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Abstract

Adomian decomposition method has been employed to obtain solutions of a system of fra
differential equations. Convergence of the method has been discussed with some illustrative
ples. In particular, for the initial value problem:

[Dα1y1, . . . ,Dαnyn]t = A(y1, . . . , yn)t , yi (0) = ci, i = 1, . . . , n,

whereA = [aij ] is a real square matrix, the solution turns out to beȳ(x) = E(α1,...,αn),1(x
α1A1, . . . ,

xαnAn)ȳ(0), whereE(α1,...,αn),1 denotes multivariate Mittag-Leffler function defined for matrix
guments andAi is the matrix havingith row as[ai1 . . . ain], and all other entries are zero. Fraction
oscillation and Bagley–Torvik equations are solved as illustrative examples.
 2004 Elsevier Inc. All rights reserved.

Keywords: Caputo fractional derivative; System of fractional differential equations; Adomian decomposition;
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1. Introduction

In recent years considerable interest in fractional differential equations (FDE) has be
stimulated due to their numerous applications in the areas of physics and engin
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[11,15]. Damping laws, diffusion processes [5] and fractals [15] are better formulated
the use of fractional derivatives/integrals [10–12]. Recently, Atanackovic and Stankovic
[3] have analyzed lateral motion of an elastic column fixed at one end and loaded
other, in terms of a system of FDE. Thus system of FDE is an important aspect which
many applications. Daftardar-Gejji and Babakhani [6] have earlier presented analysis
a system of FDE. They have studied existence, uniqueness and stability of solutio
system of FDE. In particular they have proved that, for the initial value problem:

Dαȳ = Aȳ, ȳ(0) = ȳ0, (1)

whereA = [aij ] is a real square matrix, the unique solution is

ȳ(x) = Eα(xαA)ȳ0,

whereEα is Mittag-Leffler function with matrix arguments. As a pursuit of this in
present paper we obtain analytical solution of the more general system of FDE:

Dαi yi(x) =
n∑

j=1

(
φij (x) + γijD

αij
)
yj + gi(x), 1 � i, j � n, (2)

whereDαi denotes Caputo fractional derivative of orderαi . Amongst a variety of defin
itions for fractional order derivatives, Caputo fractional derivative has been used [9
is suitable for describing various phenomena, since the initial values of the functio
its integer order derivatives have to be specified. Numerical methods [7,8], which are
monly used, encounter difficulties in terms ofthe size of the computational work need
and usually the rounding-off error causes loss of accuracy. A new iterative metho
posed by Adomian [2] has proven rather successful in dealing with both linear as w
non-linear problems. This computational method yields analytical solutions and ha
tain advantages over standard numerical methods. It is free from rounding off err
it does not involve discretization, and does not require large computer memory or p
Babolian et al. [4] have applied this method to a system of ordinary differential equa
Shawagfeh [13] has employed this method for solving non-linear FDE. In the prese
per we explore Adomian decomposition method to obtain solutions of the above men
system of FDE. We discuss convergence problem and present illustrations encom
Bagley and Torvik [14] and fractional oscillation equations [8].

In particular we consider the following system which is a generalization of Eq. (1)

[Dα1y1, . . . ,D
αnyn]t = A(y1, . . . , yn)

t , yi(0) = ci, i = 1, . . . , n,

whereA = [aij ] is a real square matrix, the solution turns out to be

ȳ(x) = E(α1,...,αn),1(x
α1A1, . . . , x

αnAn)ȳ(0),

whereE(α1,...,αn),1 denotes multivariate Mittag-Leffler function defined for matrix ar
ments andAi is the matrix havingith row as[ai1 . . . ain], and all other entries are zer
This result generalizes the result obtained by Daftardar-Gejji and Babakhani [6].

The present paper has been organized as follows. In Section 2 we give basic defi
System of FDE and Adomian decomposition have been dealt with in Section 3, wh
convergence of the decomposition method has been discussed in Section 4. Appli
have been presented in Section 5. This is followed by the conclusions, which are su
rized in Section 6.
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2. Basic definitions

Definition 2.1. A real functionf (x), x > 0, is said to be in the spaceCα , α ∈ � if there
exists a real numberp (> α), such thatf (x) = xpf1(x), wheref1(x) ∈ C[0,∞). Clearly
Cα ⊂ Cβ if β � α.

Definition 2.2. A function f (x), x > 0, is said to be in the spaceCm
α , m ∈ N ∪ {0}, if

f (m) ∈ Cα .

Definition 2.3. The left sided Riemann–Liouville fractional integral of orderµ � 0, [9–12]
of a functionf ∈ Cα , α � −1, is defined as

Iµf (x) = 1

Γ (µ)

x∫
0

f (t)

(x − t)1−µ
dt, µ > 0, x > 0,

I0f (x) = f (x). (3)

Definition 2.4. Let f ∈ Cm
−1, m ∈ N . Then the (left sided) Caputo fractional derivative of

f is defined as [9,11]

Dµf (x) =
{ [Im−µf (m)(x)], m − 1 < µ � m,

dm

dtm
f (t), µ = m.

(4)

Note that [9,11]

IµIνf = Iµ+νf, µ, ν � 0, f ∈ Cα, α � −1,

Iµxγ = Γ (γ + 1)

Γ (γ + µ + 1)
xγ+µ, µ > 0, γ > −1, x > 0,

IµDµf (t) = f (t) −
m−1∑
k=0

f (k)(0+)
tk

k! , m − 1 < µ � m. (5)

3. System of fractional differential equations and Adomian decomposition

In the present paper we consider the following system of linear fractional differe
equations:

Dαi yi(x) =
n∑

j=1

(
φij (x) + γijD

αij
)
yj + gi(x), y

(k)
i (0) = ci

k, (6)

where 0� k � [αi ], if αi is not an integer, and 0� k � αi − 1 if αi is an integer. Here
0 � αij < αi, for 1 � i, j � n, γij ’s are constants andφij (x), gi(x) ∈ C[0, T ].

Applying Iαi to both the sides of Eq. (6), we get
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yi(x) =
[αi ]∑
k=0

ci
k

xk

k! + Iαi gi(x) −
n∑

j=1

γij

[αij ]∑
k=0

c
j

k

xαi−αij +k

Γ (αi − αij + k + 1)

+
n∑

j=1

(
Iαi φij (x) + γij I

αi−αij
)
yj , where 1� i � n. (7)

We employ Adomian decomposition method to solve the system of Eq. (7). The Ado
decomposition method [2] consists of representingyi in the decomposition form given b

yi(x) =
∞∑

m=0

yim(x), (8)

where the componentsyim, m � 0, can be determined in a recursive manner. Substitu
Eq. (8) into both sides of Eq. (7), we get

∞∑
m=0

yim(x) =
[αi ]∑
k=0

ci
k

xk

k! + Iαi gi(x) −
n∑

j=1

γij

[αij ]∑
k=0

c
j
k

xαi−αij +k

Γ (αi − αij + k + 1)

+
∞∑

m=0

(
n∑

j=1

(
Iαi φij (x) + γij I

αi−αij
)
yjm(x)

)
, 1 � i � n. (9)

The decomposition method defines the componentsyim(x), m � 0, by the following re-
cursion relation:

yi0(x) =
[αi ]∑
k=0

ci
k

xk

k! + Iαi gi(x) −
n∑

j=1

γij

[αij ]∑
k=0

c
j

k

xαi−αij +k

Γ (αi − αij + k + 1)
,

yi,m+1(x) =
n∑

j=1

(
Iαi φij (x) + γij I

αi−αij
)
yjm(x), 1 � i � n, m = 0,1, . . . . (10)

We approximate the solutionyi(x) by the truncated series

fik(x) =
k−1∑
m=0

yim(x) and lim
k→∞fik(x) = yi(x).

Adomian decomposition method is very simplein its principles, though the difficulties
consist in proving the convergence of the Adomian series [1]. In the following sectio
prove the convergence of the series

∑∞
m=0 yim(x).

4. Convergence

In this section we show convergence of the decomposition series. In view of Eq. (

∣∣yi1(x)
∣∣ �

n∑∣∣Iαi φij (x)yj0(x)
∣∣+ ∣∣γij I

αi−αij yj0(x)
∣∣
j=1
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� nML
xαi

Γ (αi + 1)
+ γL

n∑
j=1

xαi−αij

Γ (αi − αij + 1)
,

where

M = max
x∈[0,T ]

{
φij (x)

}
, i, j = 1, . . . , n,

γ = max
1�i,j�n

{γij }, L = max
x∈[0,T ]yi0(x).

Let βij = αi − αij , 1� j � n, βi,n+1 = αi , δ > max{nML,γL} andzij = δxβij , 1�
i, j � n.

∣∣yi1(x)
∣∣ � δ

n+1∑
j=1

xβij

Γ (1+ βij )
=

∑
l1+···+ln+1=1

li�0

(k; l1, . . . , ln+1)

[ ∏n+1
j=1 z

li
ij

Γ (β + ∑n+1
j=1 βij lj )

]
,

∣∣yi2(x)
∣∣ � δ2

n+1∑
j=1

Iβij

[
n+1∑
k=1

xβik

Γ (1+ βik)

]
= δ2

n+1∑
j,k=1

xβij+βik

Γ (1+ βij + βik)

=
∑

l1+···+ln+1=2
li�0

(k; l1, . . . , ln+1)

[ ∏n+1
j=1 z

li
ij

Γ (1+ ∑n+1
j=1 βij lj )

]
,

...

∣∣yim(x)
∣∣ � δm

n+1∑
j1=1

n+1∑
j2=1

. . .

n+1∑
jm=1

∏m
k=1 xβijk

Γ (1+ ∑m
k=1 βijk )

=
∑

l1+···+ln+1=m

li�0

(k; l1, . . . , ln+1)

[ ∏n+1
j=1 z

li
ij

Γ (1+ ∑n+1
j=1 βij lj )

]
,

...

Hence
∑∞

m=0 yim � E i
(βi1,...,βi,n+1), β(zi1, zi2, . . . , zi,n+1), whereβ = 1 and zij = δxβij ,

j = 1, . . . , n + 1. The multivariate Mittag-Leffler functionE i [9,11] is defined below:

E i
(βi1,...,βi,n+1),β(zi1, zi2, . . . , zi,n+1)

=
∞∑

k=0

∑
l1+···+ln+1=k

li�0

(k; l1, . . . , ln+1)

[ ∏n+1
j=1 z

li
ij

Γ (β + ∑n+1
j=1 βij lj )

]
.

Thus|yim(x)| is bounded by themth term of a multivariate Mittag-Leffler series, which
convergent. Hence by comparison test

∑∞
m=0 yim(x) is convergent.
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5. Applications

In this section we generalize the Mittag-Leffler function for matrix argumentsA1, . . . ,An

as follows:

E(α1,...,αn),β(A1, . . . ,An)

= I +
n∑

i1=1

Ai1

Γ (β + αi1)
+

n∑
i1=1, i2=1

Ai1Ai2

Γ (β + αi1 + αi2)
+ · · ·

+
n∑

i1=1, i2=1,..., im=1

Ai1Ai2 . . .Aim

Γ (β + αi1 + αi2 + · · · + αim)
+ · · ·

= I +
∞∑

m=1

[
n∑

i1=1, i2=1,..., im=1

Ai1Ai2 . . .Aim

Γ (β + αi1 + αi2 + · · · + αim)

]
. (11)

5.1. Illustrative examples

To demonstrate the effectiveness of the method we consider here some fractiona
ential equations.

(I) Consider the initial value problem

Dᾱȳ = Aȳ, ȳ(0) = (c1, . . . , cn)
t , 0 < αi < 1, i = 1, . . . , n,

whereȳ = (y1, . . . , yn)
t , Dᾱȳ = (Dα1y1, . . . ,D

αnyn)
t andA = [aij ]n×n is a square matrix

of constants. This system is equivalent to the following system of integral equations

yi(x) = ci + Iαi

n∑
j=1

aij yj (x), i = 1,2, . . . , n.

Note that this is a special case of Eq. (6) and is obtained by puttingγij = 0 = gi . In
view of Eq. (10),

yi0 = ci, yi1 =
n∑

j=1

aij
xαi

Γ (1+ αi)
,

yi2 =
n∑

j,k=1

aij ajkck
xαi+αj

Γ (1+ αi + αj )
,

yi3 =
n∑

j,k,s=1

aisaij ajkck
xαi+αs+αj

Γ (1+ αi + αj )
, . . . ,

yim =
n∑

l1,l2,...,lm=1

al1l2al1l2 . . . alm−1lmclm

[
x

∑m
j=1 αlj

Γ (1+ ∑m
j=1 αlj )

]
.

It is observed that̄y(x) = [E(α1,...,αn),1(x
α1A1, . . . , x

αnAn)]ȳ(0), whereAi has the only
non-zero row asith row with entries[ai1 . . . ain], and all other entries are zero. He
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the
E(α1,...,αn),1(x
α1A1, . . . , x

αnAn) denotes multivariate Mittag-Leffler function for matrix a
guments.

(II) Consider the fractional oscillation equation [8]

D1+αy(t) + by(t) = f (t), y(0) = y0, y ′(0) = y ′
0,

whereα ∈ (0,1) and f satisfies Lipschitz condition. This equation is equivalent to
following system of equations:

D1y1 = y2, y1(0) = y0,

Dαy2 = −by1 + f (t), y2(0) = y ′
0.

Here we solve the following particular case using Adomian decomposition:

D1y1 = y2, y1(0) = 1,

Dαy2 = y1, y2(0) = 0, α ∈ (0,1). (12)

To derive the solution, we use the following Adomian scheme:

y1 = 1+ I1y2, y2 = 0− Iαy1,

y10 = 1, and y20 = 0,

y1,m+1 = Iy2m, y2,m+1 = −Iαy1m, m = 0,1, . . . .

In the first iteration we have

y11 = Iy20 = 0 and y21 = −Iαy10 = − Γ (1)

Γ (α + 1)
xα.

The subsequent terms are

y12 = Iy21 = − xα+1

Γ (α + 2)
and y22 = −Iαy11 = 0,

y13 = Iy22 = 0 and y23 = −Iαy12 = − x2α+1

Γ (2α + 2)
.

In general we get

y1j =
{

(−1)k xk(α+1)

Γ (k(α+1)+1)
, j = 2k,

0, j = 2k + 1,

y2j =
{0, j = 2k,

(−1)(k+1) xk(α+1)+α

Γ [(α+1)(k+1)], j = 2k + 1. (13)

Using Eq. (8) we can writey1 andy2 in the following form:

y1 =
∞∑

j=0

y1j =
∞∑

k=0

(−1)k
xk(α+1)

Γ (k(α + 1) + 1)
,

y2 =
∞∑

j=0

y2j =
∞∑

k=0

(−1)(k+1) xk(α+1)+α

Γ [(α + 1)(k + 1)] . (14)

In Figs. 1–4 we ploty1 for various values ofα.
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Fig. 1.α = 0.3. Fig. 2.α = 0.5.

Fig. 3.α = 0.8. Fig. 4.α = 0.95.

Remark. Fractional oscillation equation has been solved by numerical methods b
wards et al. [8]. They have plotted solutions of Eq. (12) forα = 0.3, α = 0.5, α = 0.8, and
α = 0.95. It should be remarked that the graphs drawn here using Adomian method
excellent agreement with those drawn using numerical methods [8].

(III) We discuss Bagley–Torvik equation [8,14]that arises, for instance, in modellin
the motion of a rigid plate immersed in Newtonian fluid,

D2y + b2D
α1y + b1y = f, y(0) = y0, y ′(0) = y ′

0,

whereα1 = α + 1, α ∈ (0,1). This equation can be viewed as the following system
equations:

Dβy1 = y2, y1(0) = y0,

Dβ + b2D
αy2 = f − b1y1, y2(0) = y ′(0),

whereβ = 1. Using the Adomian decomposition method, we obtain the solution for th
caseb1 = b2 = 1, f = 0, as follows:

y1 =
[β]∑
k=0

c1
k

xk

k! − Iβy2,

y2 =
[β]∑

c2
k

xk

k! − Iβ−αy2 +
[α]∑

c2
k

xβ−α+k

Γ (β − α + k + 1)
− Iβy1,
k=0 k=0
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{
y20 = 0,

y2,m+1 = −Iβ−αy2m − Iβy1m,

{
y10 = 1,

y1,m+1 = Iβy2m,
m = 0,1,2, . . . . (15)

In the first iteration we get{
y11 = Iβy20 = 0,

y21 = −Iβ−αy20 − Iβy10 = − xα

Γ (α+1)
,

and the following terms are:{
y12 = Iβy21 = − xα+β

Γ (α+β+1)
,

y22 = x2β−α

Γ (2β−α+1)
,

{
y13 = x3β−α

Γ (3β−α+1)
,

y23 = − x3β−2α

Γ (3β−2α+1)
+ x3β

Γ (3β+1)
,{

y14 = x4β−2α

Γ (4β−2α+1)
+ x4β

Γ (4β+1)
,

y24 = x4β−3α

Γ (4β−3α+1)
− 2 x4β−α

(4β−α+1)
,

y1n =
[n/2]∑
j=1

(−1)n+j anj
xn(β−α)+2jα

Γ (n(β − α) + 2jα + 1)
, (16)

where

anj =



an−1,j + an−2,j−1, 1 � j � n
2,

1, n = j = 0,
0, otherwise.

(17)

Following Eq. (8) we can writey1 andy2 in the following form:

y1 =
∞∑

n=0

y1n = 1+
∞∑

n=0

[n/2]∑
j=1

(−1)n+j anj
xn(β−α)+2jα

Γ (n(β − α) + 2jα + 1)
,

y2 =
∞∑

n=0

y2n =
∞∑

n=2

[n/2]∑
j=1

(−1)n+j+1bnj
xn(β−α)+(2j−1)α

Γ (n(β − α) + (2j − 1)α + 1)

+
[n/2]∑
k=0

(−1)k
x2k

Γ (2k + 1)
,

wherebnj is defined similar toanj .
In Figs. 5, 6 we drawy1 for α = 0.5, β = 1 andα = 0.25,β = 1, respectively.

Remark. The graphs drawn in the Figs. 5 and 6 are in excellent agreement with
drawn in [8] using numerical methods.

6. Conclusions

Adomian decomposition method is a powerful tool which enables to find analy
solutions in case of linear as well as non-linear equations. The method has bee
cessfully applied to a system of FDE. It is interesting to note that for the initial v
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Fig. 5.α = 0.25. Fig. 6.α = 0.5.

problem[Dα1y1, . . . ,D
αnyn]t = A(y1, . . . , yn)

t , yi(0) = ci , i = 1, . . . , n, whereA is a real
square matrix, the solution turns out to beȳ(x) = E(α1,...,αn),1(x

α1A1, . . . , x
αnAn)ȳ(0),

Ai is a matrix havingith row as [ai1 . . . ain], and all other entries are zero a
E(α1,...,αn),1(x

α1A1, . . . , x
αnAn) denotes an extension of multivariate Mittag-Leffler fun

tion for matrix arguments. In particular the graphs (Figs. 1–4) of fractional oscillatio
equations and those (Figs. 5, 6) of Bagley–Torvik equation are in excellent agreeme
those obtained using numerical methods [8].

The computations associated with the illustrative examples in this paper were c
out using Mathematica.
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