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Abstract

Adomian decomposition method has been employed to obtain solutions of a system of fractional
differential equations. Convergence of the method has been discussed with some illustrative exam-
ples. In particular, for the initial value problem:

[Dal}’lanwDan}’n]t:A(y1,---,yn)t, yl(o):Cl, i:].,...,n,

whereA = [q;;] is a real square matrix, the solution turns out toee) = £y, . 4,),1(*“ A1, ...,

x% Ap)y(0), where€(y, 4,1 denotes multivariate Mittag-Leffler function defined for matrix ar-
guments and; is the matrix havindth row as[q;1 . ..a;,1, and all other entries are zero. Fractional
oscillation and Bagley—Torvik equations are solved as illustrative examples.

0 2004 Elsevier Inc. All rights reserved.

Keywords: Caputo fractional derivative; System of framial differential equations; Adomian decomposition;
Bagley—-Torvik equation; Fractional diation equation; Mittag-Leffler function

1. Introduction

In recent years considerable interest in fimgal differential equations (FDE) has been
stimulated due to their numerous applications in the areas of physics and engineering
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[11,15]. Damping laws, diffusion processes [5] and fractals [15] are better formulated with
the use of fractional derivatives/integsdll0—12]. Recently, Atan&ovic and Stankovic
[3] have analyzed lateral motion of an elastic column fixed at one end and loaded at the
other, in terms of a system of FDE. Thus system of FDE is an important aspect which finds
many applications. Daftardar-Gejji and Bddhani [6] have earlier presented analysis of
a system of FDE. They have studied existence, uniqueness and stability of solutions of a
system of FDE. In particular they have proved that, for the initial value problem:

D%y =Ay, §(0)=jo, 1)
whereA = [g;;] is a real square matrix, the unique solution is

y(x) = Eq(x*A)Yo,
where E,, is Mittag-Leffler function with matrix arguments. As a pursuit of this in the
present paper we obtain analytical solution of the more general system of FDE:

n
D% yi(x) =Y ($ij(x) + i D)y + gi(x), 1<i,j<n, 2)
j=1
where D% denotes Caputo fractional derivative of order Amongst a variety of defin-
itions for fractional order derivatives, Caputo fractional derivative has been used [9] as it
is suitable for describing various phenomena, since the initial values of the function and
its integer order derivatives have to be specified. Numerical methods [7,8], which are com-
monly used, encounter difficulties in termstbe size of the computational work needed
and usually the rounding-off error causes loss of accuracy. A new iterative method pro-
posed by Adomian [2] has proven rather successful in dealing with both linear as well as
non-linear problems. This computational method yields analytical solutions and has cer-
tain advantages over standard numerical methods. It is free from rounding off errors as
it does not involve discretization, and does not require large computer memory or power.
Babolian et al. [4] have applied this method to a system of ordinary differential equations.
Shawagfeh [13] has employed this method for solving non-linear FDE. In the present pa-
per we explore Adomian decomposition method to obtain solutions of the above mentioned
system of FDE. We discuss convergence problem and present illustrations encompassing
Bagley and Torvik [14] and fractional oscillation equations [8].
In particular we consider the following system which is a generalization of Eq. (1):

[D*hy1, ..., Dy, I' = A(y1, ...y, »i(@=ci, i=1...,n,
whereA = [qg;;] is a real square matrix, the solution turns out to be

)_]('x) = g(al,...,an),l(xalAls LR xanAn))_/(o):

where&,, .. «,),1 denotes multivariate Mittag-Leffler function defined for matrix argu-
ments and4; is the matrix havingth row as[a;1...a;,], and all other entries are zero.
This result generalizes the result obtaliey Daftardar-Gejji and Babakhani [6].

The present paper has been organized as follows. In Section 2 we give basic definitions.
System of FDE and Adomian decomposition have been dealt with in Section 3, whereas
convergence of the decomposition method has been discussed in Section 4. Applications
have been presented in Section 5. This is followed by the conclusions, which are summa-
rized in Section 6.
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2. Basic definitions

Definition 2.1. A real function f (x), x > 0, is said to be in the spaeg,, o € R if there
exists a real number (> «), such thatf (x) = x? f1(x), where f1(x) € C[0, c0). Clearly
Cy CChif p<a.

Definition 2.2. A function f(x), x > 0, is said to be in the spac&), m € N U {0}, if
e c,.

Definition 2.3. The left sided Riemann—Liouville fractional integral of orgel: 0, [9-12]
of a functionf € C,, @ > —1, is defined as

f@
I'(w) ) (x—nin
0

I"f(x)= dt, n>0, x>0,

1°f (x) = f(x). ©)

Definition 2.4. Let f € C™;, m € N. Then the (left sided) Capuifractional derivative of
f is defined as [9,11]

(I 1M ()], m—1<p<m,
D“f(x) = { am f M (4)
dtmf(t)v M:m
Note that [9,11]
"IV F=TM"f u,v>0, feCq, a>-—1,
'y+21
Y = e L Y 0, -1, 0,
YT T e+ p=%y==% 1=
m—1 tk
1“D“f(t)=f(t)—Zf(")(0+)ﬁ, m—1<pu<m. (5)
k=0 :

3. System of fractional differential equations and Adomian decomposition

In the present paper we consider the following system of linear fractional differential
equations:

n
D% yi(x) =Y (¢ij @) + yi; D )yj + gi(x). ¥ O =, (6)
j=1
where 0< k < [«;], if «; is not an integer, and € k < o; — 1 if ¢; is an integer. Here
0< 4 <oy, for 1<, j <n, y;;’s are constants angl; (x), gi(x) € C[0, T].
Applying 7% to both the sides of Eq. (6), we get
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[ei] ek n [eif] x%i—aijtk
. — L Y. — .
it = ey +1%gi) Z”’Z‘kr(a,—a,]+k+1)
k=0 j=1 k=0
n
+ D (13 (x) + yi 170 )y, where 1< < n. (7)
j=1

We employ Adomian decomposition method to solve the system of Eq. (7). The Adomian
decomposition method [2] consists of representinop the decomposition form given by

Vi)=Y yim(x), ®)

m=0
where the componenis,,, m > 0, can be determined in a recursive manner. Substituting
Eq. (8) into both sides of Eq. (7), we get

o] [y ] X% —ij +k

Zy,m(x) ch A +I gl(x)_jzlyl] gck F(O[, —O[,] +k+1)

m=0

+ Z(Z(IO"'%‘(X)-FVUI“"ai’))’jm(X)), 1<i<n. 9)

m=0 \ j=1

The decomposition method defines the compongntér), m > 0, by the following re-
cursion relation:

n ;] . X%tk
= I¢ -
yiolx) = chkl +178i(x) ]X;yllkxg)ckr(al_al] +k+1)
n
Vi1 (x) =Y (1%¢i; (¥) + i 147 ) yjm(x), 1<i<n, m=0,1,.... (10)

j=1
We approximate the solution (x) by the truncated series
k-1

fie@) =" yim(x) and Jm ik (x) = i (x).

m=0

Adomian decomposition method is very simpidts principles, hough the difficulties
consist in proving the convergence of the Adomian series [1]. In the following section we
prove the convergence of the serfes,_q yim (x).

4. Convergence

In this section we show convergence of the decomposition series. In view of Eq. (10),

n
|yin ()| < |1% i () yj000) | + |y 1% 7% yjo(x)]
j=1
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o x i

<nML— 4 L
ra 1 'k Zr(a, a; + 1)

where
M:XgEaX]{qb,'j(x)}, i,j=1....n,
Yy = 1<”l1§§ {vij}, L= xgg)v;] yio(x).
LetBij =o; —w;j, 1< j<n, fiprr=04, 6 >maxnML,yL} andz;; =8xPii, 1<
i,j<n.

ERBIET) Dpec s S i) — }
i-x ~X = ;1"'711
TS L Tty R VTR STy )

I+ A+ p1=1
;>0
n+l n+l Bik n+l BijtBik
. 2 Bij X 52 i
yio(x)| <6 17 —_— —_————
[yizo) ; Z11(1+,3k) Z L QL+ Bij + Bir)

n;’*izf;
= kili, ..., 1,
2, h +l)[F<1+ B J

l1+- A+ p1=2
1;>0

n+1l n+1l n+1 m ﬁijk

|yim(x)| <" Z Z Z 1"(1—:21:; 1léljk

J1=1j2=1 Jm=1
n+1 _I;
[Tj21% }

= k;l,...,ln
2 kh “)[r(1+2"+1ﬂ,,1)

ll+"'+ln+1:m
;20

Hence )" o Yim < géﬁilv---,ﬁi,n+l),ﬁ(zil’ 22y -+ > Zint1), Where g =1 andz;; = 8xPii,
j=1,...,n+ 1. The multivariate Mittag-Leffler functio&’ [9,11] is defined below:

i , . .
BB, pFiLs 2i2s s Zint1)

e [z
= kili, ..., 1,
2. 2. b +l)[F(ﬁ Z"“ﬂ,,l)}

k=0 Iy 4+ 1=k
1;>0

Thus|y;, (x)] is bounded by the:th term of a multivariate Mittag-Leffler series, which is
convergent. Hence by comparison t®sf"_, yin (x) is convergent.
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5. Applications

In this section we generalize the Mittag-Leffler function for matrix argumanis. ., A
as follows:

Aj Ai A,
=1+ —_Cnt
Z F(:B +all) Z F(:B +Oli1 +ai2)

i1=1 =1,
n
Ai A, . LA

D DR e verrm——

=1 ige T iy =1 B+ o +ai, -+ Q)

00 n

Ai A, . A

R I el | -

m=1Li1=1i>=1,...,i,=1 ('3 + iy + ip Tt alm)

5.1. llustrative examples

To demonstrate the effectiveness of the method we consider here some fractional differ-
ential equations.
(I) Consider the initial value problem
DY =Ay, 50 =(c1,....,cn)!, O<ai<1l i=1,...,n

wherey = (y1, ..., ya)', DYy = (D*y1, ..., D% y,)" andA = [aij1nxn IS @ square matrix
of constants. This system is equivalent to the following system of integral equations:

yi(x)=c¢; + 1% Zaijyj(X), i=12...,n
j=1
Note that this is a special case of Eq. (6) and is obtained by pugng 0= g;. In
view of Eq. (10),

n

x%i
Yio = Ci, Y1 =) aij———,
— " T (1+ o)
Jj=1
Z xeita;
Yi2 = aijadjkChk—— >
PR (A4 o + o)
Jj.k=1
n xai+as+0[j
V3= ) @is@ijajrck ;
4 PN A+ e +aj)
J.k,s=1
i XZ;"Zlaz_,
Yim = Al Alyly - - - Al Al Cly | 7 T ~m .~ |
1,020l =1 F(1+ Zj:lalj)

It is observed thap(x) = [E,.....a,).1(x A1, ..., x* A)]1¥(0), whereA; has the only
non-zero row asth row with entries[a;1...ai,], and all other entries are zero. Here
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Eq..a) 1(x2A1, ..., x¥ A,) denotes multivariate Mittag-Leffler function for matrix ar-
guments.
(1) Consider the fractional oscillation equation [8]

DYy +by()) = (1), y©O) =yo. (0 =y,
wherea € (0,1) and f satisfies Lipschitz condition. This equation is equivalent to the
following system of equations:

D'yi=y2  y1(0)= yo,

D%y2=—byr1+ f(1), y2(0) = yp.
Here we solve the following particular case using Adomian decomposition:

Dlyi=y, y1(0)=1,

D*y2=y1, y2(00=0, a€(0,1). (12)
To derive the solution, we use the following Adomian scheme:

yi=1+1",  y2=0-1%1,

yio=1, and y2=0,

Yim+1=Iyom, Yyam+1=—1%V1m, m=0,1,....

In the first iteration we have

ro

=1 =0 and =-J¢ =——" x“.
y11=1y20 yo1 Y10 Tt 1)x

The subsequent terms are

a+1l
=Ilyyy)=——— and =1 =0,
yie=1Iy2 Fat2 Y22 Y11
x2a+1
=1Iy»»=0 and =—I%p=————.
yiz=1y22 Y23 Y12 r2a+2)
In general we get
k xk(a+1) .
)= { D' rgeroy [ =26
' 0, j=2k+1,
{0’ R (13)
y2i = k+1 k(a+1)+a .
Y e =2+ L

Using Eq. (8) we can write; andyz in the following form:

S S ' xk(oz—i—l)
= ] —_— —1 —’
1 ]Zzoy L kz=o(  rk@+D+D

S xk(oz—i—l)-i—a

= =Y (—)&+D . 14
72 ;yz-’ kz=o( S M@+ DU+ DI (14)

In Figs. 1-4 we ploty for various values od.
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Fig. 1.a = 0.3. Fig. 2.a = 0.5.
Y1 Y
0.6 1

A s WA AN
- \/ \J UV

Fig. 3. = 0.8. Fig. 4.o = 0.95.

Remark. Fractional oscillation equation has been solved by numerical methods by Ed-
wards et al. [8]. They have plotted solutions of Eq. (12)det 0.3, = 0.5, = 0.8, and

a = 0.95. It should be remarked that the graphs drawn here using Adomian method are in
excellent agreement with those drawn using numerical methods [8].

(111 We discuss Bagley—Torvik equation [8,1#]at arises, for instance, in modelling
the motion of a rigid plate immersed in Newtonian fluid,

Dy +bD*y +biy=f. y(0)=yo. ¥'(0) = yp
wherea; =@ 4+ 1, @ € (0,1). This equation can be viewed as the following system of
equations:

DPy1 =y, y1(0) = yo,

DP +byD%yo = f —b1y1,  y2(0)='(0),

where g = 1. Using the Adomian decompositionetinod, we obtain the solution for the
caseby =bp=1, f =0, as follows:

[B] ok
Yl_zck—_lﬁ)@
[/3] [o] KBtk
= __]/3 o — 1Py,
2= ch 2t “TE—at+k+n =

k=0
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y20=0, y10=1,
_ m=0,1,2,....
yomr=—1P"%yo, — 1P y1,, { Yims1=1Pyon,
In the first iteration we get
y11=1Py0=0, ,
y21=—1P"y20— I y10= — 75
and the following terms are:
a+p 3—a
Y12=Iﬁy21=—p(§+7/3+1), {YlBZW,
_ x2b—e _ 3p—2a 3B
Y22 = Fop—atD) Y23=~Fap—amiD T TORD:
A2 4B
V4= Tag—2atD T TURTD"
x4B—3x _o_x 4p—a
Y24 = F(4ﬂ 3a+1) @p—a+1)’
[n/2] xM(B—)+2ja
w=>» (-1)"a
’ ]Zl “T0(p—a) +2ju+1)’
where
ap-1j +an—2j-1, 1<j<3,
anj = 1, n= ] = O,

0, otherwise.
Following Eq. (8) we can write; andy» in the following form:

Z i[fl . P(B—)+2ja
yi= Y =1+ =" Ja Anj
= S Fn(B—a)+2ja+1)’
00 oo [n/2] i n(ﬁ—a)+(2j—l)0(
= = HrIT4p
== Y e

[(n/2) %
+ Z( F(2k +1)

whereb,; is defined similar tau,; .

In Figs. 5, 6 we draw for o =05, B =1anda =0.25,8 =1, respectively.

(15)

(16)

(17)

Remark. The graphs drawn in the Figs. 5 and 6 are in excellent agreement with those

drawn in [8] using numerical methods.

6. Conclusions

Adomian decomposition method is a powerful tool which enables to find analytical
solutions in case of linear as well as non-linear equations. The method has been suc-
cessfully applied to a system of FDE. It is interesting to note that for the initial value
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Y1 Y

1 0.4
0.8

0.2 /\
0.6
0.4 5 10 \jﬁfﬁ‘%ﬁ *
0.2 s
2 ) 6 g 10 1z 11 *
-0.2 -0.4
Fig. 5.0 = 0.25. Fig. 6.0 = 0.5.

problem[D% y1, ..., D*y,]' = A(y1,..., yn)", ¥i(Q)=c;,i =1,...,n, whereA is areal
square matrix, the solution turns out to Péx) = .. a,),1(X* AL, ..., x*A,)y(0),
A; is a matrix havingith row as[a;1...a;,], and all other entries are zero and
), 1 (XA, ..., x% A,) denotes an extension of multivariate Mittag-Leffler func-
tion for matrix arguments. In particular@hgraphs (Figs. 1-4) of fractional oscillation
equations and those (Figs. 5, 6) of Bagley—Torvik equation are in excellent agreement with
those obtained using numerical methods [8].

The computations associated with the illustrative examples in this paper were carried
out using Mathematica.
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