 1$ and $\ell_i \equiv 1 \pmod{4}$ for all $i \ne 1$; and $det(G) = \mu(G) = 2$ otherwise.

Proof of Theorem 1.6 follows from: the proof of Proposition 6 in [5], $det(G) \le \mu(G)$, and the following: For $\ell_1 = 1$ and $\ell_i \equiv 1 \pmod{4}$ for all $i \ne 1$, we claim that $det(G) \ge 3$. Suppose, to the contrary that G admits a detectable 2-edge-weighting c. Then, in each path the kth edge must have different weight from the (k + 2)th edge, and has the same weight with the (k + 4)th edge. Consequently, the first edge has the same weight with the last edge in each path of the theta graph. Then, $code_c(u) = code_c(v)$, however, this is impossible as u and v are adjacent.

Theorem 1.7. Let G be a nice connected bipartite graph with bipartition (A, B) and G has at least one pair of adjacent vertices with the same degree. If one of the following conditions holds:

(i) |A| or |B| is even,(ii) $\delta(G) = 1$, (iii) $\left\lfloor \frac{d(u)}{2} \right\rfloor + 1 \neq d(v) \text{ for any edge } uv \in E(G),$ then $det(\overline{G}) = \mu(G) = 2$.

Consequently,

(i) if G is a tree, then $det(G) = \mu(G) = 2$;

(ii) if G is r-regular with $r \ge 3$, then $det(G) = \mu(G) = 2$; and

(iii) if $\delta(G) \ge 4$ and $\Delta(G) + 3 \le 2\delta(G)$, then $det(G) = \mu(G) = 2$.

The converse of Theorem 1.7 is in general not true. Consider the cycle C_{4n+2} of length 4n + 2 $(n \ge 1)$. For $G = C_{4n+2}$, both |A| and |B| are odd, $\delta(G) \ne 1$, $\left\lfloor \frac{d(u)}{2} \right\rfloor + 1 = d(v)$ for any edge $uv \in E(G)$, and $det(G) = \mu(G) = 3$. Next, consider the complete bipartite graph $K_{2n+1,4n+1}$ $(n \ge 1)$. For $G = K_{2n+1,4n+1}$, both |A| and |B| are odd, $\delta(G) \ne 1$, $\left\lfloor \frac{d(u)}{2} \right\rfloor + 1 = d(v)$ for any edge $uv \in E(G)$ with $d(u) \ge d(v)$ and $det(G) = \mu(G) = 2$.

Theorem 1.8. Let G be a nice graph and assume that G has at least one pair of adjacent vertices with the same degree. If $\delta(G) \ge 8\chi(G)$, then $det(G) = \mu(G) = 2$.

Theorem 1.9. Let G be nice, bipartite, and G has at least one pair of adjacent vertices with the same degree. If one of the following conditions holds:

(i) there exists a vertex v such that $d_G(v) \notin \{d_G(x) \mid x \in N(v)\}$ and G - v - N(v) is connected,

(ii) there exists a vertex v of degree $\delta(G)$ such that $d_G(v) \notin \{d_G(x) \mid x \in N(v)\}$ and G - v is connected,

(iii) G is 3-connected,

(iv) $\delta(G) \ge 3$ and there exists a vertex v of degree $\delta(G)$ such that G - v - N(v) is connected, then det $(G) = \mu(G) = 2$.

In this paper, we have enlarged the known class of graphs with $det(G) = \mu(G) = 2$.

Let G_1 and G_2 be graphs. The *Cartesian product* $G_1 \square G_2$ of G_1 and G_2 is the graph with $V(G_1 \square G_2) = V(G_1) \times V(G_2)$ and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \square G_2$ if, and only if, either $u_1 = u_2$ and $v_1v_2 \in E(G_2)$ or $u_1u_2 \in E(G_1)$ and $v_1 = v_2$. The *tensor product* $G_1 \times G_2$ of G_1 and G_2 is the graph with $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \times G_2$ if, and only if, $u_1u_2 \in E(G_1)$ and $v_1 = v_2$.

2. Bipartite graphs

In this section, we find detectable 2-edge-weighting for some bipartite graphs.

Theorem 2.1. Let G be a bipartite graph with bipartition (X, Y). If Y has a partition into two nonempty subsets Y_1 and Y_2 , and if every vertex of X has at least one neighbor in Y_1 and one neighbor in Y_2 , then $det(G) \le 2$.

Proof. Assign weight 1 to the edges with one end in Y_1 and 2 to the edges with one end in Y_2 . Then, $code(y_1) = (d_G(y_1), 0)$ for every $y_1 \in Y_1$, and $code(y_2) = (0, d_G(y_2))$ for every $y_2 \in Y_2$. Now, let $x \in X$. If $code(x) = (\ell_1, \ell_2)$, then by hypothesis $\ell_1 \ge 1$ and $\ell_2 \ge 1$. Hence *G* has a detectable 2-edge-weighting.

Note that the partition in previous theorem is impossible for cycles C_{4n+2} , $n \ge 1$, and it is known that $det(C_{4n+2}) = 3$. Consider for $n \ge 1$, the graph G_{4n+2} obtained from C_{4n+2} by adding a pendant edge at only one vertex of C_{4n+2} . Let $G_{4n+2} := x_1y_1x_2y_2x_3y_3...x_{2n+1}y_{2n+1}x_1 \oplus x_1y$. Observe that the partition in previous theorem is impossible for G_{4n+2} and $det(G_{4n+2}) = 2$. $det(G_{4n+2}) = 2$ follows from the fact that G_{4n+2} is bipartite with $\delta(G_{4n+2}) = 1$.

3. Cartesian product of two graphs

Recently, in [7], we and Havet have shown that if G is bipartite and the minimum degree of G is at least 3, then $det(G) \le 2$.

In this section, we find some Cartesian products $G_1 \square G_2$ of graphs G_1 and G_2 with $det(G_1 \square G_2) = 2$ and some Cartesian products $H_1 \square H_2$ of graphs H_1 and H_2 with $det(H_1 \square H_2) = \mu(H_1 \square H_2) = 2$.

Denote by \mathscr{G}_3 , the set of tripartite graphs G with tripartition (X, Y, Z) such that for any $x \in X$, $y \in Y$ and $z \in Z$, $d_{G[X \cup Y]}(x) = r = d_{G[X \cup Y]}(y)$, $d_{G[X \cup Z]}(x) = s = d_{G[X \cup Z]}(z)$ and $d_{G[Y \cup Z]}(y) = t = d_{G[Y \cup Z]}(z)$; $r \ge 1$, $s \ge 1$, $t \ge 1$; i.e., the subgraphs induced by $X \cup Y$, $X \cup Z$ and $Y \cup Z$ are, respectively, r, s and t-regular.

Theorem 3.1. If G_1 , $G_2 \in \mathscr{G}_3$, then $det(G_1 \Box G_2) \leq 2$.

Proof. Let (X', Y', Z') be the tripartition of G_1 such that for $x' \in X'$, $y' \in Y'$ and $z' \in Z'$, $d_{G_1[X'\cup Y']}(x') = r' = d_{G_1[X'\cup Z']}(x') = s' = d_{G_1[X'\cup Z']}(z')$ and $d_{G_1[Y'\cup Z']}(y') = t' = d_{G_1[Y'\cup Z']}(z')$; and let (X'', Y'', Z'') be the tripartition of G_2 such that for $x'' \in X''$, $y'' \in Y''$ and $z'' \in Z''$, $d_{G_2[X''\cup Y'']}(x'') = r'' = d_{G_2[X''\cup Y'']}(y'')$, $d_{G_2[X''\cup Z'']}(x'') = s'' = d_{G_2[X''\cup Z'']}(z'')$ and $d_{G_2[Y''\cup Z'']}(y'') = t'' = d_{G_2[Y''\cup Z'']}(z'')$. Define *c* as follows:

Assign weight 1 to edges having both ends in $X' \times V(G_2)$, to edges having both ends in $V(G_1) \times X''$, to edges having one end in $Z' \times X''$ and other end in $Z' \times Y''$, and to edges having one end in $X' \times Z''$ and other end in $Y' \times V(G_2)$, to edges having both ends in $V(G_1) \times Y''$, and to edges having both ends in $V(G_1) \times Y''$, and to edges having both ends in $V(G_1) \times Y''$, and to edges having one end in $Z' \times Z''$ and other end in $(Z' \times X'') \cup (Z' \times Y'') \cup (X' \times Z'') \cup (Y' \times Z'')$.

Let $x' \in X', y' \in Y', z' \in Z', x'' \in X'', y'' \in Y''$, and $z'' \in Z''$.

Color code is given by: $code_c((x', x'')) = (r' + s' + r'' + s'', 0),$ $code_c((x', y'')) = (r'' + t'', r' + s'),$ $code_c((x', z'')) = (r' + t', r'' + s''),$ $code_c((y', x'')) = (r' + t', r'' + s''),$ $code_c((y', x'')) = (r', t' + s'' + t''),$ $code_c((z', x'')) = (s' + t' + r'', s''),$ $code_c((z', y'')) = (r'', s' + t' + t''),$ and $code_c((z', z'')) = (0, s' + t' + s'' + t'').$ Hence *c* is a detectable 2-edge-weighting of $G_1 \Box G_2$.

Theorem 3.2. If G is a k-regular bipartite graph, $k \ge 2$, and if $H \in \mathscr{G}_3$, then $det(G \Box H) \le 2$.

Proof. Let (A, B) be the bipartition of G, and let (X, Y, Z) be the tripartition of H such that for $x \in X$, $y \in Y$ and $z \in Z$, $d_{H[X \cup Y]}(x) = r = d_{H[X \cup Y]}(y)$, $d_{H[X \cup Z]}(x) = s = d_{H[X \cup Z]}(z)$ and $d_{H[Y \cup Z]}(y) = t = d_{H[Y \cup Z]}(z)$.

Define c as follows: Assign weight 1 to the edges having both ends in $A \times V(H)$, and edges having one end in $B \times Y$ and other end in $(A \times Y) \cup (B \times X)$; assign weight 2 to the edges having one end in $A \times X$ and other end in $B \times X$, and edges having one end in $B \times Z$ and other end in $(B \times X) \cup (B \times Y)$. Finally, we have to assign weights to the edges having one end in $A \times Z$ and other end in $B \times Z$.

For $a \in A$, $b \in B$, $x \in X$, $y \in Y$ and $z \in Z$, $code_c$ is given by: $code_c((a, x)) = (r + s, k)$, $code_c((a, y)) = (r + t + k, 0)$, $code_c((b, x)) = (r, s + k)$, and $code_c((b, y)) = (r + k, t)$. *Case* 1. $|\{r, s, t\}| \ge 2$. Assume without loss of generality that $r \neq t$.

Assign weight 2 to the edges having one end in $A \times Z$ and other end in $B \times Z$. Now, $code_c((a, z)) = (s + t, k)$ and $code_c((b, z)) = (0, k + t + s)$.

Case 2. r = s = t.

 $code_c((a, x)) = (2r, k), code_c((a, y)) = (2r + k, 0), code_c((b, x)) = (r, r + k), and code_c((b, y)) = (r + k, r).$ Subcase 2.1. r > 2.

Find a 1-factor *F* in the *k*-regular bipartite graph $(G \Box H)[(A \times Z) \cup (B \times Z)]$. Assign weight 1 to the edges of *F* and the remaining edges having one end in $A \times Z$ and other end in $B \times Z$ are assigned weight 2. Now, $code_c((a, z)) = (2r + 1, k - 1)$ and $code_c((b, z)) = (1, 2r + k - 1)$.

Subcase 2.2. r = 1.

 $code_c((a, x)) = (2, k), code_c((a, y)) = (k + 2, 0), code_c((b, x)) = (1, k + 1), and code_c((b, y)) = (k + 1, 1).$

If $k \ge 3$, find two edge-disjoint 1-factors F_1 and F_2 in the k-regular bipartite graph $(G \Box H)[(A \times Z) \cup (B \times Z)]$. Assign weight 1 to the edges of $F_1 \cup F_2$ and the remaining edges having one end in $A \times Z$ and other end in $B \times Z$ are assigned weight 2. Now, $code_c((a, z)) = (4, k - 2)$ and $code_c((b, z)) = (2, k)$.

Finally, assume that k = 2. Interchange the weight for the edges having one end in $B \times X$ and other end in $B \times Y$ by 2. Find two edge-disjoint 1-factors F_1 and F_2 in the k-regular bipartite graph $(G \Box H)[(A \times Z) \cup (B \times Z)]$. Assign weight 1 to the edges of F_1 and the edges of F_2 by 2. Now, $code_c((a, x)) = (2, 2)$, $code_c((a, y)) = (4, 0)$, $code_c((a, z)) = (3, 1)$, $code_c((b, x)) = (0, 4)$, $code_c((b, y)) = (2, 2)$, and $code_c((b, z)) = (1, 3)$.

In any case, c is a detectable 2-edge-weighting of $G \square H$.

For convenience, let $V(P_r) = V(C_r) = \{0, 1, 2, ..., r-1\}, E(P_r) = \{\{i, i+1\} : i \in \{0, 1, 2, ..., r-2\}\}$ and $E(C_r) = E(P_r) \cup \{\{r-1, 0\}\}.$

For any $n \ge 0$, $C_{6n+3} \in \mathscr{G}_3$; hence by previous theorem for any *k*-regular bipartite graph *G* with $k \ge 2$, we have $det(G \square C_{6n+3}) \le 2$.

Theorem 3.3. If G is a k-regular bipartite graph, $k \ge 2$, and if $n \ge 1$, then $det(G \square C_{2n+1}) = \mu(G \square C_{2n+1}) = 2$.

Proof. Let (X, Y) be the bipartition of G. Define c as follows:

Case 1. $n \ge 2$.

Assign weight 1 to the edges having one end in $X \times \{0, 2, 4, ..., 2n\}$ and the other end in $Y \times \{0, 2, 4, ..., 2n\}$, edges having both ends in $X \times \{0, 1, 2, ..., 2n - 1\}$, and edges having both ends in $Y \times \{2n - 2, 2n - 1, 2n\}$; and assign weight 2 to the edges having one end in $X \times \{1, 3, 5, ..., 2n - 1\}$ and the other end in $Y \times \{1, 3, 5, ..., 2n - 1\}$, edges having both ends in $X \times \{2n - 1, 2n, 0\}$, and edges having both ends in $Y \times \{2n, 0, 1, 2, ..., 2n - 1\}$, edges having both ends in $X \times \{2n - 1, 2n, 0\}$, and edges having both ends in $Y \times \{2n, 0, 1, 2, ..., 2n - 2\}$. *code*_c is given by: for $x \in X$ and $y \in Y$,

 $\begin{array}{l} code_c((x,i)) = (2,k) \text{ if } i \in \{1,3,5,\ldots,2n-3\};\\ code_c((x,i)) = (k+2,0) \text{ if } i \in \{2,4,6,\ldots,2n-2\};\\ code_c((x,0)) = (k+1,1);\\ code_c((x,2n-1)) = (1,k+1);\\ code_c((x,2n)) = (k,2);\\ code_c((y,i)) = (0,k+2) \text{ if } i \in \{1,3,5,\ldots,2n-3\};\\ code_c((y,i)) = (k,2) \text{ if } i \in \{0,2,4,\ldots,2n-4\};\\ code_c((y,2n-2)) = (k+1,1) = code_c((y,2n)); \text{ and }\\ code_c((y,2n-1)) = (2,k). \end{array}$

Case 2. n = 1.

Subcase 2.1. $k \ge 3$.

Assign weight 1 to the edges having one end in $X \times \{1\}$ and the other end in $Y \times \{1\}$, edges having both ends in $X \times \{0, 1, 2\}$, and edges having both ends in $Y \times \{0, 1\}$; and assign weight 2 to the edges having one end in $X \times \{0\}$ and the other end in $Y \times \{0\}$, edges having both ends in $Y \times \{1, 2\}$, and edges having both ends in $Y \times \{2, 0\}$. Find two edge-disjoint 1-factors F_1 and F_2 in the *k*-regular bipartite subgraph induced by the partite sets $X \times \{2\}$ and $Y \times \{2\}$. Assign weight 1 to the edges of $F_1 \cup F_2$ and the remaining edges having one end in $X \times \{2\}$ and other end in $Y \times \{2\}$ are by 2. $code_c$ is given by: for $x \in X$ and $y \in Y$,

 $code_c((x, 0)) = (2, k); \ code_c((x, 1)) = (k + 2, 0); \ code_c((x, 2)) = (4, k - 2);$

 $code_c((y, 0)) = (1, k + 1); \ code_c((y, 1)) = (k + 1, 1); \ code_c((y, 2)) = (2, k).$ Subcase 2.2. k = 2.

Assign weight 1 to the edges having one end in $X \times \{1\}$ and the other end in $Y \times \{1\}$, and edges having both ends in $X \times \{0, 1, 2\}$; and assign weight 2 to the edges having one end in $X \times \{0\}$ and the other end in $Y \times \{0\}$, and edges having both ends in $Y \times \{0, 1, 2\}$. Find two edge-disjoint 1-factors F_1 and F_2 in the 2-regular bipartite subgraph induced by the partite sets $X \times \{2\}$ and $Y \times \{2\}$. Assign weight 1 to the edges of F_1 and 2 to the edges of F_2 . Now, $code_c((x, 0)) = (2, 2); \ code_c((x, 1)) = (4, 0); \ code_c((x, 2)) = (3, 1);$

 $code_{c}((y, 0)) = (0, 4); \ code_{c}((y, 1)) = (2, 2); \ code_{c}((y, 2)) = (1, 3).$

In any case, the 2-edge-weighting *c* of $G \square C_{2n+1}$ is detectable and hence $det(G \square C_{2n+1}) = 2$. By Proposition 1.4, $\mu(G \square C_{2n+1}) = 2$.

Theorem 3.4. If $m, n \ge 3$, then $det(C_m \Box C_n) = \mu(C_m \Box C_n) = 2$.

Proof. If both *m* and *n* are even, then $C_m \square C_n$ is a 4-regular bipartite graph and hence the result follows from the result quoted in the beginning of this section, and Propositions 1.2 and 1.4. If *m* and *n* are of opposite parity, say, *m* is odd and *n* is even, then the result follows from Theorem 3.3. Hence, assume that both *m* and *n* are odd.

Define *c* as follows:

Assign weight 1 to the edges having both ends in $\{0, 2, 4, ..., m - 3\} \times V(C_n)$, and edges having both ends in $V(C_m) \times \{0, 2, 4, ..., n - 3\}$; assign weight 2 to the edges having both ends in $\{1, 3, 5, ..., m - 2\} \times V(C_n)$, and edges having both ends in $V(C_m) \times \{1, 3, 5, ..., n - 2\}$;

c((m-1, j)(m-1, j+1)) = 1 if $j \in \{1, 3, 5, \dots, n-2\}$; c((m-1, j)(m-1, j+1)) = 2 if $j \in \{0, 2, 4, \dots, n-3\};$ c((m-1, n-1)(m-1, 0)) = 1;c((i, n-1)(i+1, n-1)) = 1 if $i \in \{1, 3, 5, \dots, m-2\}$; c((i, n-1)(i+1, n-1)) = 2 if $i \in \{0, 2, 4, \dots, m-3\}$; and c((m-1, n-1)(0, n-1)) = 1. $code_c$ is given by: $code_c((i, j)) = (4, 0)$ if $i \in \{0, 2, 4, ..., m - 3\}$ and $j \in \{0, 2, 4, ..., n - 3\}$; $code_c((i, j)) = (0, 4)$ if $i \in \{1, 3, 5, ..., m - 2\}$ and $j \in \{1, 3, 5, ..., n - 2\}$; $code_c((m-1, j)) = (3, 1)$ if $j \in \{0, 2, 4, \dots, n-3\};$ $code_c((m-1, j)) = (1, 3)$ if $j \in \{1, 3, 5, \dots, n-2\}$; $code_c((i, n-1)) = (3, 1)$ if $i \in \{0, 2, 4, \dots, m-3\}$; $code_c((i, n-1)) = (1, 3)$ if $i \in \{1, 3, 5, \dots, m-2\}$; $code_{c}((m-1, n-1)) = (4, 0);$ and $code_c((i, j)) = (2, 2)$ otherwise. This 2-edge-weighting c is detectable and hence $det(C_m \Box C_n) = 2$. By Proposition 1.4, $\mu(C_m \Box C_n) = 2$.

Recently, in [8], Davoodi and Omoomi have shown that if G and H are two connected bipartite graphs and $G \Box H \neq K_2$, then $\mu(G \Box H) \leq 2$.

Theorem 3.5. If $m, n \ge 3$, then $det(C_m \Box P_n) = \mu(C_m \Box P_n) = 2$.

Proof. If m is even, then the result follows from the above result of Davoodi and Omoomi, and Propositions 1.2 and 1.3. Hence, assume that m is odd. We consider two cases.

Case 1. n is odd.

Define c as follows: Assign weight 1 to the edges having both ends in $\{1, 3, 5, ..., m - 2\} \times V(P_n)$, and edges having both ends in $V(C_m) \times \{2, 4, 6, ..., n - 3\}$; assign weight 2 to the edges having both ends in $\{0, 2, 4, ..., m - 3\} \times V(P_n)$, and edges having both ends in $V(C_m) \times \{1, 3, 5, ..., n - 2\}$;

 $c((m-1, j)(m-1, j+1)) = 1 \text{ if } j \in \{0, 2, 4, \dots, n-3\};$ $c((m-1, j)(m-1, j+1)) = 2 \text{ if } j \in \{1, 3, 5, \dots, n-2\};$ $c((i, 0)(i+1, 0)) = 1 \text{ if } i \in \{0, 1, 2, \dots, m-2\};$ c((m-1, 0)(0, 0)) = 2; $c((i, n-1)(i+1, n-1)) = 1 \text{ if } i \in \{0, 2, 4, \dots, m-3\};$
$$\begin{split} c((i, n - 1)(i + 1, n - 1)) &= 2 \text{ if } i \in \{1, 3, 5, \dots, m - 2\}; \text{ and} \\ c((m - 1, n - 1)(0, n - 1)) &= 2. \\ f_c \text{ is given by:} \\ f_c((i, j)) &= 8 \text{ if } i \in \{0, 2, 4, \dots, m - 3\} \text{ and } j \in \{1, 3, 5, \dots, n - 2\}; \\ f_c((i, j)) &= 4 \text{ if } i \in \{1, 3, 5, \dots, m - 2\} \text{ and } j \in \{2, 4, 6, \dots, n - 3\}; \\ f_c((0, 0)) &= 5; \\ f_c((i, 0)) &= 3 \text{ if } i \in \{1, 3, 5, \dots, m - 2\}; \\ f_c((i, 0)) &= 4 \text{ if } i \in \{2, 4, 6, \dots, m - 1\}; \\ f_c((i, n - 1)) &= 5 \text{ if } i \in \{0, 2, 4, \dots, m - 3\}; \\ f_c((m - 1, n - 1)) &= 6; \\ f_c((m - 1, j)) &= 7 \text{ if } j \in \{1, 3, 5, \dots, n - 2\}; \\ f_c((m - 1, j)) &= 5 \text{ if } j \in \{2, 4, 6, \dots, n - 3\}; \\ f_c((m - 1, j)) &= 6 \text{ otherwise.} \end{split}$$

Case 2. n is even.

Define c as follows: Assign weight 1 to the edges having both ends in $\{0, 2, 4, ..., m - 3\} \times V(P_n)$, and edges having both ends in $V(C_m) \times \{2, 4, 6, ..., n - 2\}$; assign weight 2 to the edges having both ends in $\{1, 3, 5, ..., m - 2\} \times V(P_n)$, and edges having both ends in $V(C_m) \times \{1, 3, 5, ..., n - 3\}$;

c((m-1, j)(m-1, j+1)) = 1 if $j \in \{0, 2, 4, \dots, n-2\}$; c((m-1, j)(m-1, j+1)) = 2 if $j \in \{1, 3, 5, \dots, n-3\}$; c((i, 0)(i + 1, 0)) = 1 if $i \in \{0, 1, 2, \dots, m - 3\}$; c((m-2, 0)(m-1, 0)) = 2;c((m-1, 0)(0, 0)) = 1;c((i, n-1)(i+1, n-1)) = 1 if $i \in \{0, 1, 2, \dots, m-3\}$; c((m-2, n-1)(m-1, n-1)) = 2; and c((m-1, n-1)(0, n-1)) = 1. f_c is given by: $f_c((i, j)) = 8$ if $i \in \{1, 3, 5, \dots, m-2\}$ and $j \in \{1, 3, 5, \dots, n-3\}$; $f_c((i, j)) = 4$ if $i \in \{0, 2, 4, \dots, m-3\}$ and $j \in \{2, 4, 6, \dots, n-2\}$; $f_c((i, 0)) = 3$ if $i \in \{0, 2, 4, \dots, m-3\}$; $f_c((i, 0)) = 4$ if $i \in \{1, 3, 5, \dots, m-4\};$ $f_c((m-2,0)) = 5;$ $f_c((m-1,0)) = 4;$ $f_{c}((i, n-1)) = 3$ if $i \in \{0, 2, 4, \dots, m-3\}$; $f_c((i, n-1)) = 4$ if $i \in \{1, 3, 5, \dots, m-4\}$; $f_c((m-2, n-1)) = 5;$ $f_c((m-1, n-1)) = 4;$ $f_c((m-1, j)) = 7$ if $j \in \{1, 3, 5, \dots, n-3\}$; $f_c((m-1, j)) = 5$ if $j \in \{2, 4, 6, \dots, n-2\};$ $f_c((i, j)) = 6$ otherwise.

In any case, the 2-edge-weighting c is a vertex-coloring and hence $\mu(C_m \Box P_n) = 2$. By Proposition 1.3, $det(C_m \Box P_n) = 2$.

Denote by $\mathscr{G}_b^{(2)}$, the set of graphs G = (V, E) for which there exists a partition (X, Y) of V such that (i) if $x', x'' \in X$ and $x'x'' \in E$, then $|d_G(x') - d_G(x'')| \ge 2$; and (ii) if $y', y'' \in Y$ and $y'y'' \in E$, then $|d_G(y') - d_G(y'')| \ge 2$. Clearly, (i) if G is bipartite, then $G \in \mathscr{G}_b^{(2)}$; and (ii) if $G \in \mathscr{G}_b^{(2)}$ is regular, then G is bipartite.

Theorem 3.6. If $G \in \mathscr{G}_b^{(2)}$, then $det(G \Box K_2) = \mu(G \Box K_2) \leq 2$.

Proof. Let V(G) = V, E(G) = E, $\Delta(G) = \Delta$, the maximum degree of G, and $V(K_2) = \{0, 1\}$. By the definition of $\mathscr{G}_b^{(2)}$, there exists a partition (X, Y) of V such that: if $x', x'' \in X$ and $x'x'' \in E$, then $|d_G(x') - d_G(x'')| \ge 2$; and if $y', y'' \in Y$ and $y'y'' \in E$, then $|d_G(y') - d_G(y'')| \ge 2$. For $1 \le i \le \Delta$, set $X_i = \{x \in X : d_G(x) = i\}$ and $Y_i = \{y \in Y : d_G(y) = i\}$.

Now we give a 2-edge-weighting *c* for $G \square K_2$. Assign:

weight 1 to the edges with ends in $V \times \{0\}$;

weight 2 to the edges with ends in $V \times \{1\}$;

for odd *i*, weight 1 to the edges with one end in $X_i \times \{0\}$ and other end in $X_i \times \{1\}$; for even *i*, weight 2 to the edges with one end in $X_i \times \{0\}$ and other end in $X_i \times \{1\}$; for odd *i*, weight 2 to the edges with one end in $Y_i \times \{0\}$ and other end in $Y_i \times \{1\}$; for even *i*, weight 1 to the edges with one end in $Y_i \times \{0\}$ and other end in $Y_i \times \{1\}$. Next, we compute f_c for adjacent vertices of $G \square K_2$.

• Let $x \in X$. Then $x \in X_i$ for some *i* with $1 \le i \le \Delta$. Hence,

$$f_c((x,0)) = \begin{cases} i+1 & \text{if } i \text{ is odd,} \\ i+2 & \text{if } i \text{ is even;} \end{cases} \text{ and } f_c((x,1)) = \begin{cases} 2i+1 & \text{if } i \text{ is odd,} \\ 2i+2 & \text{if } i \text{ is even.} \end{cases}$$

Consequently, $f_c((x, 0)) \neq f_c((x, 1))$.

• Let $y \in Y$. Then $y \in Y_i$ for some *i* with $1 \le i \le \Delta$. Hence,

$$f_c((y,0)) = \begin{cases} i+2 & \text{if } i \text{ is odd,} \\ i+1 & \text{if } i \text{ is even;} \end{cases} \text{ and } f_c((y,1)) = \begin{cases} 2i+2 & \text{if } i \text{ is odd,} \\ 2i+1 & \text{if } i \text{ is even.} \end{cases}$$

Consequently, $f_c((y, 0)) \neq f_c((y, 1))$.

• Let $x', x'' \in X$ and $x'x'' \in E$. Then $|d_G(x') - d_G(x'')| \ge 2$. Without loss of generality, assume that $x' \in X_i$, $x'' \in X_j$ with $1 \le i < j \le \Delta$. As $|d_G(x') - d_G(x'')| \ge 2$, $j - i \ge 2$. Hence,

 $f_{c}((x',0)) = \begin{cases} i+1 & \text{if } i \text{ is odd,} \\ i+2 & \text{if } i \text{ is even;} \end{cases} \qquad f_{c}((x',1)) = \begin{cases} 2i+1 & \text{if } i \text{ is odd,} \\ 2i+2 & \text{if } i \text{ is even;} \end{cases}$ $f_{c}((x'',0)) = \begin{cases} j+1 & \text{if } j \text{ is odd,} \\ j+2 & \text{if } j \text{ is even;} \end{cases} \text{ and } f_{c}((x'',1)) = \begin{cases} 2j+1 & \text{if } j \text{ is odd,} \\ 2j+2 & \text{if } j \text{ is even.} \end{cases}$

As $j \ge i + 2$, $f_c((x', 0)) \ne f_c((x'', 0))$ and $f_c((x', 1)) \ne f_c((x'', 1))$.

• Let $y', y'' \in Y$ and $y'y'' \in E$. Then $|d_G(y') - d_G(y'')| \ge 2$. Without loss of generality, assume that $y' \in Y_i, y'' \in Y_j$ with $1 \le i < j \le \Delta$. As $|d_G(y') - d_G(y'')| \ge 2$, $j - i \ge 2$. Hence,

$$f_{c}((y', 0)) = \begin{cases} i+2 & \text{if } i \text{ is odd,} \\ i+1 & \text{if } i \text{ is even;} \end{cases} \qquad f_{c}((y', 1)) = \begin{cases} 2i+2 & \text{if } i \text{ is odd,} \\ 2i+1 & \text{if } i \text{ is even;} \end{cases}$$
$$f_{c}((y'', 0)) = \begin{cases} j+2 & \text{if } j \text{ is odd,} \\ j+1 & \text{if } j \text{ is even;} \end{cases} \qquad \text{and} \qquad f_{c}((y'', 1)) = \begin{cases} 2j+2 & \text{if } j \text{ is odd,} \\ 2j+1 & \text{if } j \text{ is even.} \end{cases}$$

As $j \ge i + 2$, $f_c((y', 0)) \ne f_c((y'', 0))$ and $f_c((y', 1)) \ne f_c((y'', 1))$. • Let $x \in X, y \in Y$ and $xy \in E$. Then, $x \in X_i, y \in Y_i$ with $1 \le i, j \le \Delta$.

$$f_c((x, 0)) = \begin{cases} i+1 & \text{if } i \text{ is odd,} \\ i+2 & \text{if } i \text{ is even;} \end{cases} \qquad f_c((y, 0)) = \begin{cases} j+2 & \text{if } j \text{ is odd,} \\ j+1 & \text{if } j \text{ is even;} \end{cases}$$
$$f_c((x, 1)) = \begin{cases} 2i+1 & \text{if } i \text{ is odd,} \\ 2i+2 & \text{if } i \text{ is even;} \end{cases} \text{ and } f_c((y, 1)) = \begin{cases} 2j+2 & \text{if } j \text{ is odd,} \\ 2j+1 & \text{if } j \text{ is even;} \end{cases}$$

Since $f_c((x, 0))$ is even and $f_c((y, 0))$ is odd, we have $f_c((x, 0)) \neq f_c((y, 0))$. Since $f_c((x, 1)) \equiv 2$ or $3 \pmod{4}$ and $f_c((y, 1)) \equiv 0$ or $1 \pmod{4}$, we have $f_c((x, 1)) \neq f_c((y, 1))$.

This completes the proof of $\mu(G \Box K_2) \leq 2$ and $det(G \Box K_2) = \mu(G \Box K_2)$ follows from this inequality and Propositions 1.2 and 1.3.

Theorem 3.7. For positive integers n_1, n_2, n_3 , with $(n_1, n_2, n_3) \neq (1, 1, 1)$, $det(K_{n_1, n_2, n_3} \Box K_2) = \mu(K_{n_1, n_2, n_3} \Box K_2) = 2$.

Proof. Let $V(K_2) = \{0, 1\}$ and $V = V(K_{n_1, n_2, n_3}) = V_1 \cup V_2 \cup V_3$, where, for $i \in \{1, 2, 3\}$, V_i is an independent set of cardinality n_i . Without loss of generality, assume that $n_1 \le n_2 \le n_3$. If $n_3 - n_1 \ge 2$, then $K_{n_1, n_2, n_3} \in \mathscr{G}_b^{(2)}$, to see this take the set V_2 for one part and $V_1 \cup V_3$ for other part. In this case, theorem follows from Theorem 3.6. Hence, assume that $n_3 - n_1 \le 1$. We consider three cases and in each case we give a 2-edge-weighting *c* for $K_{n_1, n_2, n_3} \Box K_2$.

Case 1. $n_1 + 1 = n_2 = n_3$.

Let $n = n_1 + 1 = n_2 = n_3$. Assign:

weight 1 to the edges with ends in $V \times \{0\}$;

weight 2 to the edges with ends in $V \times \{1\}$;

weight 1 to the edges with one end in $V_2 \times \{0\}$ and other end in $V_2 \times \{1\}$;

weight 2 to the edges with one end in $(V_1 \cup V_3) \times \{0\}$ and other end in $(V_1 \cup V_3) \times \{1\}$.

Next, we compute f_c . For $v_1 \in V_1$, $v_2 \in V_2$, $v_3 \in V_3$, $f_c((v_1, 0)) = 2n+2$, $f_c((v_2, 0)) = 2n$, $f_c((v_3, 0)) = 2n+1$, $f_c((v_1, 1)) = 4n+2$, $f_c((v_2, 1)) = 4n-1$, $f_c((v_3, 1)) = 4n$. As $n \neq 1$, the 2-edge-weighting c is a vertex-coloring.

Case 2. $n_1 = n_2 = n_3 - 1$.

Let $n = n_1 = n_2 = n_3 - 1$. Assign:

weight 1 to the edges with ends in $V \times \{0\}$;

weight 2 to the edges with ends in $V \times \{1\}$;

weight 1 to the edges with one end in $(V_1 \cup V_3) \times \{0\}$ and other end in $(V_1 \cup V_3) \times \{1\}$;

weight 2 to the edges with one end in $V_2 \times \{0\}$ and other end in $V_2 \times \{1\}$.

Next, we compute f_c . For $v_1 \in V_1$, $v_2 \in V_2$, $v_3 \in V_3$, $f_c((v_1, 0)) = 2n + 2$, $f_c((v_2, 0)) = 2n + 3$, $f_c((v_3, 0)) = 2n + 1$, $f_c((v_1, 1)) = 4n + 3$, $f_c((v_2, 1)) = 4n + 4$, $f_c((v_3, 1)) = 4n + 1$. For any *n*, the 2-edge-weighting *c* is a vertex-coloring. Note that for n = 1, $f_c((v_2, 0)) = 5 = f_c((v_3, 1))$ and the set $(V_2 \times \{0\}) \cup (V_3 \times \{1\})$ is an independent set in $K_{n_1,n_2,n_3} \square K_2$.

Case 3. $n_1 = n_2 = n_3$.

Let $n = n_1 = n_2 = n_3 \ge 2$. Choose two edge-disjoint 1-factors F_1 , F_2 in the subgraph induced by the edges with one end in $V_2 \times \{0\}$ and other end in $V_3 \times \{0\}$ and choose a 1-factor F in the subgraph induced by the edges with one end in $V_2 \times \{1\}$ and other end in $V_3 \times \{1\}$. Assign:

weight 2 to the edges of $F_1 \cup F_2$;

weight 1 to the edges with ends in $V \times \{0\}$ but not belonging to $F_1 \cup F_2$;

weight 1 to the edges of F;

weight 2 to the edges with ends in $V \times \{1\}$ but not belonging to F;

weight 1 to the edges with one end in $V_2 \times \{0\}$ and other end in $V_2 \times \{1\}$;

weight 2 to the edges with one end in $(V_1 \cup V_3) \times \{0\}$ and other end in $(V_1 \cup V_3) \times \{1\}$.

Next, we compute f_c . For $v_1 \in V_1$, $v_2 \in V_2$, $v_3 \in V_3$, $f_c((v_1, 0)) = 2n + 2$, $f_c((v_2, 0)) = 2n + 3$, $f_c((v_3, 0)) = 2n + 4$, $f_c((v_1, 1)) = 4n + 2$, $f_c((v_2, 1)) = 4n$, $f_c((v_3, 1)) = 4n + 1$. For any *n*, the 2-edge-weighting *c* is a vertex-coloring. Note that for n = 2, $f_c((v_3, 0)) = 8 = f_c((v_2, 1))$ and the set $(V_3 \times \{0\}) \cup (V_2 \times \{1\})$ is an independent set in $K_{2,2,2} \Box K_2$.

4. Tensor product of two graphs

In this section, we find some tensor product $G_1 \times G_2$ of graphs G_1 and G_2 with $det(G_1 \times G_2) = \mu(G_1 \times G_2) = 2$. For $i \in \{0, 1, ..., m - 1\}$, let $R_i = \{(i, j) \mid j \in \{0, 1, ..., n - 1\}\}$; and for $j \in \{0, 1, ..., n - 1\}$, let $C_j = \{(i, j) \mid i \in \{0, 1, ..., m - 1\}\}$.

Consider $C_m \times G$, where G is any graph with $V(G) = \{0, 1, ..., n-1\}$. For $i \in \{0, 1, ..., m-2\}$, we denote by E_i the set of edges having one end in R_i and other end in R_{i+1} ; and denote by E_{m-1} the set of edges having one end in R_{m-1} and other end in R_0 .

Theorem 4.1. Let G be a k-regular graph, $k \ge 2$, containing a 2-factor F. Then $det(C_m \times G) = \mu(C_m \times G) = 2$.

Proof. If $m \equiv 0 \pmod{2}$, then as $C_m \times G$ is bipartite and 2k-regular, the result follows from the result quoted in the beginning of Section 3, and Propositions 1.2 and 1.4. For $m \equiv 1 \pmod{2}$, we consider two cases.

Case 1. $m \equiv 1 \pmod{4}$.

Define *c* as follows:

If $i \in \{0, 4, 8, ..., m - 5, m - 1\} \cup \{3, 7, 11, ..., m - 6\}$, then assign weight 1 to the edges of E_i . If $i \in \{1, 5, 9, ..., m - 4\} \cup \{2, 6, 10, ..., m - 3\}$, then assign weight 2 to the edges of E_i .

Finally, consider E_{m-2} . For each cycle $j_0 j_1 j_2 \dots j_k j_0$ in F, assign weight 2 to the edges $(m-2, j_0)(m-1, j_1)$, $(m-2, j_1)(m-1, j_2)$, $(m-2, j_2)(m-1, j_3)$, \dots , $(m-2, j_{k-1})(m-1, j_k)$ and $(m-2, j_k)(m-1, j_0)$. Assign weight 1 to the remaining edges of E_{m-2} . In other words, the edges of a 1-factor of the subgraph induced by E_{m-2} are assigned weight 2 and the edges of the remaining (k-1)-factor of the subgraph are assigned weight 1.

 $code_c$ is given by: for $j \in V(G)$, $code_c((i, j)) = (k, k)$ if $i \in \{1, 3, 5, ..., m - 4\}$, $code_c((i, j)) = (2k, 0)$ if $i \in \{0, 4, 8, ..., m - 5\}$, $code_c((i, j)) = (0, 2k)$ if $i \in \{2, 6, 10, ..., m - 3\}$, $code_c((m - 2, j)) = (k - 1, k + 1)$, and $code_c((m - 1, j)) = (2k - 1, 1)$.

Case 2. $m \equiv 3 \pmod{4}$.

First, assume that $m \neq 3$.

Define *c* as follows:

If $i \in \{0, 4, 8, ..., m - 7\} \cup \{3, 7, 11, ..., m - 8\} \cup \{m - 1\}$, then assign weight 1 to the edges of E_i . If $i \in \{1, 5, 9, ..., m - 6, m - 2\} \cup \{2, 6, 10, ..., m - 5\}$, then assign weight 2 to the edges of E_i .

Now, consider E_{m-4} . For each cycle $j_0 j_1 j_2 ... j_k j_0$ in *F*, assign weight 1 to the edges $(m - 4, j_0)(m - 3, j_1)$, $(m - 4, j_1)(m - 3, j_2)$, $(m - 4, j_2)(m - 3, j_3)$, ..., $(m - 4, j_{k-1})(m - 3, j_k)$ and $(m - 4, j_k)(m - 3, j_0)$. Assign weight 2 to the remaining edges of E_{m-4} .

Finally, consider E_{m-3} . For each cycle $j_0 j_1 j_2 ... j_k j_0$ in F, assign weight 1 to the edges $(m-3, j_0)(m-2, j_1)$, $(m-3, j_1)(m-2, j_2), (m-3, j_2)(m-2, j_3), ..., (m-3, j_{k-1})(m-2, j_k)$ and $(m-3, j_k)(m-2, j_0)$. Assign weight 2 to the remaining edges of E_{m-3} .

 $code_c$ is given by: for $j \in V(G)$, $code_c((i, j)) = (k, k)$ if $i \in \{1, 3, 5, ..., m-6\} \cup \{m-1\}$, $code_c((i, j)) = (2k, 0)$ if $i \in \{0, 4, 8, ..., m-7\}$, $code_c((i, j)) = (0, 2k)$ if $i \in \{2, 6, 10, ..., m-5\}$, $code_c((m-4, j)) = code_c((m-2, j)) = (1, 2k-1)$, and $code_c((m-3, j)) = (2, 2k-2)$. Finally, assume that m = 3.

Define *c* as follows:

Assign weight 2 to all the edges of E_1 , and assign weight 1 to all the edges of E_2 .

Now consider E_0 . For each cycle $j_0 j_1 j_2 ... j_k j_0$ in F, assign weight 2 to the edges $(0, j_0)(1, j_1), (0, j_1)(1, j_2), (0, j_2)(1, j_3), ..., (0, j_{k-1})(1, j_k)$ and $(0, j_k)(1, j_0)$. Assign weight 1 to the remaining edges of E_0 .

 $code_c$ is given by: for $j \in V(G)$, $code_c((0, j)) = (2k - 1, 1)$, $code_c((1, j)) = (k - 1, k + 1)$, and

 $code_c((2, j)) = (k, k).$

In any case, the 2-edge-weighting c of $C_m \times G$ is detectable. Hence, $det(C_m \times G) = 2$. By Proposition 1.4, $\mu(C_m \times G) = 2$.

Corollary 4.1. For $m, n \ge 3$, $det(C_m \times C_n) = \mu(C_m \times C_n) = 2$.

5. Conclusion

In conclusion, we ask: *does there exist a graph G with det* $(G) \neq \mu(G)$?

References

- [1] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, second ed., Springer-Verlag, New York, 2012.
- [2] M. Karoński, T. Luczak, A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004) 151–157.
- [3] L. Addario-Berry, R.E.L. Aldred, K. Dalal, B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory Ser. B 94 (2005) 237-244.
- [4] H. Escuadro, F. Okamoto, P. Zhang, A three-color problem in graph theory, Bull. ICA 52 (2008) 65–82.
- [5] G.J. Chang, C. Lu, J. Wu, Q.L. Yu, Vertex-coloring edge-weightings of graphs, Taiwanese J. Math. 15 (4) (2011) 1807–1813.
- [6] H. Lu, Q.L. Yu, C.-Q. Zhang, Vertex-coloring 2-edge-weighting of graphs, European J. Combin. 32 (2011) 21–27.
- [7] F. Havet, N. Paramaguru, R. Sampathkumar, Detection number of bipartite graphs and cubic graphs, Discrete Math. Theor. Comput. Sci. 16 (3) (2014) 333–342.
- [8] A. Davoodi, B. Omoomi, On the 1-2-3-conjecture, Discrete Math. Theor. Comput. Sci. 17 (1) (2015) 67–78.