
INFORMATION AND COMPUTATION 92, 147 (1991)

Approximate Parallel Scheduling. II. Applications to
Logarithmic-Time Optimal Parallel Graph Algorithms

RICHARD COLE *

Cowan1 Institute, New York University,

251 Mercer St., New York, New York 10012

AND

UZI VISHKIN +

The University of Maryland Institute for Advanced Computer Srudies (UMIACS),
College Park, Maryland 20742. and Tel Aviv University,

Ramat Aviv, Tel Aviv 69978. Israel

Part I of this paper presented a novel technique for approximate parallel
scheduling and a new logarithmic time optimal parallel algorithm for the list
ranking problem. In this part, we give a new logarithmic time parallel (PRAM)
algorithm for computing the connected components of undirected graphs which
uses this scheduling technique. The connectivity algorithm is optimal unless
m = o(n log* n) in graphs of n vertices and rn edges. (log’“’ denotes the kth iterate
of the log function and log* n denotes the least i such that log”‘n < 2). Using
known results, this new algorithm implies logarithmic time optimal parallel
algorithms for a number of other graph problems, including biconnectivity, Euler
tours, strong orientation, and sr-numbering. Another contribution of the present
paper is a parallel union/find algorithm. ,c’ 1991 Academic Press, Inc.

1, INTRODUCTION

The models of parallel computation used in this paper are all members
of the parallel random access machine (PRAM) family. A PRAM employs
p synchronous processors all having access to a common memory.

*This research was supported in part by NSF Grants DCR-84-01633, CCR-8702271,
CCR-8902221 and CCR-8906949 by ONR Grant NOOO14-85-K-0046, by an IBM faculty
development award, and by a John Simon Guggenheim Memorial Foundation Fellowship.

+ This research was supported in part by NSF Grants NSF-CCR-8615337, DCR-8413359
and CCR-8906949, ONR Grant N00014-85-K-0046, by the Applied Mathematical Science
subprogram of the office of Energy Research, U.S. Department of Energy under Contract
DE-AC02-76ER03077, and by the Foundation for Research in Electronics, Computers, and
Communication, administered by the Israeli Academy of Sciences and Humanities.

1
0890-5401/91 $3.00

Copyright I? 1991 by Academic Press, Inc
All rlghfs of reproduction in any form reserved.

2 COLE AND VISHKIN

An exclusive-read exclusive-write (EREW) PRAM does not allow
simultaneous access by more than one processor to the same memory loca-
tion for read or write purposes. A concurrent-read exclusive-write (CREW)
PRAM allows simultaneous access for reads but not writes, A concurrent-
read concurrent-write (CRCW) PRAM allows concurrent access for both
reads and writes. For the CRCW PRAM, we assume that if several
processors attempt to write simultaneously at the same memory location
then one of them succeeds but we do not know in advance which one. See
(Vishkin, 1983) for a survey of results concerning PRAMS.

Let Seq(n) be the fastest known worst-case running time of a sequential
algorithm, where n is the length of the input for the problem at hand.
Obviously, the best upper bound on the parallel time achievable using p
processors, without improving the sequential result, is of the form
O(Seq(n)/p). A parallel algorithm that achieves this running time is said to
have optimal speed-up or more simply to be optimal. A primary goal in
parallel computation is to design optimal algorithms that also run as fast
as possible.

Most of the problems we consider can be solved by parallel algorithms
that obey the following framework. Given an input of size n the parallel
algorithm employs a reducing procedure to produce a smaller instance of
the same problem (of size <n/2, say). The smaller problem is solved recur-
sively until this brings us below some threshold for the size of the problem.
An alternative procedure is then used to complete the parallel algorithm.
We refer the reader to (Cole and Vishkin, 1986b) where this algorithmic
technique, which is called accelerating cascades, is discussed. Typically, we
need to reschedule the processors in order to apply the reducing procedure
efficiently to the smaller sized problem. Suppose the input for a problem of
size n is given in an array of size n. A natural approach is to compress the
smaller problem instance into a smaller array, of size <n/2. This is often
done using a standard prefix sum algorithm (it takes @log n) time on
n/log n processors to compute the prefix sums for n inputs stored in an
array). Thus if we need to reschedule the processors repeatedly it is unclear
how to achieve logarithmic time. Sometimes the rescheduling need not be
performed very often. For instance, (Cole and Vishkin, 1986a, Cole, 1987)
show that for some problems (list ranking and selection) log* n reschedulings
suffice. Alternatively, one can use a fast random algorithm to perform the
rescheduling, or at least an approximate rescheduling. (By approximate
rescheduling we mean that we may not be able to partition the work evenly
among the processors, but only approximately evenly.) Thus the need for
rescheduling does not preclude O(log n) time optimal random algorithms.
Let us mention the main contributions of Part I of this research, the paper
(Cole and Vishkin, 1988b). Part I provides an algorithm for performing
approximate rescheduling deterministically 0(1) time. This is used to solve

APPROXIMATE PARALLEL SCHEDULING, II 3

a novel scheduling problem. The solution to the scheduling problem leads
to a logarithmic time optimal deterministic parallel algorithm for list
ranking. In the present paper, a related rescheduling procedure will be one
of the tools that leads to a logarithmic time connectivity algorithm which
is optimal unless the graph is extremely sparse.

We identify the following duration-unknown task scheduling problem. s
tasks are given, each of length between 1 and t; the total length of the tasks
is bounded by u’. (A task can be thought of as a program.) However, we
do not know, in advance, the lengths of the individual tasks; in fact, they
may vary, depending on the order of execution of the tasks. The problem
is to schedule the s tasks on a CRCW PRAM of p processors so that the
tasks are completed in 0(t + w/p + log n/log”’ n) time. This bound applies
even if w is not known in advance. This problem is solved in Appendix 1;
a similar problem, for EREW PRAMS, was solved in the Part I paper.

We now discuss how to design algorithms that take advantage of this
task scheduling algorithm. Given a problem, our job is to design a
“protocol” for solving the problem by using a set of short tasks (each of
length between 1 and t). This provides an important new opportunity for
the designer of a protocol which is based on using the scheduling algo-
rithm: the designer of the protocol need not be concerned to order the
execution of the tasks. Such an opportunity for designing parallel tasks,
without knowing in advance their lengths, with the guarantee that they will
be scheduled efficiently, sounds very promising. However, this opportunity
cannot be separated from a considerable difficulty in designing such a
protocol: we have no control over the order of execution of the tasks, so
we must ensure that the protocol works correctly regardless of the order of
execution. We note that this style of protocol design may be useful for dis-
tributed systems that are not tightly synchronized; here too, we have to be
sure that the protocol works correctly regardless of the order of execution.
Part I demonstrates how to design such a protocol for the list ranking
problem. In Section 3.3, we demonstrate how to design such a protocol for
a problem which occurs in our parallel connectivity algorithm.

The main problem considered in this paper is graph connectivity, which
is defined as follows:

Input: An undirected graph with n vertices and m edges.

The problem: Find the connected components of the graph.

Results: We obtain the following efficient CRCW PRAM algorithm,
optimal for m 2 n log* n: On the CRCW PRAM, T= O(log n) time using
O((n + m) a(m, n)/T) processors, where a(m, n) is the inverse Ackerman
function. The algorithm requires space O(min[n’, mn’]), where E can be
any constant satisfying 0 < E < 1.

4 COLE AND VISHKIN

In order to shorten this presentation we omitted here a CREW PRAM
algorithm: it runs in T= O(log2 n) time using O((n +m) cc(m, n)/T)
processors. The algorithm requires O(n2) space. This algorithm is described
in a previous version of this paper (Cole and Vishkin, 1987).

The previous best results for computing connected components are
O(log n) time using O(m + n) processors on the CRCW PRAM (Shiloach
and Vishkin, 1982), O(log’ n) time using O((n + m)/log n) processors on
the EREW PRAM (Koubek and Krsnakova, 1985) and O(log2 n) time
using n2/log2 II processors on the CREW PRAM (Chin et al., 1982), or on
the CRCW PRAM (Vishkin, 1984). (Kruskel et al., 1989) gave an efficient
algorithm for relatively slow times and non-sparse graphs; specifically, they
achieved 0((m/p). (log n/log(m/(p2 logp))) + 12 log p/p) time and space
O(pn” + m), for E > 0, on the EREW PRAM. (Gazit, 1988) recently gave a
randomized connectivity algorithm which runs, with high probability, in
logarithmic time using an optimal number of processors.

The literature gives quite a few efficient parallel algorithms for
undirected graph problems which essentially reduce a graph problem into
the problem of finding a (any) spanning forest in a graph. Fortunately, our
connectivity algorithms also find a spanning forest within the same time
and processor bounds. This leads, without too much effort, to parallel
CRCW algorithms that run in time O(log n) using (n log n + m)/log n
processors for the following problems:

1. Finding biconnected components of undirected graphs, using the
algorithm of (Tarjan and Vishkin, 1985).

2. Orienting the edges of a connected bridgeless undirected graph so
that the resulting directed graph is strongly connected, using the algorithm
of (Vishkin, 1985).

3. Ear decomposition and finding St-numbering of biconnected
graphs, using the algorithm of (Maon et al., 1986).

4. Finding Euler tours in directed and undirected graphs (or deter-
mining that they do not exist), using the algorithm of (Atallah and
Vishkin, 1984) and a logarithmic time optimal list ranking algorithm. Such
algorithms were given in Part I and (Cole and Vishkin, 1989).

With some additional effort, which includes applying the new parallel
lowest common ancestor algorithm of (Schieber and Vishkin, 1987) the
logarithmic time optimal parallel list ranking of (Cole and Vishkin, 1989),
and the parallel expression tree evaluation algorithm of (Cole and Vishkin,
1988a), we extend these logarithmic time optimal speed up results to
sparser graphs, where m = o(n log n). We will not provide the details of
these improved algorithms, for it would require us to describe anew parts

APPROXIMATE PARALLEL SCHEDULING, II 5

of these other papers, and we want to keep this presentation within
reasonable length. Also the descriptions of these improvements, particularly
for the case m = o(n log n), are quire tedious, and we doubt whether such
lengthly descriptions merit publication.

Previous parallel algorithms for these four problems were given in
(Atallah, 1984; Awerbuch et al., 1984; Lovasz, 1985; Savage and Ja’Ja’,
1981; Tsin and Chin, 1984).

We make several contributions here. First, we provide a new approach
to the connectivity problem. Previous parallel algorithms for the connec-
tivity problem consisted of applying the connectivity computation proce-
dure directly to the whole input graph. Each of these algorithms essentially
comprised O(log n) iterations. Each such iteration “shrank” the input
graph further using a number of operations linear in the size of the graph
handled by the iteration. While it was possible to decrease the number of
vertices from iteration to iteration by a constant factor, it is not known
how to achieve a similar reduction in the number of edges. If the original
graph was sparse it may become denser following an iteration. Therefore,
the resulting connectivity algorithm would need more than a linear number
of operations in the worst case. Later, we mention some algorithms that
achieved optimality either because the input graph was given by an
adjacency matrix or because the family of input graphs was restricted; in
each case, a reduction in the number of vertices provides a corresponding
reduction in the number of edges. However, these algorithms did not
produce optimal connectivity algorithms for general graphs. The new
approach finally gives a way to circumvent this problem by applying a con-
nectivity computation procedure to relatively small subgraphs at a time.
Thereby, we reduce the total number of operations performed, yielding an
algorithm that is optimal except when m is o(n log* n). An earlier version
of the new connectivity algorithm, which required the same number of
operations as here, was given in (Cole and Vishkin, 1986b). However, the
time upper bound achieved there was O(log n log”’ n log’3’ n).

Second, we exploit two scheduling results to save a time factor of
1% (2) n log’3’ n with respect to the algorithm given in (Cole and Vishkin,
1986b).

The first scheduling result is a consequence of a procedure for computing
the prefix sums of n numbers, each of logn bits (the procedure is an
optimal CRCW PRAM algorithm that performs O(n) operations in
O(log n/log’2’ n) time). The processor allocation (scheduling) for the con-
nectivity algorithm repeatedly uses this prefix sum procedure. This saves a
factor of logc2’ n in the time upper bound, with respect to the standard
optimal prefix sum parallel algorithm which runs in O(log n) time. This
new prefix sum procedure is described in (Cole and Vishkin, 1989).

The second scheduling result is a variant of the procedure of the Part I

6 COLE AND VISHKIN

paper for task scheduling, mentioned above. This saves a factor of logt3’ n.
The task scheduling procedure is only needed for Step 1, the edge selection.

All these savings together lead to the O(log n) time optimal connectivity
algorithm.

Our third contribution arises because the lack of a logarithmic time
optimal parallel connectivity algorithm had been the only obstacle to get-
ting similar results for several other graph problems, as mentioned above.
We are not aware of any previous logarithmic time optimal parallel algo-
rithm for a problem on general graphs. As mentioned above, the only
known poly-log time optimal parallel algorithms are based on either the
assumption that the graph is given by its adjacency matrix or the assump-
tion that the graph is planar. For the first kind of graphs the fastest serial
connectivity algorithms use O(n’) time and the parallel algorithms of (Chin
et al., 1982; Vishkin, 1984) achieve O(log* n) time using n’/log2 n pro-
cessors. These algorithms operate by reducing the size of the adjacency
matrix to represent only the shrunken graph at hand. For planar graphs,
the main observation needed is that the number of edges can be at most
linear in the number of vertices, as follows from Euler’s theorem (see Even,
1979)). The parallel algorithms of (Hagerup et al., 1987; Hagerup, 1988)
run in O(log n log* n) and logarithmic time, respectively, using an optimal
number of processors on planar graphs.

In Section 3 we describe the new CRCW connectivity algorithm. Subsec-
tion 3.1 reviews previous work and, thereby, provides motivation for the
following subsections. In the beginning of Subsection 3.2, we provide an
overview of the other subsections. Appendix 2 gives a parallel union/find
algorithm. Preliminary versions of this work appeared as parts of (Cole
and Vishkin, 1986b, 1986~).

2. PRELIMINARIES

We give below a useful and simple scheme, due to Brent, for designing
parallel algorithms.

THEOREM (Brent, 1974). Consider a PRAM algorithm that comprises k
steps, where the i th step uses pi processors and ti time. Aside from the time
for scheduling processors, such an algorithm can be implemented to run on p
processors in time Cfzl rpi/pl . tiQ Cfzl (pjti/p + tj) = (Cl= 1 pi. ti)/p +
Cf= 1 ti.

Proof. On the ith step each actual processor simulates rpJp1 logical
processors in round robin fashion. The result follows easily. 1

APPROXIMATE PARALLEL SCHEDULING. II 7

It will be convenient to describe our algorithm using the format
suggested by Brent’s theorem: namely, the algorithm will comprise a series
of steps, and different steps will be described as if different numbers of
(logical) processors were available. Of course, as seen in the proof of
Brent’s Theorem, the logical processors are simulated by actual processors,
whose number is fixed throughout the algorithm.

In our algorithms the reallocation of processors will be done in one of
two ways: either the reallocation will follow a previously computed pattern,
in which case it will take 0(1) time, or it will be determined using an
optimal parallel prefix sum algorithm, which takes time O(log n/log’*’ n).
In any event, these costs are specifically accounted for in the analysis of the
algorithms.

The time bound from Brent’s Theorem has the form (Ck=, p,ri)/p +
Cf= i ti; this leads us to express the complexity of a step in terms of the
pair (pit,, ti), which we call the (operation, time) complexity. The (opera-
tion, time) complexity of a whole algorithm will be (Cf piti, Cf ti). We will
express the complexity of our algorithm in this form.

3. GRAPH CONNECTIVITY

3.1. Basic Techniques and Previous Work

We start with a few definitions. Essentially, there exist two parallel poly-
log time connectivity algorithms. (Hirschberg et al., 1979)(HCS) yields
O(log* 1 VI) time and (Shiloach and Vishkin, 1982) (SV) yields O(log 1 VI)
time. (We view (Chin et al., 1982; Vishkin, 1984; Wyllie, 1979) as
implementations of the HCS algorithm and (Awerbuch and Shiloach,
1983) as an implementation of the SV algorithm.) We review these algo-
rithms briefly and discuss the obstacles to deriving optimal speed-up
implementations from them.

Our problem is to compute the connected components of a graph
G = (V, E) which is given as follows. Input form. Let V= { 1, U} and
IEj = m. We assume that the edges are given in a vector of length 2m. The
vector contains first all the edges incident on vertex 1, then all the edges
incident on vertex 2, and so on. Each edge appears twice in this vector. We
also need the two copies of each edge to be linked; we discuss how to
achieve this linking, if it is not provided as part of the input, at the end of
Section 3.2.

DEFINITIONS (1) A rooted tree is a directed graph satisfying:

(a) The undirected graph which is obtained by removing direc-
tions from the edges is a tree.

COLE AND VISHKIN

(b) It has a vertex r called the root such that there exists a directed
path from each vertex to Y.

(2) A rooted star is a rooted tree in which the path from each vertex
to the root comprises (at most) one edge.

The following is common both to the HCS and SV connectivity algo-
rithms and to the new connectivity algorithm presented here. At each step
during the algorithms each vertex u has a pointer D(U) through which it
points to another vertex or to no vertex. One can regard the directed edge
(u, D(o)) as a directed edge in an auxiliary graph, called the pointer graph.
Initially, for each vertex v, D(v) points to no vertex and therefore the initial
pointer graph consists of only the vertices, but has no edges. The pointer
graph keeps changing during the course of the algorithms. However, at
each step of each of these three algorithms the pointer graph consists of
rooted trees. It will be convenient to refer to a set of vertices comprising a
tree as a supervertex. Sometimes, we identify a supervertex with the root of
its tree. No confusion will arise. As the algorithm proceed, the number of
trees (supervertices) decreases. This is achieved by (possibly simultaneous)
hooking operations. In each hooking a root r of a tree is ‘hooked’ onto a
vertex v of another tree (that is, D(r) := u). A careful look at each of these
connectivity algorithms reveals that:

1. Each such hooking is performed only after the algorithm “iden-
tified” an edge connecting a vertex in the supervertex of r with a vertex in
the supervertex of u. Let us call such a connecting edge the causing edge of
its hooking. We illustrate this notion of causing edge in the description of
the HCS algorithm given below.

2. (The spanning forest property.) For each supervertex, consider the
collection of the causing edges that connect pairs of its vertices. This collec-
tion forms a spanning tree of the vertices comprising the supervertex. Thus,
the collection of the causing edges, throughout each of these connectivity
algorithms, forms a spanning forest of the input graph.

The trees are also subject to a shortcut operation. That is, for every vertex
u of the tree,

if D(D(Y)) is some vertex (as opposed to no vertex)

then D(v) := D(l)(v)).

The shortcut operation (approximately) halves the height of a tree.
Shortcuts do not introduce cycles into the pointer graph, as can be readily
verified. Simultaneous hookings are performed in each of these algorithms
in such a way that no cycles are introduced into the pointer graph.

APPROXIMATE PARALLEL SCHEDULING, II 9

The algorithms also use the following graph. Each edge (u, v) in the
input graph induces an edge connecting the supervertex containing u with
the supervertex containing u. The graph whose vertices are the superver-
tices and whose edges are these induced edges is called the super-vertex

graph.
At the end of each of these algorithms the vertices of each connected

component form a rooted star (which is, in particular, a single supervertex)
in the pointer graph. As a result, a single processor can answer a query of
the form “do vertices u and w belong to the same connected component?’
in constant time.

The HCS parallel connectivity algorithm works in O(log n) iterations.
Upon starting an iteration each supervertex is represented by a rooted star
in the pointer graph. Each root hooks itself onto a minimal root which is
adjacent to it in the supervertex graph. In case two roots are hooked on
one another, we cancel the hooking of the smaller (numbered) root. As a
result several rooted stars form a rooted tree; the root of one of these
rooted stars becomes the root of the new tree. An iteration finishes with
@log n) shortcuts. It remains to identify the causing edges in this algo-
rithm. In the HCS algorithm a root hooks itself onto a minimal adjacent
root. There might be more than one edge connecting the two supervertices,
but the algorithm selects precisely one of these edges. The selected edge,
which then induces the hooking in the course of the computation, is the
causing edge of the hooking.

The SV parallel algorithm also works in @log n) iterations. Unlike the
HCS algorithm: (i) An iteration of SV takes constant time, and (ii) The
pointer graph at the beginning of an iteration is a collection of rooted trees
(which are not necessarily stars). In principle, an iteration comprises the
following steps.

(1) Each rooted star is hooked onto a smaller vertex that is adjacent
to some vertex of its supervertex (if there is any such smaller vertex).

(2) Consider the rooted stars that did not hook and were not
hooked upon in step (1); each such rooted star is hooked onto a vertex
that is adjacent to some vertex of its supervertex.

(3) Shortcuts.

The algorithm employs a processor for each vertex and each edge of the
graph. This amounts to iz + m processors. (Shiloach and Vishkin, 1982)
shows that the total height of “still active” trees decreases by a factor of at
least l/3 per iteration, implying that only O(log n) iterations are needed
and, therefore, the algorithm runs in @log 11) time. The algorithm does not
achieve optimal speed up.

10 COLE AND VISHKIN

3.2. The New Algorithm

Our new algorithm for finding connected components runs in time
O(log n). It achieves optimal speed-up for graphs with m >n log* IZ, and
almost optimal speed up in general. The algorithm has two parts.

The second (and more basic) part is an algorithm for relatively dense
graphs (m b n log n logC3) n); we call this the main connectivity algorithm.
(Implicitly, we are assuming n 3 16, to ensure logt3’ n > 1.) The main con-
nectivity algorithm can be viewed as a two level improvement in efficiency
relative to the SV algorithm. The first level achieves optimal speed-up with
a parallel time of O(log n logC3’ n); the second level achieves optimal speed-
up with a time of O(log n). The second level is asymptotically better;
however, it involves the use of expander graphs and consequently the “big
oh” notation hides considerably larger constants. The first level is described
later in this section and the second level is described in Section 3.3.

The first part is a reduction procedure which (essentially) reduces the
general case to the dense case. The reduction procedure requires
O((m + n) cr(m, n)) operations and O(log n) time. It is described in Sec-
tion 3.4. We remark that for m 2 n log* n, for example, it is optimal.
Incidentally, the reduction procedure does not involve expander graphs or
similar constructs. The presence of the a(m, n) term is due to the use of a
new parallel union/find algorithm, which is of interest in its own right.

Our algorithm uses a number of parameters that strictly speaking are
not integers, but which nonetheless we treat as integers (for instance,
log n). To justify this we view all parameters as being rounded up to the
nearest integer power of 2. In more complex expressions, namely products
and ratios (such as log n/log’2’ n), we round each of the basic terms
separately (log n and log”’ n here) and then compute the expression with
these rounded terms; in our expressions the result is always a non-negative
integer power of 2. The rounding to the next larger power of two, rather
than to the next larger integer, is particularly convenient in Section 3.4.
Also, it is convenient to interpret log 1 to be 1.

High-Level Description of the Main Connectivity Algorithm

We state the opportunity and main difficulty in obtaining an optimal
speed-up algorithm from the SV algorithm. In the SV algorithm, a pro-
cessor is standing by each edge. The opportunity is that for each processor
there is at most one step during the whole algorithm during which its edge
is used for hooking; the difficulty is that we do not know in advance when
this step comes.

The main connectivity algorithm applies the SV connectivity algorithm.
The key to obtaining an optimal algorithm is the following strategy: The
SV algorithm is applied only to selected subsets of the edges of the graph,

APPROXIMATE PARALLEL SCHEDULING, I1 11

the subsets changing as the algorithm proceeds. More specifically, the
O(log n) iterations of the SV algorithm are now divided into @log log n)
phases. At the start of each phase new edges subsets are selected. Roughly
speaking, each phase includes about as many iterations of the SV algo-
rithm as all the preceding phases put together. Below, we characterize each
phase by an input/output relation. The parameter used for this charac-
terization is denoted by the somewhat awkward notation d_squared. The
remark below justifies this awkwardness.

Input: For each supervertex, its constituent vertices have ad- squared
incident edges from G, where do- squared is an integer, d- squared> 2, and
an edge with both endpoints in the supervertex is counted twice.

Output: For each supervertex, its constituent vertices have
>d.. squared’.5 incident edges from G.

Remark: The remark on rounding applies to these input and output
parameters d_ squared and d- squared 1.5 in the following way. Inductively,
d-squared was realized as a power of 2. A key parameter is d=
(d-squared) . “2 It is realized simply as the next largest power of 2 of the
real number (dP squared) 1’2. d- squared ‘.5 is realized as d . d ~ squared,
which is a power of two. d-squared’.’ becomes d squared of the next
phase. Finally, note the fact d- squared < d2 6 2dP squared. This fact will be
used later in the text.

Before outlining the implementation of a phase, we need a few definitions
for classifying the edges of G with respect to the supervertex graph. Given
a supervertex graph, an edge of G is redundant (with respect to the super-
vertex graph) if both its endpoints lie in the same supervertex. An edge is
an outedge if it is not redundant. If several outedges connect the same pair
of supervertices, one of these outedges is chosen to be the actual outedge;
the other outedges are called duplicate outedges. (The rule for choosing the
actual outedge is specified below, in the detailed description of a phase.)
The degree of a supervertex u is defined to be the number of actual out-
edges incident on U. Also, in each phase, we classify the supervertices accor-
ding to whether they already satisfy the output condition; thus we define
a supervertex to be large if it is known to have at least d. dP squared
incident edges, and to be growing otherwise. A phase comprises the
following three steps.

Step 1. Select an edge set such that

(i) For each growing supervertex of degree <d, all the actual out-
edges are selected.

(ii) For each growing supervertex of degree > d, exactly d actual out-
edges are selected.

12 COLE AND VISHKIN

Step 2. Run the SV connectivity algorithm for Llog,,, d J + 1 iterations
on the graph induced by the edges selected in Step 1. (This is the number
of iterations needed to guarantee that the supervertices being created all
satisfy the output condition for the phase, as we show later in the detailed
analysis of Step 2.)

Step 3. This step is applied only to those new supervertices (rooted
trees from Step 2) that will be growing in the next phase. This includes
each new supervertex with fewer than (d. d- squared)‘.5 incident edges. For
each such supervertex, we form an adjacency list of its incident edges (this
is needed for Step 1 of the next phase). We call this contracting the super-
vertex (for one can view this step as contracting the tree for a new growing
supervertex to a single node).

Later in Section 3.2 we give a detailed description and analysis of each
step.

For the purposes of the analysis, it is useful to guarantee that each vertex
has degree an integer multiple of log n log’3’ n. To achieve this, we add up
to log n logc3’ n self loops per vertex; each instance of a self loop (0, u) is
recorded exactly once on U’S adjacency list (rather than twice, once for each
endpoint). We add at most m edges (recall that, by assumption,
m > n log n logt3’ n). In fact, the self loops do not have to be added; it suf-
fices to pretend that they are present for the purposes of the analysis. Also,
each self loop is defined to contribute one incident edge to the supervertex
to which it belongs.

Observations. a. There are at most 3m incident edges in the graph
(where each instance of each edge is counted, i.e., an edge is counted once
in each adjacency list in which it occurs).

b. It is safe to set d_ squared = log n logc3’ n initially, since each ver-
tex has degree >log n logc3’ n. After O(log log n) phases there will be only
one supervertex comprising all the vertices in the graph. (Actually, we
could choose a smaller initial value for d_ squared. The present implemen-
tation of Step 3.1.1.2 requires d- squared > log n/log’*’ n to achieve an
optimal algorithm; with an alternative implementation, we could reduce
the initial value of dP squared somewhat. However, as we are trying to
make dP squared grow, we might as well initialize it with the largest
possible value.)

c. In Step 1, O(m/d) edges are selected. (Since the input to the phase
has < 3m/d _ squared < 6mld* supervertices).

d. Consider the components of the graph comprising the superver-
tices and the edge set selected in Step 1, above. Each growing supervertex
of degree less than d has all its incident actual outedges selected. Thus, each

APPROXIMATE PARALLEL SCHEDULING, II 13

component either includes a supervertex with at least d actual outedges, or
it includes a large supervertex, or there is just one component. As we show
(in the detailed description of Step 2) each supervertex formed in Step 2
either comprises > d input supervertices (and so has 3 d. dP squared
incident edges), or contains a large input supervertex (and so has
2 d. dP squared incident edges), or comprises all the vertices.

e. Contracting all supervertices with fewer than (d.d- squared)‘.’
incident edges guarantees that any supervertex that is not contracted in
step 3 is large for the next phase. If a supervertex has sufficiently many
incident edges it may be large for several consecutive phases.

The procedure for reducing the general connectivity problem to the case
m > n log IZ logc3’ n, given in Section 3.4, has the same structure as the main
connectivity algorithm. However, Steps 1 and 3 are implemented somewhat
differently.

High Level Analysis

Step 1. Its analysis is deferred to the detailed description of this step.

Step 2. Per phase, it processes O(m/d) edges for O(log d) steps. Thus,
per phase, it performs O((m/d) log d) operations in O(log d) time. Over
the whole algorithm this is O(m logt2) n,/(log n lag(3) n)“‘) = O(m) opera-
tions and O(log n) time.

Step 3. For those new supervertices that will be large in the next phase,
not only is it unnecessary to contract them, it is too expensive (in time and
operations) to do so. In the current phase we allocate @(log d) time and
O(m log d/log n) operations for performing contractions. We call this
resource allocation the increasing budget for time and operations. The
increasing budget may not be big enough to complete the contraction of a
larg supervertex in the current phase. However, as later phases have larger
increasing budgets, a later phase, in which the supervertex is no longer
large, will be able to do the contraction.

There are other parts of Step 3 whose cost is not covered by the
increasing budget. These parts will be dealt with when the detailed
description of Step 3 is given.

We have already introduced one budget used in the analysis. Altogether,
the analysis uses four kinds of budgets (for time and number of opera-
tions):

(1) An increasing budget (for each phase). The increasing budget for
each of the two items (namely, time and number of operations) increases
from phase to phase; specifically, it is O(log d) time and O(m log d/log n)
operations.

14 COLE AND VISHKIN

(2) A fixed budget (for each phase). The fixed budget is the same for
each phase: O(log n logt3) n/logCzl n) time and O(m/log(” n) operations.

(3) A genera&pool budget (for the whole algorithm): O(log n logC3’ n)
time and O(m) operations.

(4) Miscellaneous budgets (for each phase). These are specified as
they are needed (one miscellaneous budget was used in the analysis of
Step 2 above).

The total budget for the whole algorithm is the sum of these budgets over
all the phases.

The fixed and general pool budgets are used in the analysis of Step 1, the
edge selection. We note that the general-pool budget is independent of the
budget for any individual phase; in other words, the edge selection proce-
dure has an interesting amortized complexity analysis.

Actually we do not need to use the budgets in our analysis below. The
reason for specifying the budgets, and referring to them in the analysis, is
to emphasize the different (time, operation) combinations used in the
various substeps of the algorithm.

Next, we describe in detail and analyze each step in turn.

The Edge Selection (Step 1)

Here, we give a procedure for edge selection that performs O(m) opera-
tions in time O(log n logC3’ n) over the course of the whole algorithm. In
Section 3.3 we show how to reduce this to O(log n) time, without changing
this operation count.

In this step the processors are reallocated every @(log n/log”’ n) time
units, using a parallel prefix sum algorithm. We do not know how to
reallocate the processors faster; consequently, we will process the edges in
units of size log n/log”’ n, called blocks. Thus, at the start of the algorithm,
the edges incident on each vertex are divided into blocks of log n/logC2’ n
edges each (for recall that by the addition of self loops we ensured that
each vertex has degree a multiple of log n logC3’ n). In general, the edges
incident on each supervertex are divided into blocks of log n/logC2’ n edges,
but with possibly some incomplete blocks (i.e., blocks having too few
edges). However, there will always be at most 3m/log n incomplete blocks
(this is certainly true initially, and this invariant will be maintained in
Step 3). The division into blocks may change from phase to phase. More
precisely, new blocks are created by combining and repartitioning blocks
that belong to the same growing supervertex. The total number of blocks
at hand is always bounded by 3m log(*) n/log n, as we will show in the
description of Step 3.

APPROXIMATE PARALLEL SCHEDULING. II 15

Data Structures. 7’(v) is the name of the supervertex currently con-
taining vertex v of G (T is the vertex table).

ACTUAL(u, v) is an n x n array; it records if an edge connecting super-
vertex u and supervertex u has been found in the current phase. Specifically,
ACTUAL(u, v) comprises a pointer to an edge plus a timestamp; the
timestamp is a phase number. (We explain at the end of this section how
to implement ACTUAL in space O(min[n’, mn’]) for any fixed E >O;
evaluating ACTUAL(u, V) takes time 0(I/E)).

The block headers (i.e., names) are stored in a single array, with the
blocks for each growing supervertex occupying a contiguous portion of the
array. The edges in each block are stored in a linked list.

The growing supervertex headers are stored in an’array. Each superver-
tex header records the span occupied by its block headers. This array also
contains headers for each growing supervertex from a previous phase that
is part of a large supervertex; more precisely, each such growing superver-
tex remains in this array until it becomes part of a new larger growing
supervertex. We call such growing supervertices out-of-date growing super-
vertices.

We say growing supervertex v is actiue for the current iteration of
Step 1.1 (below) of the edge selection procedure unless either we have
found d actual outedges incident on v, or we have checked all the edges
incident on v. A block is active if its supervertex is active. Let b, (resp. b>)
be the number of active blocks at the start (resp. end) of the current itera-
tion of Step 1.1.

In the procedure below, the active blocks (or rather, their headers) are
kept in an array with blocks belonging to the same supervertex being con-
tiguous. This procedure assumes that p = 3m/log n logc3) II processors are
available. (This choice for p arises because we are aiming for an optimal
algorithm, and because even if we have @(m/log n) processors available,
the procedure below will still require @(log n logc3) n) time, as we justify
later. The choice of the constant 3 is unimportant; it simplifies some
constants in the analysis.)

Step 1.1. while b, >O do
begin

1.1.1. Process every rb,/p]th block in the array of active blocks.
Processing a block using a single processor: For each edge e = (i, j)
in the block, determine whether it is redundant, duplicate, or
actual. In the first two cases eliminate the edge from further con-
sideration; in the last case add the edge to the set of selected
edges. Proceed as follows.

(a) Let u = T(i), v = T(j). If u = v, the edge is redundant. If not,
continue with step (b).

643/92/l-2

16 COLE AND VISHKIN

(b) Check ACTUAL(u, u). If an edge is recorded with the
current timestamp then e is a duplicate outedge. Otherwise
continue with step (c).
(c) Edge e attempts to write its address and the current phase
number to ACTUAL(u, u). If the write is successful e is selected
(e is an actual outedge); otherwise e is a duplicate outedge.

1.1.2. For each growing supervertex, determine if it is still active.
(This step is easily performed using a parallel summation algorithm
with respect to the block headers.) Then compress the (headers
of the) still active blocks to the start of the active block array.
(Detecting the active blocks is facilitated by marking the first and
last block for each growing supervertex; it then merely requires a
parallel prefix sum computation to separate the active blocks.)

end

Step 1.2. For each growing supervertex, among the edges selected in
Step 1.1, we will select d (or all, if < d are available). The selected edges will
be placed in an array of size O(m/d). First, a parallel prefix sum computa-
tion with respect to the block headers determines how many edges each
block provides, and for each block provides a range of serial numbers for
the edges contributed by that block. Then the blocks that might contribute
edges are processed in the same order as in Step 1.1 to place the selected
edges in the array of size O(m/d).

Analysis. We note that each iteration of Step 1.1 takes time
O(log n/log’2’ n) and performs O(m/(log’*) II log(3’ n)) operations. We show
that over the whole algorithm, these iterations perform O(m) operations in
time O(log n logc3’ n).

We first present a special case of the analysis; it provides the intuition
and an overview for the general case. So, for now, suppose that all the
blocks are complete and all the supervertices have an integer multiple of
rb,/pl blocks. Then we can partition the iterations into two cases.

Case 1. b> 6 (l/2) 6,-a reducing iteration. (recall b, and b> are the
number of blocks active, respectively, at the start and at the end of the
iteration). Below, we show that, per phase, there are O(log’3’ n) reducing
iterations (Claim 1). Thus, per phase, the reducing iterations use
O(log n logc3’ rr/logc2’ n) time, and perform O(m/log12’ n) operations (to
obtain this multiply O(log(3) n) iterations by O(m/(log’2’ n logc3’ n)) opera-
tions). This is charged to the fixed budget. Over the whole algorithm this
is O(log n logc3’ n) time and O(m) operations.

Case 2. ba > (l/2) b,. Then at least half the blocks processed belong to
still active supervertices; we call these the productive blocks. Each edge in
a productive block is either eliminated or found to be an actual outedge.

APPROXIMATE PARALLEL SCHEDULING, II 17

We partition non reducing iterations into eliminating and selecting
iterations.

Case 2a. At least half the edges processed, among the productive
blocks, were eliminated-an eliminating iteration. The number of edges
eliminated in an eliminating iteration is at least 3m/(4 log’2’ IZ logt3’ n)
(since for at least half the blocks, namely the productive blocks, at least
half the edges were eliminated). But at most 3m edges can be eliminated
(each edge in each adjacency list in which it is present). Thus there are at
most 4 log’“’ II logt3’ n eliminating iterations over the course of the algo-
rithm. The cost of these iterations (O(log n log’3’ n) time and O(m) opera-
tions) is charged to the general pool budget.

Case 2b. More than half the edges processed, among the productive
blocks, were actual outedges (i.e., not case 2a)-a selecting iteration. The
operations of a selecting iteration are charged to the actual edges found
which belong to supervertices that remain active; we call these edges
charged edges. Clearly, there are at least 3m/(4 log’” n 1og”‘n) charged
edges per selecting iteration (the actual edges provided by the productive
blocks). We show that there are fewer than 6mld charged edges over
the course of the phase (Claim 2). Thus there are at most
LS log”’ n log’3’ n/d_l = 0(1) selecting iterations per phase (since
dZ(lognlog’3’n) I”; in fact, for large enough n there are 0 selecting itera-
tions per phase). Per phase, these iterations cost O(log n/log”’ n) time and
O(m/log’*‘n log’3’ n)) operations. This is charged to the fixed budget.
Over the whole algorithm this is O(logn) time and O(m/logi3’n) or O(m)
operations.

But rounding makes everything messier. The problems are caused by two
sorts of blocks, which we call obstructive blocks. First, incomplete blocks,
of which there are at most 3m/log n, as asserted at the start of the descrip-
tion of Step 1. Second, blocks which were processed in excess disproportion
to the supervertex size, for supervertices that become inactive; that is, if v
has krb,/pl + I blocks, where I < rb,/pl, and k + 1 of v’s blocks are pro-
cessed, and v becomes inactive, then with one of v’s processed blocks we
are unable to associate a further rb,/pl - 1 of u’s blocks that became inac-
tive; call this block the exee.rs block (we arbitrarily choose the excess block
to be a specific block among u’s blocks, say the block of smallest index in
the active block array, processed in this iteration). There is at most one
excess block per supervertex over the course of a phase; that is, at most
3m/d- squared excess blocks, per phase. In order to incorporate obstructive
blocks into the analysis we change Case 2 and introduce Case 3.

New Case 2. At least a quarter of the blocks processed are productive.

18 COLE AND VISHKIN

New Case 2a. At least half the edges processed, among the productive
blocks, were eliminated-an eziminating iteration. Clearly, we at most
double the number of eliminating iterations as compared to the previous
analysis (since each eliminating iteration need only eliminate half as many
edges as before). So the cost of the eliminating iterations is still
(O(log n logc3’ n) time and O(m) operations).

New Case 2b. More than half the edges processed, among the produc-
tive blocks, were actual outedges (i.e., not New Case 2a)-a selecting itera-
tion Again, we at most double the number of selecting iterations per phase.
So, over the whole algorithm, the cost of the selecting iterations is still
U(log n) time and O(m/log’3’ n) = O(m) operations.

Case 3. Otherwise; that is, 6; > l/2 b, and fewer than a quarter
of the blocks processed are productive-a removing iteration. We show
that at least a quarter of the processed blocks are obstructive (Claim 3).
As argued above, in the current phase there can be at
most 3m/log n + 3m/d- squared 6 6m/log n obstructive blocks. Since
3m/(log n log(3’ n) blocks are processed in each iteration, and as the itera-
tion is removing only if at least a quarter of the processed blocks are
obstructive, we conclude that there are at most 8 log’3’ n removing itera-
tions per phase. Thus, the removing iterations perform O(m/log”) n) opera-
tions in time O(log n logc3’ n/log’2’ n) per phase. This is charged to the fixed
budget. Over the whole algorithm, this is O(m) operations and
O(log n logf3’ n) time.

So, over the whole algorithm, all four types of iterations perform O(m)
operations in O(log n logc3’ n) time.

REDUCING ITERATIONS. CLAIM 1. There are or+ 0(log’3’ n) reducing
iterations in a phase.

Proof of Claim 1. After logc3’ n + logc4’ n reducing iterations the num-
ber of active blocks decreases by a factor of at least logc2) n logc3’ n. Thus,
in the next iteration a processor will be assigned to each (presently) active
block and following this iteration there will be no active blocks left. 1

SELECTING ITERATIONS. CLAIM 2. There are fewer than 6mld charged
edges over the course of the phase.

Proof of Claim 2. Consider a charged edge e and the iteration t in
which it was charged. Let e be in a block of supervertex v. At the end of
iteration t the supervertex v remained active. Thus fewer than d actual
edges incident on v had been discovered at the end of iteration t. We con-
clude that the last charged edge, in this phase, for supervertex v is at most

APPROXIMAPEPARALLELSCHEDULING.11 19

the d- 1 st charged edge for supervertex u. As there are at most 6rn/d”
supervertices in this phase the claim follows. 1

REMOVING ITERATIONS. CLAIM 3. In a removing iteration at least a
quarter of the processed blocks are obstructive.

Proof of Claim 3. Recall that in a removing iteration b: > l/2 b, and
fewer than a quarter of the blocks processed are productive. Consider a
processed block B; let B belong to supervertex u. There are four
possibilities.

Case A. B is productive. Since the iteration is removing, fewer than a
quarter of the blocks lit this case.

Case B. B becomes inactive, but B is not the excess block for v. Since
the iteration is not reducing, fewer than half the blocks lit this case (for
recall we can associate a further rb,/pl- 1 of v’s blocks with B, and all
these associated blocks become inactive).

Case C. B is the excess block for v, if any.

Case D. B is incomplete.

Cases C and D include only obstructive blocks. Clearly, in a removing
iteration, Cases C and D must include at least a quarter of the processed
blocks. B

It is clear that the complexity of Step 1.2 is dominated by that of
Step 1.1.

Comment. With more processors, but still using O(m/log n) processors,
it is possible to perform all the eliminating, selecting, and removing itera-
tions in O(log n) time; however, this does not apply to the reducing itera-
tions. In each phase, there may be O(logr3’ n) reducing iterations, even if
m/log n processors are used. As mentioned above, this guides the choice of
p = O(m/(log n logc3’ n)). Thus, varying the parameters will not speed up
Step 1 by more than a constant factor, at least so long as we aim for an
optimal algorithm.

Also, this is why the main algorithm requires m 2 n log n log’3’ n. In the
first phase, in each iteration of Step 1.1, at least O(n log n/log’2’ n) opera-
tions are performed (to process one block per vertex); so in the first phase,
the reducing iterations may perform O(n log M logc3’ n/iog’2’ n) operations.
With a uniform implementation of the edge selection in each phase this
implies that O(n log n log’3’ n) operations may be performed. For an
optimal algorithm, we therefore require m >, n log n logf3’ n.

20 COLE AND VISHKIN

Implementation of the Array ACTUAL. We show how to implement
array ACTUAL in O(mn’) space, for any fixed E > 0. Since an alternative
implementation in O(n*) space is obvious, we conclude that array
ACTUAL can be implemented in O(min(n’, md)) space. Our description
below ignores the timestamps attached to each edge.

We use two arrays, A and B. Array A is of size n x nE and array B is of
size m x n’. Suppose the ith edge of the input graph connects supervertices
u and v, where 1 d i < m. We show how to store this edge in these arrays
using a single processor. This parallel procedure will take at most l/e steps.
Each of u and o is a number between 1 and n. Suppose, without loss of
generality, that (the number) u is smaller than (the number) o. Let
VlV2”‘V1/E be the representation of v with respect to base nE. (If l/r is not
an integer take instead r l/~l.)

Step 1. Write i in location A(u, or). Observe that concurrent writes
may occur. Suppose that edge j, was actually written into A(u, v,). If i = jr
then we have finished storing edge i. Otherwise,

Step I, 1 < 16 l/c. Write i in location B(j, , , vI). Again, concurrent
writes may occur. (The following is not required in Step l/r). Suppose that
edge j, was actually written into B(j,- r, u,). If i = j, then we have finished
storing edge i. Otherwise, proceed to Step I + 1.

It is easy to verify that all the edges being inserted will be stored by the
end of Step l/~. Also, given two vertices IA and v, it takes at most l/r steps
to find out whether there exists an edge connecting tl and c’, using the infor-
mation in arrays A and B.

The array ACTUAL is also used to link the two copies of each edge at
the start of the algorithm. We proceed in two stages. First for each edge
(u, II) with u < o we insert the edge into the array ACTUAL. Next, for each
edge (u, u) with u > u we search for the edge (II, u), which is already in the
array ACTUAL. The two copies of the edge are then readily linked. It is
clear this requires O(~/E) time and 0(1/s .m) operations.

Step 2. As stated above, in the dth phase we apply the SV connectivity
algorithm for O(log d) time to the graph specified by the supervertices and
the edges selected in Step 1. This algorithm was described in Section 3.1.
Actually, we need to make one minor change to the algorithm: only
growing supervertices participate in an active way in the algorithm; the large
supervertices, or rather their constituent out-of-date growing supervertices,
simply provide nodes for hooking onto. This implies that when the pointer
of a growing supervertex u points to an out-of-date growing supervertex,
then v no longer performs pointer jumping; i.e., henceforth v participates
only in a passive way in the SV algorithm. Otherwise the growing superver-
tices perform the algorithm in the standard way. Note that the array of

APPROXIMATE PARALLEL SCHEDULING, II 21

growing and out-of-date growing supervertices provides the vertex set for
the SV algorithm here.

The SV connectivity algorithm requires that the edges be accessible via
an array whose size is twice the number of the edges and that each edge
appears there once in each of its two directions. It is easy to achieve this.
In Step 1.2, an edge is placed in the selected edge array in both of its direc-
tions. (Even if an edge was selected by both its endpoints, no damage will
be cause by the redundant edges).

The SV algorithm maintains the following invariant: Let T be a tree con-
structed by the algorithm in t steps, and let I be the length (in edges) of the
longest path from a leaf to the root in tree T; then either ITI > (3/2)‘-’ I,
for t 2 1, or T is a spanning tree of a maximal connected component. Thus
after LIog,,d J + 1 steps, any tree built by the SV algorithm either will
contain at least d vertices, or will be a maximal connected component.

We deduce that after jlog,,zd J + 1 = O(log d) iterations, any tree built
by the algorithm, comprising only growing supervertices, includes either at
least d old supervertices or all the old supervertices, as claimed in Observa-
tion d (immediately following the high level description of the main
connectivity algorithm above); the only other possibility is that the tree
contains a large supervertex.

The processor allocation for Step 2 is straightforward: simply assign one
processor to each edge in the array computed in Step 1.2. Step 2 performs
O(m log d/d) operations in O(log d) time (using the formulation of
[SV-821, Step 2 uses md/d&squared= O(m/d) processors and O(log d)
time). This is charged to a miscellaneous budget. Over the whole algorithm
this is O(m) operations and O(logn) time.

Step 3. For each new supervertex (a tree constructed in Step 2) that
will be growing in the next phase, Step 3 forms an adjacency list of its
edges, divided into blocks. Basically, first, we form an Euler circuit of each
tree constructed in Step 2; second, for each tree, we combine the adjacency
lists of the nodes in the tree with the help of the Euler circuits; third, for
each block of an adjacency list L such that L is not too long, we recognize
that the block belongs to L. This recognition is performed by applying
Wyllie’s (1979) list ranking algorithm to the adjacency lists. In using
Wyllie’s algorithm, we perform pointer juming for each unit in the lists
being processed: over the course of the algorithm, there will be @(log n)
pointer jumping steps per unit processed. In order to obtain an optimal
algorithm we need to process the adjacency lists in units of size .Q(log n)
edges.

This motivates us to create clusters. For each supervertex, its edges are
partitioned into clusters of at most log n edges each; each cluster comprises
up to log’” tz blocks. Initially, for each vertex, each cluster contains exactly

22 COLE AND VISHKIN

IogQ) n blocks (recall that each vertex initially has a degree that is an
integer multiple of log n logc3’ n). Each cluster can only lose edges (from
the edge elimination); a cluster never gains edges. However, the edges
within a cluster may be repartitioned among its blocks; thus a block may
lose and gain edges, but only from within its cluster. There will be at most
one incomplete block per cluster. There are at most 3m/log IZ clusters (since
there are at most 3m edges initially); hence there are at most 3m/log n
incomplete blocks and at most 3m log(‘) n/log n blocks. We keep an array
of cluster headers, with clusters belonging to the same growing supervertex
being contiguous. Each cluster header records the span of the headers of its
blocks in the block header array (it will always be the case that a cluster’s
blocks are contiguous in the block header array). Also, for each super-
vertex, we keep its clusters in a circular linked list.

The input for Step 3 comprises:

(a) For each processor, the ordered list of the blocks it processed in
Step 1.

(b) The array of clusters. This array also includes dummy clusters,
whose role will become clear later. There are O(m/log n) dummy clusters
(Claim 4).

(d) The array of growing supervertices.

Next we outline the procedure for Step 3.

Step 3.1. For each supervertex (tree) created in Step 2, form a single
linked list of its clusters. This will require the introduction of dummy
clusters, and will be based on an Euler Tour of each tree.

Step 3.2. Separate the new growing and new large supervertices. That
is, for each cluster recognize the type of its new supervertex, and if it is
growing, in addition, find out the name of the new growing supervertex.
This step is performed by applying Wyllie’s list ranking algorithm to the
lists formed in Step 3.1.

Step 3.3.

Step 3.3.1. Removes those edges eliminated by the edge selection in
Step 1 and form new blocks so that there is at most one incomplete block
in each cluster.

Step 3.3.2. Rearrange the arrays of block headers and cluster headers
so that for each growing supervertex, its associated blocks (resp. clusters)
are contiguous. Also, update the array of growing supervertices.

Step 3.4. Update the vertex table.

APPROXIMATE PARALLEL SCHEDULING. II 23

Below we alternately use several patterns for the assignments of pro-
cessors to jobs. One pattern is called the pattern of Step 1: each processor
processes one block at a time, in the same order as in Step 1 (this is easily
obtained from item (a) of the input to Step 3). The other patterns will be
described as they are used.

Step 3.1.

Step 3.1.1. In order to carry out Step 3.1. we need to compute two
numberings for each edge that became a causing edge in this phase (recall
the causing edges are the edges that induce the hookings in Step 2). First,
we number all the causing edges with a single serial numbering. Second, for
each cluster, we number its causing edges with a serial numbering. Observe
that while a growing supervertex o seeks to hook itself onto only one other
supervertex in Step 2, several of its incident edges may become causing
edges that hook the supervertex at their other endpoint onto 0.

In order to simplify the exposition we neglected to add to Step 2 an
instruction for marking each copy of a causing edge (immediately after it
is used for hooking). So we assume that each causing edge is so marked.
Whenever, in Step 3, we refer to a causing edge, we mean a copy of a
causing edge introduced in Step 2 of the present phase.

The numberings are computed as follows. In Step 3.1.1.1 we assign a
processor to each causing edge. In Step 3.1.1.2 we assign serial numbers to
the causing edges in each block. In Step 3.1.1.3 we assign the two desired
serial numbers to each causing edge.

Step 3.1.1.1. By means of a prefix summ algorithm with respect to the
array of edges used in Step 2 we assign one processor to each of the two
copies of each causing edge; this takes O(log n/log(‘) n) time and O(m/d)
operations, per phase. There are at most 12m/d2 copies of causing edges,
since there are at most 6m/d’ growing supervertices each providing at most
one causing edge and each causing edge has two copies.

Step 3.1.1.2. For each block, we compute both the number of its
causing edges and the serial number of each of them. For each copy of a
causing edge, its processor traverses the list of edges in the block of this
copy, till it comes to the front of the list (which has a pointer to the block
header); since there may be several processors traversing a block only the
processor of the first causing edge in the block (using the original order of
the block) remains to take care of the block. It first assigns serial numbers
to each causing edge in the block and later writes their total number to a
variable associated with the block header. This takes O(log n/logc2) n) time
and O(m log n/(d’ logc2’ n)) operations per phase.

Step 3.1.1.3. For each cluster, we visit its block headers in turn (i.e.,
serially) and assign to each block a range for the serial numbers of its

24 COLE AND VISHKIN

causing edges relative to the other causing edges of the cluster. This takes
O(log’*’ n) time and O(m log(*) n/log n) operations per phase.

Then, by means of a prefix sum computation with respect to the block
headers, we assign to each block a range for the serial numbers of its
causing edges relative to the whole set of causing edges. This takes
O(log n/log’*’ n) time and O(m log”’ n/log n) operations per phase.

Now, using the processor assignment pattern computed in Step 3.1.1.1
(recall that it provides a separate processor to each causing edge) we assign
the two serial numbers to each causing edge. This takes 0(1) time and
O(m/d’) operations per phase.

Step 3.1.2. Our goal here is to provide, for each new supervertex S, a
(circular) linked list that goes through all the clusters in S. Recall that at
the beginning of a phase the clusters of each (old) supervertex were
arranged in a circular linked list. Let C be a cluster. Suppose C has h
causing edges. In this circular list of clusters, we replace cluster C by a list
comprising cluster C plus h dummy clusters; each of the dummy clusters
represents one of the h causing edges introduced in the present phase. Each
old supervertex now has a circular list comprising all the clusters it had
previously plus some additional dummy clusters. (Note that to order the
dummy clusters associated with cluster C we need the second of the serial
numbers computed in Step 3.1.1.3).

CLAIM 4. The number of dummy clusters created during the whole algo-
rithm is bounded by 2(n - 1) which is 0(m/log n).

Proof of Claim 4. Recall that the input vertices and causing edges form
a spanning forest; thus there are at most n - 1 causing edges. 1

Next, we show how to form a single circular list for each new superver-
tex. This new list will include all the clusters from the old supervertices that
form the new supervertex. To achieve this we apply an idea of (Atallah and
Vishkin, 1984) for “stitching” the circular lists at the causing edges. We
note that a causing edge has a copy (which is a dummy cluster) in two of
these circular lists. Each copy has a successor in its own list. In parallel, we
make the successor of each copy of each causing edge the successor of the
other copy of the same causing edge. An argument as in (Atallah and
Vishkin, 1984) shows that this indeed gives a single circular list for each
new supervertex.

The number of operations required is proportional to the number of
causing edges, which is O(m/d*). The time is O(1).

It is convenient to place the dummy clusters introduced in this phase
into the array of clusters. To do this we need to assign a serial number to

APPROXIMATE PARALLEL SCHEDULING. II 25

each such dummy cluster; we simply add the first serial number associated
with the corresponding causing edge to the current size of the cluster array.
Per phase this takes O(1) time and @m/d’) operations.

Henceforth, when we refer to dummy clusters, we intend all the dummy
clusters that are present, and not just those created in the current phase.
(In Step 3.2 we will see why dummy clusters from previous phases might be
present).

Step 3.2. Our goal is to separate new growing from new large superver-
tices. It will be helpful to attach a distinct identifier to each cluster. Thus,
each dummy cluster, on creation, is given as identifier the pair (1 VI + U, tl),
where (u, 2)) is the causing edge that caused the dummy cluster to be
created. Likewise, each actual (non-dummy) cluster is given the identifier
(u, u), where (u, /I) is the first edge on the edge list of its first block.

It is helpful to note that if a supervertex has j, actual clusters it can have
at most 2y dummy clusters. For the causing edges in the supervertex form
a spanning tree of its constituent vertices and so there is one fewer causing
edge than constituent vertices. It remains to note that each vertex con-
tributed at least one actual cluster, while each causing edge produced just
two dummy clusters.

A supervertex will be large in the next phase if it has at least
(n. d- .~quared)‘-5 incident edges. Let yd = (n. d squared) ‘-‘/log n. Thus, for
each new growing supervertex, the circular list o clusters, actual and
dummy, comprises fewer than 3y, nodes (at most ;I~ actual clusters and
fewer than 2y, dummy clusters). It is convenient to redefine a large (resp.
growing) new supervertex to be one with at least (resp. fewer than) 4;,
nodes in its circular list of clusters. This implies that a new large superver-
tex has at least 4/3(d-6 squared)‘~5 incident edges (since at least l/3 of the
nodes are actual clusters and each actual cluster contains log n edges), and
a new growing supervertex has fewer than 4(d. dP squared)‘~5 incident
edges. For each of our lists we determine whether it represents a large or
growing new supervertex by the following computation.

(a) We iterate at each element, in parallel, the following basic
(doubling) operation fi,, = log(27,) times.

1. The new identifier of the element is the (lexicographic) mini-
mum between its own identifier and the identifier of its successor.

2. Doubling (i.e., D(z)) := D(D(v)), where initially D(o) =
successor(z))).

Following this computation each element holds the minimum identifier
among its own (original) identifier and the (original) identifier of its 2”“- I
original successors.

26 COLE AND VISHKIN

(b) We check at each element whether its minimum identifier and the
minimum identifier of its (present) successor are equal,

We observe that the cyclicity of each list implies that if the minimum
identifiers of some element and its present successor are equal then: (i) this
minimum identifier must be the minimum identifier of their list. (ii) the list
contains at most 28d+1 - 1 elements and therefore the supervertex is
growing.

(c) We apply Pd+ 1 parallel doublings in order to “broadcast” this
minimum. In each list in which no minimum identifier was found, nothing
is being broadcast and each node in such a list can conclude that it is part
of a new large supervertex.

(d) Using bd+ 1 parallel doublings, for the lists of growing superver-
tices, we shortcut over, and thereby discard, the dummy clusters.

(e) Next we give serial numbers, starting from one, to the actual
clusters of each growing supervertex, as follows. Using Pd+ 1 parallel
doublings, for the list of growing supervertices, we rank each actual cluster
with respect to the element whose identifier is minimum in its list.

The processor allocation for Step 3.2 is to provide one processor to each
cluster and dummy cluster (O(m/log n) processors). Thus, per phase,
Step 3.2 takes O(log d) time and O(m log d/log n) operations.

Siep 3.3.

Step 3.3.1. The goal is to remove those edges eliminated by the edge
selection in Step 1 and to form new blocks so that there is at most one
incomplete block per cluster.

Step 3.3.1.1. For each block processed in Step 1 we remove those edges
eliminated in Step 1, forming a list of the remaining edges. Also, for each
block, we record the number of edges still present. The processor allocation
for this step is given by the pattern of Step 1; its complexity is dominated
by that of Step 1.

Step 3.3.1.2. For each cluster we form a list of its blocks. We partition
each such list into two sublists. The first sublist comprises the non-empty
blocks that were processed in Step 1 and incomplete blocks (there is at
most one incomplete block for each cluster). The second sublist contains
the complete blocks that were not processed in Step 1. Empty blocks are
discarded. This separation is performed in parallel for each cluster by a
sequential scan of the block headers in the cluster. Next, for each cluster,
for each first list, we compute the prefix sums of the block sizes. This step
uses O(log”’ n) time and O(m log’*’ n/log n) operations, per phase.

Step 3.3.1.3. For each sublist of the first type, we form new blocks, as

APPROXIMATE PARALLEL SCHEDULING, 11 27

follows. Using the prefix sums, we determine the new block boundaries.
(This requires scanning the edges in the blocks containing such boun-
daries.) Then we append each list of edges to the end of the list for the
preceding block. For each cluster, the edges are now divided into complete
blocks plus at most one incomplete block. This takes O(log n/log’*’ n) time
and, per block processed, O(log n/log’*’ n) operations.

The processor allocation for this step follows the pattern of Step 1,
except that in addition we need to process each old incomplete block, of
which there is at most one per cluster; but this just requires an additional
allocation of one processor per cluster, which is straightforward. Thus the
complexity of this step is dominated by that of Step 1.

Step 3.3.1.4. For each new block, it remains to place its header in the
portion of the block array belonging to its cluster. For each new block B,
we choose an old block B’ being removed from the same cluster; B’s header
will take the place occupied by B”s header. B’ can be chosen according to
the following rule: it is the first old block which overlaps with B. Next,
for each cluster, we compress its block headers to a contiguous portion
of the block array, by means of a prefix sum computation with respect
to the array of block headers. We also record, for each cluster, the span
occupied by its present block headers. This takes O(log n/log”’ n) time and
O(m log”’ n/log n) operations per phase.

Step 3.3.2. Each new supervertex is presently represented by a circular
list of clusters; the list for large supervertices include dummy clusters, while
the lists for growing supervertices do not (Step 3.2). During this step, the
array of cluster headers is reordered so that clusters belonging to the same
new growing supervertex are in contiguous locations. The array of blocks
headers is reordered correspondingly.

We compute the new location for each cluster header as follows. From
part (e) of Step 3.2, we have already determined, for each new growing
supervertex, the number of clusters it contains. This number is placed in
the ‘first’ cluster for the supervertex; every other cluster in a new growing
supervertex is assigned the number zero. The clusters in new large super-
vertices are all assigned the number one. By performing a prefix sum com-
putation over these numbers with respect to the array of clusters, we obtain
the new location of each first cluster of a new growing supervertex and
of each cluster of a new large supervertex. Finally, each cluster in a new
growing supervertex computes its location relative to the first cluster
in its new growing supervertex. This step uses O(log n/log’“’ n) time and
O(m/log n) operations per phase.

Next, we rearrange the block headers so as to match the new cluster
ordering. To do this, each cluster determines how many blocks it has; then

28 COLE AND VISHKIN

by means of a prefix sum computation with respect to the cluster headers
it determines the new locations of its block headers. Then, each block
header is given its new location by its cluster. Finally, the block headers are
relocated simultaneously. Per phase, this takes O(log n/log’2) n) time and
O(m log’2’ n/log n) operations.

The array of growing supervertices is readily updated with the help of a
parallel prefix sum computation with respect to the array of clusters; it
sums the number of “first” clusters, including the “first” clusters for out-of-
date growing supervertices. Per phase, this takes O(log n/log’2’ n) time and
O(m/log n) operations.

Step 3.4. Initially, we associate with each vertex v its ‘first’ cluster C,
(chosen to be the minimum among its clusters when ordered by their iden-
tifiers). C, will be responsible for updating T(u). A growing supervertex is
given the vertex name associated with its ‘first’ cluster.

To update the vertex table T, if C, is part of a growing supervertex S,
it performs the following operation. Let w be the vertex name associated
with S (in Step 3.2(c) each cluster belonging to S learnt this name); C,
performs the assignment T(u) := w.

The processor assignment for this step is to provide one processor to
each cluster; then this step takes 0(1) time and O(m/log n) operations per
phase.

Analysis. We have shown that, per phase, the complexity of Step 3 is
dominated by the sum of three components:

(i) the complexity of Step 1,

and complexities of

(ii) O(log n/log’2’ n) time and O(m/log’2’ n) operations,

(iii) O(log d) time and O(m log d/log n) operations.

(To verify this, it suffices to recall that d> (log n log@’ n)‘j2. Summing over
all the phases, we obtain that over the whole algorithm, the complexity of
Step 3 is bounded by the complexity of Step 1, plus a complexity of O(m)
operations and O(log n) time. Hence Step 3 performs O(m) operations in
O(log n logc3’ n) time.

We conclude that

THEOREM 3.2: For m >/ log n logt3’ n there is an optimal connectivity
algorithm in the CRCW PRAM model that performs O(m + n) operations in
time O(log n 1ogc3) n) on (m + n)/log n logc3) n processors.

APPROXIMATE PARALLEL SCHEDULING, II 29

3.3. Connectivity in Logarithmic Time and Optimal Speed Up

Here we show how to implement the connectivity algorithm so that
it runs in time O(logn). As in Subsection 3.2, we assume that
m > n log n log@’ n. But here we assume that the number of processors
available is p = m/log n. The basic structure of the algorithm remains
unchanged. The algorithm consists of O(log’*’ n) phases each with the same
input/output definition as before. Steps 2 and 3 will remain unchanged.

Here we reduce the block size to log n/(log’*’ n)‘, for we will redistribute
the processors following every @(log n/log’” n)2) time units (the redistribu-
tion is done using an approximate scheduling scheme, not by a prefix sum
algorithm). Again, there may be at most one incomplete block per cluster.
We introduce a new structure here: groups; for each cluster, we partition
its blocks into groups of log (*’ n blocks, with at most one incomplete group
per cluster. In each phase, the groups are created at the start of Step 1, by
means of a prefix sum algorithm with respect to the block headers. The
increase in the number of blocks requires us to reanalyze Step 3. However,
a careful examination of the analysis shows that it still uses O(m) opera-
tions and O(log n) time over the whole algorithm (recall that the only
reason the previous version of Step 3 used @(log II logt3’ n) time was the
processing of blocks in the pattern of Step 1; but here such processing will
only take O(logn) time).

The only step we need to redesign is Step 1, the edge selection. To carry
out the edge selection we create the following subgoal: for each group,
process its blocks one by one until either log n/(log’*’ n)* actual outedges
have been found or all its blocks have been processed. Having achieved this
subgoal, there are fewer than d(logt2’ n)2/log n not fully processed groups
for each still active supervertex (since for each such supervertex fewer
than d actual outedges have been found, and for each not fully processed
group log n/(log@ n)’ actual outedges have been found). Thus there
remain at most 6m(log”’ n)3/dlogn active blocks (the number of active
blocks remaining is derived by multiplying 6m/d’ supervertices by
d(log”’ n)‘/log n not fully processed groups by log’*’ n blocks per group);
these are readily processed in a further O(log n/(log”‘n)‘) time and
O(m log”’ n/d) operations, which is O(m log’” n/(log II logC3’ n)“‘) opera-
tions, since d3 (log n log’“’ .)I/*. Note also that we need to use a prefix
sum algorithm to allocate the processors to the active blocks. This prefix
sum computation will perform a number of operations which is linear in its
input size. The input size is equal to the number of blocks, which is
O(m(log”’ n)2/log n). The time for the prefix sums is O(log n/log”‘n).
These costs are charged to the fixed budget. To find the charge for the
whole algorithm, we multiply each of these time counts and operation
counts by O(log’” n) phases and get O(log n) time and O(m) operations.

30 COLE AND VISHKIN

It remains to describe how to achieve the subgoal. This is achieved using
the approximate task scheduling of the Part I paper, or rather the following
slight modification of this scheme: We are given s tasks, each of duration
between 1 and t, and of total duration w; using p processors the tasks can
be performed in O(t + log n/log(‘) n + w/p) time. This bound applies even if
w is not known in advance. (Note that the sequencing of the tasks is not
predetermined; in fact, according to the sequencing of tasks, each
individual task may have a varying length, but always in the range [1, t];
also, the sum of the lengths of the tasks is always bounded by w.) The
procedure for executing such a collection of tasks is given in Appendix 1;
here we show how to cast the edge selection problem in terms of such
tasks.

For each group its processing comprises a task. The length of a task is
equal to log n/(logf2’ n)’ times the number of blocks processed by this task;
thus the length is between log n/(log’2’n)2 and log n/(log@’ n). For any
given phase, the total length of the tasks is unknown (for it depends on
how many edges are eliminated); for phase i denote the total length of its
tasks by wi. The number of processors at hand is m/log n.

LEMMA 3.3.1. The total work performed by the tasks over all the phases
is O(m).

Proof: In each phase, the work performed per group is at most the
number of edges eliminated, plus at most 2 log n/(log’*‘n)’ (this term
accounts for the actual edges found; although only log n/(logt2’ n)’ actual
edges per group are sought, since each group is processed in units of a
block, for each group, we may find an additional log n/(logC2’ n)’ - 1 actual
outedges). So, per phase, the total work performed is proportional to the
number of edges eliminated plus m/logC2’ n (since there are at most

(2) 3m log nf log n groups at hand). Since each edge can be eliminated at
most once in each direction and since there are O(logC2’ n) phases, the total
work performed over all the phases is O(m). 1

We conclude

THEOREM 3.3. There is a CRCW PRAM algorithm for computing the
connected components of a graph that performs O(m+n) operations in
O(log n) time using (m + n)/log n processors, if m 2 n log n logC3’ n.

Comment. In fact, we only need man log n/logC2) n for the result of
Theorem 3.3 to hold, as can be seen by checking the analysis of Step 3 and
the new Step 1.

APPROXIMATE PARALLEL SCHEDULING, II 31

3.4. The Reduction Procedure

We show how to reduce the connectivity problem for the case
m<nlognlog c3) n to the case m > n log n logt3) n. The reduction procedure
will build supervertices each of which has at least d- squared incident edges
(from the input graph) with d_ squared > 4 log n logC3’ n (the reason for the
constant 4 is that there are at most 4~2 edges present, counting each
occurrence of an edge, as we will see shortly). Following the application of
the reduction procedure we rename all the edges with their current super-
vertex endpoints, obtaining a reduced graph. We can then apply the con-
nectivity algorithm of Section 3.3 to the reduced graph; the supervertices of
the reduced graph are the vertices for the connectivity algorithm. (This
ensures that for the reduced graph the number of vertices is bounded by
m/(log n logC3’ n)).

It is convenient to assume that each vertex has degree at least 1. This is
since any remaining vertex constitutes a separate component. All such
vertices can be readily removed in a preprocessing phase using O(m + n)
operations and O(log n) time. Following such a preprocessing phase we
can assume that n d 2m. The reduction procedure uses the same basic pro-
cedure as the connectivity algorithm, that is, we have a series of phases
parameterized by d or d-squared. Initially d_ squared = max(2, m/n >; this
is justified by introducing up to 2m self loops. Thus, counting each
occurrence of an edge in an adjacency list, there are at most 4m edges
present.

Now we proceed through only O(logC3’ n) phases. In each phase,
d- squared < 4 log n logt3) n; the last phase increases d_ squared to a value
of at least 4 log n logt3’ n. Each phase is divided into 3 steps, as before. The
role of each step is identical. In fact, Step 2 is implemented just as before.
Steps 1 and 3 need to be modified. We describe the changes to each step
in turn.

The data structures and algorithms become somewhat simpler here for
the blocks and clusters can have the same size. Thus we will identify blocks
and clusters in this section, and refer to them interchangeably. While not
the only choice, as it appears the simplest, we choose the block size to be
d edges. (Roughly, any value of block size between log’ d and d’/log* d can
be used; in fact both these bounds can be extended a little. Of course, other
parameters then need to be changed accordingly. We discuss the con-
straints on the block size in the comment below.) The data structures are
mostly the same as in the main algorithm (except for the obvious simplifi-
cations and changes to their sizes). However, we need to make several
changes to the way in which the supervertices are presented. First, we need
to label each supervertex that has been identified as comprising a component
of the input graph; such a supervertex is called a complete supervertex. The

32 COLE AND VISAKiN

remaining supervertices are divided into growing and large supervertices as
before. Second, we will divide the large supervertices into pseudo-growing
supervertices; the pseudo-growing supervertices are treated in the same way
as growing supervertices, but there is no lower bound on their size. There
are at most 5m/d- squared growing and pseudo-growing supervertices, and
at most 4m/d- squared growing supervertices (Claim 5). Each growing or
pseudo-growing supervertex will contain at most one incomplete block.
Thus, there are at most 4m/d + 5m/d- squared 6 9mjd d 12mJd blocks (for
d d d _ squared). The pseudo-growing supervertices replace the out-of-date
growing supervertices which are not present in the reduction algorithm.

Comment. In the reduction procedure we cannot use one size of blocks
for all the phases, as in the main algorithm. There are three constraints.
First, in Step 1, for each block that is processed, we perform a number of
operations proportional to the upper bound on the block size (multiplied
by a factor of a here, as we will see). For each incomplete block, the
“wasted” effort is proportional to the difference between the upper bound
on the block size and the actual block size. Summing over all incomplete
blocks in the first phase (of which there may be as many as n), we obtain
that the block size should be upperbounded by O(m/n) to ensure that the
wasted effort is O(m) (multiplied by a factor of at most a). If m = O(n), this
implies that initially we need a block size of 0(1). Second, in Step 3, we
may perform @(log d) operations per block during the pointer jumping.
This implies a lower bound of @(log d) on the block size; but this only
ensures a bound of O(m) operations per phase. A lower bound of roughly
log2 d on the block size suffices to provide a linear operation bound for
Step 3 over the whole algorithm. Third, in Step 1, as already noted,
processing a block takes time proportional to the upper bound on the
block size multiplied by a; obviously, this should not exceed @(log n), and
maintaining an upper bound of @(log n/log’2’ n) on the running time for
processing a block simplifies the analysis; this implies an upper bound of
@(log n/(log’2’ n a)) on the block size; in turn, this implies an upper bound
of roughly d2/log2 d on the block size, since d2 may grow as large as
roughly log n log’3’ n.

Step 1. Basically Step 1 proceeds as in Section 3.2. One important
change is than an operation x := T(o) will take time O(a(m, n)) rather than
0(1). Henceforth, we will use a to denote a(m, n). (See Step 3.4 below and
Appendix 2 for a description of how to maintain the vertex table.)

We divide the computation of Step 1.1 into two parts for the purposes of
the analysis. The first part is Step 1.1.1. This part is most easily understood
if we assume that p = 12m/(dlog d) processors are available (we simply
simulate this by the actual number of processors which is only 12ma/log n);

APPROXIMATE PARALLEL SCHEDULING, II 33

so 12m/dlog d blocks are processed in each iteration. (We justify this
choice of p in the comment below.) Step 1.1.1 requires U(da) time and
performs O(ma/log d) operations. The second, and less interesting part, is
Step 1.1.2 (determining if a supervertex is still active). Per iteration, this
requires time O(log n/logC2’ n) and O(m/d) operations. So an iteration (of
steps 1.1.1 and 1.1.2) uses O(mcr/log d) operations and O(log n/log’“‘n)
time.

As before, we divide the iterations into reducing, eliminating, selecting,
and removing iterations.

There are only O(log”’ d) reducing iterations per phase (the reasoning
being as before: after log (2) d reducing iterations there is a processor stand-
ing by each block of each active supervertex). The reducing iterations, per
phase, require O(ma log (‘I d/log d) operations and O(log n log”’ d/log”) n)
time. Thus, over the whole procedure (O(log’3’ n) phases), the reducing
iterations perform O(mcr) operations in O(log n log’3’ n/log’“’ n) or O(log n)
time.

An eliminating iteration eliminates @(m/log d) edges using @(ma/log d)
operations and O(log n/logC2’ n) time. As log d = O(log”’ n) there are
O(log”‘n) eliminating iterations. Thus, over the whole algorithm, the
eliminating iterations perform O(ma) operations in O(log n) time.

A selecting iteration will charge its operations to the following charged
edges: those actual outedges in productive blocks. In an iteration there are
@(m/log d) charged edges. Also, at most O(m/d) edges can be charged
during the phase. Thus there are O(log d/d) which is O(1) selecting
iterations per phase, and in fact, 0 selecting iterations per phase as soon as
d exceeds an appropriate constant. Thus there are only O(1) selecting
iterations over the whole algorithm. Each iteration uses O(mcc/log d)
operations and O(log n/log’2’ n) time. They perform a total of O(mcr)
operations in O(log n/log’2’ n) or O(log n) time.

A removing iteration processes at least 3m/(d log d) obstructive blocks;
but there are at most 4m/dP squared incomplete blocks and 4m/d- squared
excess blocks which are processed in the current phase (at most one incom-
plete block and one excess block for each growing supervertex), that is,
at most 8m/dPsquared obstructive blocks; hence there are at most
O((log d)/d) removing iterations per phase, which is 0(1) removing itera-
tions over the course of the aigorithm. Each iteration uses O(mz/log d)
operations and O(log n/log”‘n) time. They perform a total of O(mcc)
operations in O(log n/log’” n) or O(log n) time.

Comment. We use O(m/(dlog d)) logical processors here for the
following reason. (Actually, we may simulate these logical processors by
fewer actual processors later). Suppose p = m/(df((n, d)), where ,f is some
function of n and d. There are several constraints on 1:

34 COLE AND VISHKIN

(1) We cannot afford more than @(log(*) n) eliminating iterations if
we are to remain within an O(log n) time bound; if all eliminating itera-
tions occur in one phase each of these eliminating iterations must eliminate
at least O(m/logC2’ n) edges. But, using m/(d’(n, d)) processors, we
eliminate O(m/f(n, d)) edges in each eliminating iteration; this forces
f(n, d) = O(log’2’ n).

(2) Each iteration takes @(m/d) operations for Step 1.1.2. There may
be up to O(logf(n, d)) reducing iterations per phase. So, per phase,
Step 1.1.2 alone may require @((m/d) logf(n, d)) operations for the
reducing iterations. So we need C (logf(n, d))/d= 0(1) where the sum is
over those values of d that occur in the reducing algorithm.

(3) Now let us consider Step 1.1.1 in the reducing iterations; per
phase, this step may perform O(mcc logf(n, d)/f(n, d)) operations. So we
need C &xdln, d) Mn, d) = O(11, w h ere the sum is over the same values
of d as before.

The simplest solution to these constraints appears to be f(n, d) = log d.

Step 1.2. For each growing supervertex, among the edges selected in
Step 1.1. select d (or all, if < d are available). The selected edges are placed
in an array of size O(m/d). Again, the complexity of Step 1.2 is dominated
by the complexity of Step 1.1.

Step 3. Many of the substeps are similar to those for the main algo-
rithm. Steps 3.1-3.4 all have the same goals as before. Step 3.3, besides its
previous tasks, also prepares new larger blocks for the next phase here.

Step 3.1.

Step 3.1 .l. It is identical, but its analysis changes. Step 3.1.1.2 now uses
O(d) time and O(m/d) operations per phase, and Step 3.1.1.3 now uses
O(log n/logC2’ n) time and O(m/d) operations. Over the whole algorithm
this is O(log n) time and O(m) operations.

Step 3.1.2. This step is essentially identical. The complexity per phase
is as before. Over the whole algorithm it is O(log n) time and O(m) opera-
tions.

Step 3.2. As before, the goal is to separate the growing and the large
supervertices. We use a different method here. In addition, because of the
need to create larger blocks for the next phase, each large supervertex will
be divided into pseudo-growing supervertices. We will still retain the struc-
ture of the large supervertices. This will be made precise later.

Suppose we are given a set of circular lists stored in an array of size h.
Before describing the rest of the algorithm, it is useful to recall that there

APPROXIMATE PARALLEL SCHEDULING, II 35

is a maximal independent set algorithm for rings (circular lists) that uses
O(log h/log’2’ h) time and O(h) operations (Cole and Vishkin, 1989).

We iterate the following computation 310g d + 2 times.

(i) Apply the maximal independent set algorithm to the lists con-
structed in Step 3.1 and then shortcut over the nodes not placed in the
independent set.

(ii) Compress the selected nodes to the start of the array.

(The initial array is a copy of the array of block headers.) Any list that is
reduced to a single node is defined to represent a new growing supervertex.
Note that a node of a maximal independent set is followed, in its circular
list, by one or two nodes which are not in the independent set and then by
a node of the maximal independent set. Thus a list that is reduced to a
single vertex contains at least (4/3) d3 edges (since at most 2/3 of the nodes
are dummy blocks, and each actual block contains at least one edge). For
the remaining new supervertices, the new large supervertices, we define
each sublist that has been reduced to a single node to be a new pseudo-
growing supervertex. There is no lower bound on the size of a pseudo-
growing vertex since it may have been built entirely of dummy blocks.

Per phase, the complexity of this step is O(log n log d/log’2’ n) time and
O(m log d/d) operations. Over the whole algorithm this is O(log n) time
and O(m) operations.

Step 3.3. We perform the two substeps of the main algorithm out of
order. First we perform the previous Step 3.3.2. Then we perform a
modified Step 3.3.1. Finally, we introduce a new Step 3.3.3 to create new
larger blocks.

Step 3.3.2. This step is identical. We treat all the blocks as parts of
growing supervertices (this includes the pseudo-growing supervertices). Per
phase, it takes time O(log n/log”‘n) and O(m/d) operations. Over the
whole algorithm this step uses O(log n) time and O(nz) operations.

Step 3.3.1. This step is essentially identical. However, the goal is
modified to produce at most one incomplete block for each growing or
pseudo-growing supervertex. Here, the role of the clusters in the main algo-
rithm is taken by the growing and pseudo-growing supervertices. This
entails one change to the procedure. The previous Step 3.3.1.2 (separating
the blocks-into two lists) is now performed by a pointer jumping procedure
that follows in the footsteps of the current Step 3.2. As before, the com-
plexity of Step 3.3.1 has two components. One component is dominated by
the complexity of Step 1, while the other becomes O(log n log d/lag(2) n)
time and O((m log d)/d) operations per phase. Over the whole algorithm,
the second component totals O(log n) time and O(m) operations.

36 COLE AND MSHKIN

Step 3.3.3. Here, we create new larger blocks for the next phase. For
each growing or pseudo-growing supervertex, we combine sets of old
blocks (each of d edges, except possibly for one incomplete block) to form
new blocks (each of ((d. d_ squared)‘~s)“2 edges, except possibly for one
incomplete block). This step uses a prefix sum computation with respect to
the old array of blocks in order to identify the new blocks. A second prefix
sum computation is used to compress the new block headers to the start
of the block header array; in addition, for each new growing and pseudo-
growing supervertex, we record the new span of its blocks. Per phase, the
step has complexity O(log n/log”’ n) time and O(m/d) operations. Over the
whole algorithm, this is O(log n) time and O(m) operations.

Step 3.4. In this step, we update the vertex table. The new growing
supervertices (including pseudo-growing supervertices) will be placed in an
array, and each old growing supervertex is given the name of its new super-
vertex.

Handling the new pseudo-growing supervertices presents some dif-
ficulties, for the blocks of an old supervertex may be split over several new
pseudo-growing supervertices. Our solution is to identify each old super-
vertex (growing or pseudo-growing) with the first edge in its ‘first’ block;
each old supervertex is defined to belong to the new supervertex (growing
or pseudo-growing) that contains this first edge. This definition causes no
difficulty: any vertex in a large supervertex S is identified with a pseudo-
growing supervertex that is a part of S. Thus, in Step 3.3, for each old
supervertex, we need to keep track of the new block to which its first edge
belongs; but this is readily done. It remains to place the new complete
supervertices in one array and the remaining supervertices (growing or
pseudo-growing) in a second array. This is achieved with the use of a prefix
sum computation with respect to the array of block headers.

We then update the vertex table using the method of Appendix 2.
Appendix 2 provides a limited UNION-FIND procedure. This procedure
performs alternate phases of UNIONS and FINDS. There are two classes
of sets, changing and fixed sets. A fixed set has no further UNIONS applied
to it, while a changing set may have further UNIONS applied to it; a
changing set can subsequently become fixed. Further, following i UNION
phases the bound on the number of changing sets is cn/2’, where n is the
initial number of sets and c is some constant. If there are n sets originally
and O(m) FINDS are performed, then the UNION-FIND procedure per-
forms its UNIONS using O(na) operations and O(log n) time, while each
FIND requires O(E) operations and time, but as many FINDS as desired
can be performed in parallel. This UNION-FIND procedure requires that
the new sets be presented in 2 arrays, one for the changing sets and one for
the fixed sets, and that the old changing sets be presented in a third array,

APPROXIMATE PARALLEL SCHEDULING, II 37

with each old changing set having a pointer to the new set of which it
forms a part.

For our application we make the following assignments. The sets
correspond to the supervertices. The fixed sets are exactly the complete
supervertices. The changing sets correspond to the remaining growing and
pseudo-growing supervertices that “contain” at least one input vertex in the
following sense. A new pseudo-growing or growing supervertex contains
those old growing and pseudo-growing supervertices that are identified
with it; the closure of this relation over the phases identifies those vertices
contained in each current pseudo-growing supervertex (the reason for this
definition is that a pseudo-growing supervertex may contain no vertices:
however, a growing supervertex will always contain at least one vertex). It
is straightforward to identify and mark those pseudo-growing supervertices
that contain no vertex when the new pseudo-growing supervertices are
formed. Rather than place the non-complete supervertices in one array, as
stated above, we separate them into two arrays, one for the growing or
pseudo-growing supervertices containing at least one vertex, and one for
the remaining pseudo-growing supervertices. This computation is per-
formed using a prefix sum algorithm. The UNION-FIND procedure is
provided with two of these arrays: the array of complete supervertices, and
the array of growing and pseudo-growing supervertices containing at least
one vertex. We choose c = 2.5. So we need that at the end of the ith phase
the number of growing and pseudo-growing supervertices is bounded by
2.5n/2’. But this upper bound is immediate from Claim 5 for the values of
d and d- squared at least double from phase to phase and are initially at
least 2 and max(2, m/n}, respectively.

Per phase, exclusive of the work done by the procedure of Appendix 2,
the complexity of this step is Oflog q’logc2’ n) time and O(m/d) operations.
Over the whole algorithm, this is O(log n) time and O(m) operations. The
procedure of Appendix 2 performs O(na + m) operations in O(log n) time.

Ana!vsis. As before, the complexity of Step 3 is bounded by the com-
plexity of Step 1, plus a complexity of O(log n) time and O(m) operations,
plus the complexity of the Appendix 2 procedure (O(na + m) operations
and O(log n) time).

CLAIM 5. The number of old growing and pseudo-growing supervertices is
at most 5m/d_ squared, of which at most 4m/d_ squared are growing super-
vertices. Also, there are at most m/d- squared new pseudo-growing superver-
tices with fewer than d_ squared edges. Likewise, the number of new growing
and pseudo-growing supervertices is at most 5m(d. d- squared), of which at
most 4ml(d- d_ squared) are growing supervertices. Also, there are at most
m/(d. d.. squared) new pseudo-growing supervertices with fewer than
d. d- squared edges.

38 COLE AND VISHKIN

Proof of Claim 5. We prove the claim by induction on the (implicit)
phase number. Clearly the first part of the claim is true initially. Also, if the
second part of the claim is true then the first part is true at the start of the
next phase (since the new value of d-squared is just d. dLsquared). To
prove the inductive step it suffices to show that the second part of the claim
follows from the first part. We start by showing the bound on the number
of new pseudo-growing supervertices with fewer than d . d.- squared edges.
So consider a new pseudo-growing supervertex S which has fewer than
d. d- squared edges. When S was constructed in Step 3.2, it contained at
least 4d3 blocks, of which fewer than d3 contained any edges, that is, it
contained at least 3d3 dummy blocks. But at most one dummy block can
be provided by each old pseudo-growing supervertex and then only if it has
no edges. (For in Step 3.3.1 of the previous phase, if any, we ensured that
each pseudo-growing supervertex had at most one incomplete block, which
was a dummy block only if the supervertex had no edges. If this is the first
phase then there are no pseudo-growing supervertices.) By the inductive
hypothesis there are at most m/d-. squared old pseudo-growing superver-
tices with fewer than A- squared edges; the remaining dummy blocks are
dummy blocks created in this phase, of which there are at most
8m/d- squared (at most 2 for each old growing supervertex); this is a total
of at most 9m/d- squared dummy blocks. So there are at most
9m/(3d3dp squared) < m/(d. d_ squared) (recall d 3 2) new pseudo-growing
supervertices with fewer than d-d- squared edges. The remaining new
pseudo-growing supervertices and all the growing supervertices each con-
tain at least d . d- squared edges; since there are at most 4m edges at hand,
the rest of the claim now follows easily. 1

Constructing the Output Graph. The reduction procedure yields a graph
with at most m/(log n logc3’ n) supervertices, large and growing. It remains
to rename each edge with its current supervertex endpoints. Then we can
apply the main algorithm. We proceed as follows.

1. For each block determine the name of its supervertex. This is done
by applying the optimal list ranking algorithm of (Cole and Vishkin, 1989)
to the circular lists of blocks. It performs O(m/d) operations in O(log n)
time, where d 2 (4 log n logc3) n) ‘I2 the value of d at the end of the reduc- ,
tion procedure.

2. Rename each pseudo-growing supervertex with the name of its
containing large supervertex (use the new name of its “first” block, com-
puted in (1)). This takes 0(1) time and O(m/d2) operations.

3. Using the vertex table and the information computed in (2), for
each vertex v, determine the large or growing supervertex containing v.
This takes O(E) time and O(ncr) operations.

APPROXIMATE PARALLEL SCHEDULING, II 39

4. Update the edge endpoints using the information computed in (3).
This takes O(1) time and O(m) operations.

So computing the output graph takes a further O(logn) time and
O(m + na) operations.

We conclude

THEOREM 3.3. There exists a CRCW PRAM algorithm that reduces the
general connectivity problem to a connectivity problem for a graph with at
most m/(log n logt3’ n) vertices and at most m edges that performs
O((m +n) a(m, n)) operations in time O(log n) on (m + n) a/log n pro-
cessors. Hence there is a CRCW PRAM algorithm for connectivity with
complexity O((m + n) a(m, n)) operations and O(log n) time.

APPENDIX 1: THE APPROXIMATE TASK SCHEDULING

We outline the solution to the approximate task scheduling of the Part I
paper, or rather the following slight modification of this scheme: We are
given s tasks, each of duration between 1 and t, and of total duration w;
using p processors the tasks can be performed within the following times.
All but possibly fp tasks, for some constant f given later, can be performed
in O(w/p + log n/log’*’ n) time. After the remaining (at most fp tasks) are
properly redistributed among the processors they can be performed in an
additional O(t) time. For the problem of Section 3.3, this redistribution
will take O(log n/log’” n) time, where n is as defined there and this time
is due to application of the CRCW parallel prefix sum algorithm. So
altogether the s tasks will take O(t + log n/log’*’ n + w/p) time using p
processors and of course O(pt + p log n/log”’ n + w) operations.

This appendix is devoted to showing how to perform all but possibly fp
tasks in O(w/p) time based on the solution of the Part I paper. This bound
applies even if w is not known in advance. (Note that the sequencing of the
tasks is not predetermined. In fact, according to the sequencing of tasks,
each individual task may have a varying length, but always in the range
[l, t]; also, the sum of the lengths of the tasks is always bounded by w.)

Our solution requires repeated rapid rescheduling of the processors. The
mechanism that provides each rescheduling is a redistribution procedure (it
solves the object redistribution problem). The object redistribution problem
is defined as follows. We are given r objects, partitioned among p collections
of objects. We are also given one processor per collection. Loosely
speaking, the problem is to redistribute the objects among the collections
so that they are more evenly distributed. For a more precise description we

40 COLE AND VISHKIN

need some definitions. size,, the size of collection i, 1 < i< p, is the number
of objects in collection i; note that Y = x;= r sizei. The weight of collection
i is size?, the square of its size; let W= Cp=, size; be the total weight of all
the collections. Let WMZN, denote the minimum possible weight over all
possible distributions of r objects among p collections; we note that, for
r > p, p Lr/pd2 < WMZN, 6 p rr/p12 6 4 WMZN,. When the value of r is
clear from the context, we simply write WMZN. Let f and g be constants
(f>g=298, withf=max{g, (8&)}, h w ere d is the constant required for
the expander graph needed for the redistribution problem; see the Part I
paper). If W is upper bounded by eitherfp or g WMZN then the collections
are said to be blamed (i.e., either there are few objects present, or the
objects are roughly evenly distributed).

The object redistribution problem is the following: Redistribute the
objects (using the redistribution procedure) so that the following properties
hold:

(1) The total weight is not increased.

(2) The maximum number of objects in any one collection does not
increase.

(3) If the collections are unbalanced, the total weight of the collec-
tions is reduced by a multiplicative constant factor.

(4) The redistribution takes 0(1) time.

In the Part I paper we described the redistribution procedure and
showed how to implement it in 0(1) time. Here we show how to use this
procedure to solve the task scheduling problem; this is very similar to the
solution of the slightly less general task scheduling problem solved in the
Part I paper.

We solve the task scheduling problem as follows. When applying the
redistribution procedure, we view the tasks as the objects. We define r to
be the number of tasks at hand. Initially, we distribute s/p tasks to each
collection. Each collection will never contain more than s/p tasks. A task
is said to be active so long as it is not completed.

while (>fp active tasks at hand)
repeat log ./log’*’ it times

(i) For each processor, perform one real step on one active task in
its collection, if any, in 0(1) time.

(ii) Apply the redistribution procedure. This requires 0(1) time.

Remark. To check the while condition, we exploit the fact that the data
structure for storing the active tasks stores, with each processor P, the
number of active tasks belonging to P. The while condition is checked (i.e.,
the number of active tasks at hand is determined) by applying the

APPROXlMATE PARALLEL SCHEDULING, If 41

O(log n/log’*’ n) time parallel prefix sum algorithm to sum the number of
active tasks belonging to each processor.

The following lemma guarantees that this routine solves our problem.

LEMMA. This routine performs all hut at most fp of our tasks in
O(MJ/P + log n/log’2’ n) time on p processors.

Proof: Consider a single iteration of the inner loop and consider the
end of part (i) of that iteration. There are three possibilities.

Case 1. The collections are not balanced.

Case 2. The collections are balanced; so either

Case 2a. the total weight is bounded by g WMIN but not by fp, or

Case 2b. the total weight is bounded by fp.

In Case 1, part (ii) of the iteration reduces the total weight by a constant
factor by property (3) of the redistribution problem. Since the initial weight
is at most p(rs/pl)‘, this can happen only O(logs/p) times, say at most
h log s/p times, for some constant h (for at that point the weight will have
been reduced tofp; i.e. the collections are balanced).

We claim that in Case 2a at least l/(f6g) -p of the collections are not
empty following part (i) of the iteration. This is seen as follows. We first
note that r, the number of objects present, is at least p for otherwise we
would have WMZN d p. This would imply g WMZN < fp (remember
Sa g), and therefore contradicts the assumption of Case 2a. Next,
suppose x of the collections are non-empty. Then W, the total weight
of all the collections, is at least x. Lr/xJ’; also W6 g WMZN and
WIVING p. rr/pJ2. That is xLr/.xJ’< gprr/p12, and since r 3 p 2x, we
have r2/4x ,< 4gr’/p, or .Y 3 p/(16g).

For each non-empty collection, in part (i) of the iteration, one real step
was performed on the task at hand. Thus, in Case 2a, at least p/16g real
steps were performed on the tasks in part (i) of this iteration. We conclude
that there are at most 16gw/p instances of Case 2a.

In Case 2b, there are at most fp active tasks remaining.
We have shown that following h log(s/p) + 16gw/p iterations of the inner

Ioop there can be at most fp active tasks remaining. Due to the stopping
rule of the while loop these iterations come in bundles of log n/log’2’ n and
therefore take time O(log(s/p) + w/p + log n/log(2’ n). Since each task has
length at least one, s= O(w), and so log(s/p) = O(log(w/p))= @w/p).
Therefore these iterations take time 0(w/p + log ti/log”’ n). 1

Data Structures. Instead of referring the reader to the Part I paper we
refer rather to (Cole and Zajicek, 1990). There, a data structure was given

42 COLE AND VISHKIN

for storing the active tasks at each processor. This data structure supports
the following constant time operations:

(i) A transfer of tasks from one processor to another processor as
required by the redistribution procedure.

(ii) A deletion of a no longer active task.

APPENDIX 2: THE UNION-FIND PROBLEM

A special case of the UNION-FIND problem is solved. Suppose that
initially n elements are provided on which parallel collections of UNION
operations alternate with collections of FIND operations. Next suppose
that at each point in time the sets can be divided into two categories, the
fixed and the changing sets; it is guaranteed that no further UNIONS are
performed on a fixed set, while further UNIONS may be performed on
changing sets. A changing set may become fixed. Suppose further it is
guaranteed that after a sequence of i (parallel) collections of UNION
operations there are at most cn/2’ changing sets at hand, for some
constant c. This makes the problem considered here only an instance of the
general UNION-FIND problem (see, e.g., (Aho et al., 1974)).

We show how to maintain a UNION-FIND data structure that uses
O(na(m, n)) operations and O(log n) time to perform all the UNIONS
while performing each FIND in O(a(m, n)) time and being able to perform
any number of FINDS in parallel. Henceforth, we denote ol(m, n) by a. The
parameter m is unspecified; it is natural to choose it to be equal to the
number of FIND operations, which is the choice for our application.

The sets are stored in a table T. For each element e, T(e) is the name of
the set currently containing e. We show how to maintain T, using a total
of O(na(m, n)) operations and O(log n) time, so that, using a single
processor, it takes O(a(m, n)) time to determine T(e). Each set of UNION
operations is provided in the following form. The names of the new sets are
provided in two arrays, one for the new fixed sets, the other for the
new changing sets; also, each old changing set has a pointer to its new
containing set.

We maintain the table T as a forest. Each changing set is the root of a
tree of exactly c(+ 2 levels. The leaves, level CI + 1 nodes, represent elements.
The roots, level 0 nodes, represent the current sets. Internal nodes represent
sets created at earlier phases of the processing. Each node, except a root,
has a pointer to its parent in the forest. Initially, each tree is a chain of
a + 2 copies of the same element. Each fixed set is quite similar, except that
it is the root of a tree with at most a + 2 levels. It is helpful. to consider the
trees for fixed sets as missing a span [1, i] of levels, for some i, 0 < i G cc.

APPROXIMATE PARALLEL SCHEDULING, II 43

The fixed and changing sets are stored in one table, containing one array
for each level i> 1, but two arrays for level 0; one of the arrays at level 0
contains the fixed sets, while the other contains the changing sets. We also
record the number of nodes at each level, where by the “size” of level 0 we
mean the number of its changing sets. Since the table is a forest, the sizes
of the levels, going down towards the leaves, starting at level 1, are non-
decreasing. A good intuitive guide is to view the sizes as being rapidly
increasing (although this is not strictly correct all the time).

After every sequence of unions, the forest is updated as follows. We
introduce new roots corresponding to new sets. Each new root is presented
in exactly one array; either the fixed set array, or the changing set array.
Each old changing set has a pointer to its new containing set. In effect, a
forest of CI + 3 levels has been created. To perform the update we need to
recreate a forest of CI + 2 levels; this is achieved by shortcutting over the old
level 0 changing sets. The shortcutting is performed by the level 1 nodes in
0(1) time; the number of operations performed is proportional to the num-
ber of level 1 nodes. We call this process updating the level 0 nodes. In
addition, the new fixed sets are placed at the end of the array containing
the old fixed sets (this array is given size n to ensure it has sufficient space).

On occasion, we update the level i> 1 nodes (and consequently the
parent pointers for the level i+ I nodes) as follows. (See Fig. 1.) This
update requires the introduction of a new level i- 1, a new level i, and
changes the parent pointers at level i + 1. We create a new instance of level
i- 1: it is a copy of the old level i- 1. This will be the new level i- 1 (if
i= 1, the copy of old level i- 1 is a copy of the changing sets). The parent
pointers in the old level i- 1 are now changed to point to the correspond-
ing nodes in the new level i- 1. The old level i - 1 will become the new
level i. At this point we have created a forest of tl+ 3 levels; it remains to
reduce it to CI + 2 levels by shortcutting over the old level i. The shortcut-
ting is performed by the level i-t 1 nodes in 0(1) time. The number of
operations performed in updating levet i is proportional to the size of level
i + 1 plus the size of level i- 1; but this is proportional to the size of level
i+ 1 (since the sizes of the levels, going towards the leaves, are non-

before update during update

FIG. 1. An update of level 1.

after update

44 COLE AND VISHKIN

decreasing). Again, since the sizes of the levels, going down the forest
(towards the leaves), are non-decreasing, we can afford to update suc-
cessively deeper levels of the forest less and less frequently.

At this point, it is helpful to recall the definition of Ackerman’s function
and its inverse:

A(l,j)=2j for jai

A(i, 1) = A(i- 1,2) for i>l

A(i,j) = A(i- 1, A(i,j- 1)) for i,j>l.

We define A(i, 0) = 1, for all i. (This last definition is merely for con-
venience. It is used in Lemma 1, below.)

We define a(m, n) to be the least i such that A(i, TM/n]) > n.
The procedure will need all the values of Ackerman’s function <n. But

these values are readily computed by a single processor in O(log n) time;
this processor places these values in an array.

The followng rule indicates when updates are performed:

Level i, for 1 6 i < CC, is updated when the size of the (i - 1) th level
is lirst bounded by n/[A(i, r)12, for r = 0, 1, in turn. In addition,
we define the creation of each node at each level to be its first
update.

We remark that the outermost squaring is present for technical reasons; for
intuitive understanding it can be ignored.

LEMMA 1. For i > 1, between two successive updates of level i + 1, the
second of which reduces level i + 1 from size at most n/[A(i + 1, r)]’ to size
at most n/[A(i+ 1, r + l)]‘, for some r 30, level i is updated at most
A(i + 1, r) times, for r > 1, and at most 2 times, for r = 0 uor r = 0, the first
update to level i+ 1 is its creation).

Proof Between these two updates of level i + 1, level i is reduced from
size at most s, =n/[A(i, A(i+ 1, r- 1))12=n/[A(i+ 1, r)12, for r> 1, from
size s, =n/[A(i+ 1, l)]‘=n/[A(i, 2)12, f or r = 1, and from size st =n =
n/[A(i,0)]2=n/[A(i+1,0)]2, for r=O, to size at most s2=
n/[A(i, A(i+ 1, r))]‘=n/[A(i+ 1, r+ l)]?, for r> 1, and to size at most
s2=n/[A(i+ 1, l)]“=n/[A(i, 2)]‘, f or r = 0. An update of level i reduces it
from size at most n/[A(i, j)]’ to size at most n/[A(i, j+ l)]‘; thus reducing
level i from size at most sI to size at most s2 requires at most
A(i+ 1, r)-A(i+ 1, r- 1) updates of level i, if r> 1, at most A(i+ 1, r)-2
updates of level i, if r = 1, and at most 2 updates of level i, if r = 0. The
lemma follows. 1

APPROXIMATE PARALLEL SCHEDULING, II 45

LEMMA 2. The updates to level 0 perform O(n) operations in time
O(log n).

ProoJ Each update requires 0(1) time and performs O(llevel 1 I) opera-
tions. We start by considering the first /-log cl updates, which reduce the
bound on the number of changing sets to at most n. These require
O(log cn) or O(n) operations and time O(1). Next, we consider the
remaining updates to level 0. The result follows from the following claim:
After the 2kth such update level 1 has size at most r~/2”~. For the 2kth such
update reduces the bound on the number of changing sets to at most n/22k.
Thus at this point, or earlier, level 1 is updated so as to reduce its size to
at most n/2’k. 1

LEMMA 3. Level cx is updated less than m/n times.

Proof: Following rm/nl updates level M would have size at most
n/[A(a, rm/nl)]* < 1. The lemma follows. 1

LEMMA 4. The total number of operations used to perform all the updates
is O(nu + m).

Proof: Each update to level a uses O(n) operations; so, by Lemma 3,
the updates to level tl use O(m) operations altogether. By Lemma 1, the
updates to level i, 1 <ii<, for each r> 1, use O((n/A(i+ 1, r)‘)A(i+ 1, r))
operations and in total, OE,,o n/A(i+ 1, r)) operations. But
x: Cr,O n/A(i+ 1, r) = O(n). Again, by Lemma 1, the updates to level i,
1 d i < CI, for r = 0, use O(n) operations; over all the levels, this is O(na)
operations. Finally, the cost of the updates to level 0 is O(n) by
Lemma 2. j

Each update takes 0(1) time and there are O(log n) updates to all the
levels (for the number of updates at level 0 is O(log n), at level 1 is
O(log”’ n), at level 2 is O(log* n), and at all subsequent levels decreases by
a factor of at least 2 from level to level; in fact it decreases by much larger
factors). To know when to perform an update, we need to maintain a count
of the number of nodes at each level of the forest. Level i acquires the size
of level i- 1 whenever level i is updated. Also recall that the nodes at each
level are stored in an array; whenever the size of level i is reduced, the new
level i nodes must be placed in contiguous locations in the array. But this
is readily achieved, for a new level i is merely a copy of level i- 1.

Thus, over the whole algorithm, maintaining the vertex table requires
O(na+m) operations and O(log n) time. The table uses O(ncc) space.
Clearly, each FIND takes O(u) time.

Remark. We can reduce the operation count for maintaining the vertex

46 COLE AND VISHKIN

table to O(n +m) operations. It suffices to keep just one instance of
“identical” levels, that is, levels of the same size. This also reduces the space
requirement to O(n +nz) space. We leave it to the interested reader to
verify the claimed complexity bound.

ACKNOWLEDGMENTS

We are very grateful to the referees for their help. One referee, Torben Hagerup, read the
paper very carefully and thoroughly on three occasions; he discovered several non-trivial
errors in the paper and made a substantial number of useful suggestions that led to a con-
siderable improvement in the presentation of the paper. We also thank Jeanette Schmidt for
translating the other referee’s report from German into English.

RECEIVED April 22, 1987; FINAL MANUSCRIPT RECEIVED December 11, 1989

REFERENCES

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. (1974). “The Design and Analysis of
Computer Algorithms,” Addison-Wesley, Reading, MA.

ATALLAH, M. J. (1984), Parallel strong orientation of an undirected graph, 1form. Process.
Lett. 18, 37-39.

AWERBUCH. B., ISRAELI, A., AND SHILOACH, Y. (1984), Finding Euler circuits in logarithmic
parallel time, in “Proc. Sixteenth Annual ACM Symp. on Theory of Computing,”
pp. 249-251.

AWERBUCH, B., AND SHILOACH, Y. (1983), New connectivity and MSF algorithms for
ultracomputer and PRAM, in “Proc. Int. Conf. on Parallel Processing,” pp. 1755179.

ATALLAH M., AND VISHKIN. U. (1984). Finding Euler tours in parallel, J. Comput. System Sci.
29, 33Cb337.

BRENT, R. P. (1974), The parallel evaluation of general arithmetic expressions, J. Assoc.
Comput. Mach. 21 (2), 201-206.

COLE. R. (1987/1988). An optimally efficient selection algorithm, 1fornl. Process. Lett. 26,

295-299.
CHIN, F. Y., LAM, J., AND CHEN, I. (1982), Efficient parallel algorithms for some graph

problems, Comm. ACM 25, 659-665.

COLE, R., AND VISHKIN, U. (1986a), Deterministic coin tossing with applications to optimal
parallel list ranking, Inform. and Control 70, 32-53.

COLE, R., AND VISHKIN, U. (1986b), Deterministic coin tossing and accelerating cascades:
Micro and macro techniques for designing parallel algorithms, in “Proc. Eighteenth Annual
ACM Symp. on Theory of Computing,” pp. 206-219.

COLE, R., AND VISHKIN, U. (1986c), Approximate and exact parallel scheduling with applica-
tions to list, tree and graph problems, in “Proc. Twenty Seventh Annual Symp. on Founda-
tions of Computer Science,” pp. 478491.

COLE, R.. AND VISHKIN, U. (1989), Faster optimal parallel prefix sums and list ranking,
Inform. and Comput. 81, 334-352.

COLE, R., AND VISHKIN, U. (1987), “Approximate Parallel Scheduling. Part II: Applications
to Logarithmic Time Optimal Parallel Graph Algorithms,” TR 64/87, Dept. of Computer
Science, Tel Aviv Univ., also, TR 291, Dept. of Computer Science, Courant Institute,
New York University.

APPROXIMATE PARALLEL SCHEDULING, II 47

COLE, R.. AND VISHKIN, U. (1988a), The accelerated centroid decomposition technique for
optimal parallel tree evaluation in logarithmic time, Algorithmica 3, 329-346.

COLE, R., AND VISHKIN, U. (1988b). Approximate parallel scheduling. I. The basic technique
with applications to optimal parallel list ranking in logarithmic time, SIAM J. Compuf. 17,

1, 128-142.
COLE, R., AND ZAJICEK, 0. (1990) An optimal parallel algorithm for building a data structure

for planar point location, J. Pardel D&rib. Compur. 8, 280-285.

EVEN, S. (1979), “Graph Algorithms,” Computer Sci., Press, Rockville, MD.
GAZIT, H. (1986). An optimal randomized parallel algorithm for finding connected com-

ponents in a graph, in “Proc. Twenty Seventh Annual Symp. on Foundations of Computer
Science,” pp. 4922501.

HAGERUP, T. (1988) Optimal parallel algorithms on planar graphs, in “Proc. 3rd AWOC,”
pp. 24-32, Lecture Notes in Computer Science, Springer-Verlag, Berlin/New York.

HAGERUP, T., CHROBAK, M., AND DIKS, K. (1989), Optimal parallel 5-coloring of planar
graphs, in “Proc. 14th ICALP,” pp. 304313; SIAM J. Comput. 18, 288-300.

HIRSCHBERG, D. S., CHANDRA, A. K., AND SARWATE, D. V. (1979) Computing connected
components on parallel computers, Comm. ACM 22, 461464.

KOUBEK, V., AND KRSNAKOVA, J. (1987), Parallel algorithms for connected components in a
graph, in “Fifth International Conference on Fundamentals of Computer Science,”
pp. 208-217, Lecture Notes in Computer Science, No. 199, Springer-Verlag. Berlin/New
York.

KRUSKAL, C. P.. RUDOLPH, L., AND SNIR, M. Efficient parallel algorithms for graph problems,
Algorithmica 5, 43-64.

LOVASZ, L. (1985), Computing ears and branchings in parallel in “Proc. Twenty Sixth Annual
Symp. on Foundations of Computer Science,” pp. 464467.

MAON, Y., SCHIEBEK, B.. AND VISHKIN. U. (1986) Parallel ear decomposition search (EDS)
and st-numbering in graphs, Theoret. Compur. Sci. 47, 277-298.

SAVAGE, C., AND JA’JA’. J. (1981). Fast, efficient parallel algorithms for some graph problems,
SIAM J. Comput. 10, 682-691.

SHILOACH. Y., AND VISHKIN, U. (1982) An O(log n) parallel connectivity algorithm, J. Algo-

rithms 3, 57-67.
SCHIEBER, B. AND VISHKIN, U. (1987) On finding lowest common ancestors: Simplification

and parallelization, TR 63187. Dept. of Computer Science, Tel Aviv University; SIAM J.
Compur. 17, 125331262.

TSIN, Y. H., AND CHIN, F. Y. (1984) Efficient parallel algorithms for a class of graph
theoretic problems, SIAM J. Comput. 13, 58&599.

TARJAN, R. E.. AND VISHKIN, U. (1985), An efficient parallel biconnectivity algorithm, SIAM

J. Comput. 14, 862-874.
VISHKIN, U. (1983). Synchronous parallel computation-A survey, TR 71, Dept. of Computer

science, Courant Institute, New York University.
VISHKIN, U. (1984) An optimal parallel connectivity algorithm, Discrete Appl. Math. 9,

197-207.
VISHKIN, U. (1985) On efficient parallel strong orientation, Inform. Process. Letf. 20, 235-240,
WYLLIE, J. C. (1979). The complexity of parallel computation, TR 79-387, Department of

Computer Science, Cornell University. Ithaca, NY.

