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Abstract

We present a method for factoring a given matrixM into a short product of sparse matrices,
provided thatM has a suitable “symmetry”. This sparse factorization represents a fast algorithm for
the matrix–vector multiplication withM. The factorization method consists of two essential steps.
First, a combinatorial search is used to compute a suitable symmetry ofM in the form of a pair
of group representations. Second, the group representations are decomposed stepwise, which yields
factorized decomposition matrices and determines a sparse factorization ofM. The focus of this
article is the first step, finding the symmetries. All algorithms described have been implemented
in the libraryAREP. We present examples for automatically generated sparse factorizations—and
hence fast algorithms—for a class of matrices corresponding to digital signal processing transforms
including the discrete Fourier, cosine, Hartley, and Haar transforms.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In this article we address the following fundamental problem: “Given a not necessarily
square matrixM, construct an algorithm for evaluating the linear mappingx �→ M · x with
as few arithmetic operations in the base field as possible”. We present an algorithm that
takes a given matrixM as input, and outputs a factorization ofM into a short product of
highly structured sparse matrices,

M = M1 · M2 · · ·Mk, Mi sparse.
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By “short”, we mean that this factorization actually reduces the cost (in terms of the
number of additions and multiplications) of computingM · x. In the paper we will use
interchangeably “sparse factorization ofM” and “fast algorithm forM”.

Our method is applicable if and only if the matrixM has a “symmetry” in a sense being
defined. Intuitively, the symmetry captures redundancy inM given by linear relationships
among the entries ofM. Then, we use the symmetry to derive a sparse factorization.
The factorization method consists of three steps: (1) Find a suitable symmetry ofM
by combinatorial search. The symmetry is given as a pair of group representations of a
common finite group. (2) Decompose both representations recursively into a direct sum
of irreducible representations. This yields decomposition matrices that are products of
sparse matrices. (3) Find a correction matrix that reconstructsM from these decomposition
matrices. The correction matrix is sparse.

The first step—and the method in general—is the focus of this article. In particular,
we explain what we mean by symmetry, what types of symmetry have proven useful for
our purposes and how these symmetries can be found algorithmically. The second step is
concerned with the constructive decomposition of representations and is explained in detail
in Püschel(2002). For the sake of completeness we give a brief survey of these methods.
The third step of the method involves only matrix multiplications.

We will give several examples of matrices where the method can be applied and indeed
constructs an efficient algorithm. The examples are chosen from the field of digital signal
processing and include the discrete Fourier transform (DFT), cosine transforms, and the
Hartley transform. It was our original motivation to construct fast algorithms for such
matrices but the method itself is not restricted to discrete signal transforms.

1.1. Background

The factorization method has its roots in the relationship between the DFT used in
digital signal processing, and the theory of group representations. In signal processing, the
DFT is defined as a multiplication of a (complex) vectorx ∈ Cn (the sampled signal) by
the DFT matrix of sizen× n, given by

DFTn = [e2π ik�/n | 0 ≤ k, � ≤ n− 1], i = √−1.

In the framework of representation theory, the DFTn can be viewed as the isomorphism
decomposing the group algebraC[Zn] of a cyclic groupZn into a direct sum of algebras of
dimension 1, if suitable, canonical bases are chosen,

DFTn : C[Zn] → C⊕ · · · ⊕ C.

This decomposition is a special case of a theorem first proved byWedderburn(1907) in his
classification of semisimple algebras. LetG be a finite group andd1, . . . ,dh the degrees of
a complete set of irreducible representations. Then the group algebraC[G] is isomorphic to
the direct sum of simple algebrasCd1×d1 ⊕ · · · ⊕Cdh×dh . Based on this,Apple and Wintz
(1970) generalizethe DFT for G = Zn to a DFT for a general Abelian groupG and
Karpovsky and Trachtenberg(1977) generalize to arbitrary finite groups.

The algebraic description has proven extremely useful in deriving and understanding
the structure of fast algorithms for the DFT of a groupG. In essence, the structure of a fast
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algorithm reflects the structure of an associated representation ofC[G]. Most important
for applications,Auslander et al.(1984) andBeth (1984) derive and explain the famous
Cooley–Tukey algorithm (Cooley and Tukey, 1965)—in signal processing known as the
“fast Fourier transform”, or FFT—by a stepwise decomposition ofC[Zn].

For an introduction and survey of the area of DFTs for groupsG and their fast
algorithms, we refer the reader to the textbook byClausen and Baum(1993) or the more
recent survey article byMaslen and Rockmore(1995). Maslen and Rockmore(1997) give
a recent overview on the complexity of evaluating the DFT for several classes of groups
including the more general view of the DFT on “homogeneous spaces”C[G/K ], K ≤ G.

Despite the success of the DFT, it became more and more important to find efficient
algorithms for other signal transforms as well. One important example is the discrete
cosine transform (DCT) used in theJPEG compression standard for digital images1.
Unfortunately, the DCT (and its many variants), and most other transforms used in
signal processing, cannot be interpreted as generalized DFTs. This naturally posed the
question of whether it is possible to characterize these transforms in the framework of
group representations, and, in the affirmative case, use this connection to derive their fast
algorithms.

To answer this question,Minkwitz (1993) reversed the way of working. Instead
of defining a transform based on some given algebraic structure (a finite group or a
homogeneous space), he tried to find the algebraic structure of agiven transform. For
this purpose, he defined the notion of “symmetry”, which associates with a given matrix a
pair of matrix representations of a common group. These symmetries have to be explicitly
found since they are not known by construction (as for a generalized DFT). Methods for
finding symmetry in a matrix are the focus of this article, which is based on the work of
Egner(1997). Once a symmetry is explicitly known, as representations of finite groups, it
must be decomposed into irreducible components such that the decomposition is stepwise
and constructive.Minkwitz (1993) gave algorithms for accomplishing this for permutation
representations of solvable groups by using Clifford’s theory.Püschel(1998) generalized
the methods to monomial representations of solvable groups. Together, the algorithms for
finding symmetry and for decomposing monomial representations constructively form a
powerful algorithm for factoring a given matrix into a short product of sparse matrices.
Application to signal transforms yields fast algorithms in many cases, which shows that the
connection between signal processing and representation theory is stronger than previously
understood.

1.2. Structure of this article

In Section 2 we introduce the notion of symmetry of a matrixM, and explain
which types of symmetry are useful for deriving a sparse factorization ofM. Then
we explain the algorithm for the symmetry-based matrix factorization. The problem of
finding a suitable symmetry is treated inSection 3. The subsections are devoted to the
different types of symmetry considered. The second major ingredient for deriving a sparse
matrix factorization is a method for decomposing monomial representations, which is

1 JPEG is part of each and every Internet browser.
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explained inSection 4. The software libraryAREP contains all algorithms presented and
is briefly explained inSection 5. Finally, Section 6contains a gallery of automatically
generated sparse factorizations for a class of signal transform matrices, including run-time
measurements of the factorization algorithm.

1.3. Notation

For the convenience of the reader, we give a brief overview on notation and concepts
from ordinary representation theory of finite groups. For further information, refer to
standard textbooks such asCurtis and Reiner(1962).

MatricesA are introduced by specifying the entryAk,� at positionk, � over some index
range, as inA = [Ak,� | 0 ≤ k, � ≤ n − 1]. The operators⊕,⊗ are used for the direct
sum and tensor (or Kronecker) products of matrices, respectively. The(n×n) permutation
matrix corresponding to the permutationσ is denoted by[σ,n] = [δi σ j | 1 ≤ i , j ≤ n]
or simply byσ if the matrix sizen is known from the context. A monomial matrix has
exactly one non-zero entry in each row and column (and is hence invertible) and is written
as[σ, L] = [σ, length(L)] · diag(L), where diag(L) is a diagonal matrix with the listL on
the diagonal. The(n×n) identity matrix is denoted by1n. Finally, we useωn = e2π i/n for
the complex primitiventh root of unity.

A (matrix) representationof a finite groupG of degree deg(φ) = n is a homomorphism
φ : G → GLn(F) from G into the group of invertible(n× n) matrices over a field, which
we denote by the letterF throughout this article. A representationφ is a permutation
or monomialrepresentation, if all imagesφ(g) are permutation matrices or monomial
matrices, respectively. We denote by 1G : g �→ 1 the trivial representationof G (of
degree 1). IfA ∈ GLn(F), thenφA : g �→ A−1 · φ(g) · A is the conjugateof φ by
A. φ andψ are calledequivalentif φ = ψA. If φ,ψ are representations ofG, then the

representationφ ⊕ψ : g �→ φ(g)⊕ψ(g) =
[
φ(g) 0

0 ψ(g)

]
is called thedirect sumof φ

andψ. φ is calledirreducibleif it cannot be conjugated into a direct sum. In this paper, we
will deal only with ordinary representations. This means that the characteristic ofF does
not divide the group order|G| (Maschke condition). In this case, every representationφ

can be conjugated, by a suitable matrixA, into a direct sum of irreducible representations
ρi (Maschke’s theorem). In other words,φA =⊕k

i=1 ρi , which is called adecomposition
of φ andA is referred to as adecomposition matrixfor φ.

Let H ≤ G be a subgroup andT = (t1, . . . , tk) a transversal, meaning a system
of representatives of the right cosets ofH in G. Furthermore, letφ be a representation
of H . We define theinductionof φ to G with respect toT as the representation ofG that
is defined as

(φ ↑T G)(g) = [φ̇(ti gt−1
j ) | i , j ],

where φ̇(x) = φ(x) for x ∈ H and φ̇(x) is the all-zero matrix ifx /∈ H . A regular
representation is an induction of the formφ = (1E ↑T G) whereE denotes the trivial
subgroup ofG. If φ is a representation ofG, thenφ ↓ H denotes therestriction of φ
to H . The intertwining spaceof the representationsφ,ψ is defined as the vector space of
matricesInt(φ,ψ) = {M ∈ Fdeg(φ)×deg(ψ) | φ(g) · M = M · ψ(g), g ∈ G}.
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Finally, we would like to emphasize that we are working withmatrix representations,
and not with equivalence classes of representations, for which characters are the
appropriate data structure.

2. Symmetry-based matrix factorization

In this section we introduce the notion of “symmetry” of a matrixM and explain how
it is used to factorM into a product of sparse matrices. The factorization represents a fast
algorithm for computing the matrix–vector productM · x.

The symmetry of a matrix serves a twofold purpose. First, it captures redundancy
contained in the matrix that arises from relationships among the entries ofM. Second,
it establishes a connection between the matrix and certain group representations. This
connection is then used to factorizeM.

The origin of the following definition is due toMinkwitz (1993).

Definition 2.1. Let M ∈ Fn×m be a rectangular matrix over a base fieldF. We call a pair
(φ,ψ) of representations of the same groupG a symmetryof M if

φ(g) · M = M · ψ(g) for all g ∈ G.

We write this symbolically asφ
M→ ψ.

The definition implies the rules

φ
M1→ ψ

M2→ ρ ⇒ φ M1·M2 ρ, and

φ
M→ ψ ⇒ ψ M−1

φ, for M invertible.

Note thatM has the symmetry(φ,ψ) if and only if M ∈ Int(φ,ψ), the intertwining
space ofφ andψ (defined above). Equivalently, we can formulate a symmetry(φ,ψ) of
M as the invariance ofM under the operation• of G onFn×m, given by

g • M = φ(g) · M · ψ(g−1), g ∈ G, M ∈ Fn×m.

The purpose of the groupG is to link the two representationsφ andψ together, butG
has also a major influence on the structure of the factorization forM obtained (see Step 2
of the factorization algorithm in this section andSection 4).

Definition 2.1is in its generality hardly useful for capturing redundancy contained in
the matrix M. For example, ifM is invertible, then(φ, φM ) is a symmetry ofM for
every group representationφ of suitable degree. And indeed, not all matrices can have a
useful sparse factorization! Consider the following crude estimate of the algebraic problem
complexity: if we derive anO(n logn) algorithm for an(n×n)matrix, then there are only
O(n logn) degrees of freedom in the algorithm butFn×n is an2-dimensional vector space.

However, if φ andψ are restricted to certain types of representation (for example
permutation or direct sum of irreducibles), then the intertwining spaceInt(φ,ψ) does
become interesting. This has ledMinkwitz (1993) to study differenttypesof symmetry
arising from differenttypesof representationφ,ψ. For convenience we use mnemonic
names to describe these different types. For example,φ is of typemon if it is monomial,
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Table 1
Mnemonic names for types of a representationφ

perm Permutation representation

mon Monomial representation

block Permuted direct sum:(φ1 ⊕ · · · ⊕ φr )
π , whereπ is a permutation

irred Like blockbut all theφi are irreducible

mat Any matrix representation under the Maschke condition

Fig. 1. Factorizing the matrixM using a suitable symmetry(φ,ψ). The factorization is given byM =
A1 · · · Ar · C · B−1

s · · · B−1
1 ; the Ai , C, and theB−1

j are all sparse.

or of typeirred, if it is a direct sum of irreducible representations (possibly conjugated by
a permutation). A full list of the types considered is given inTable 1. Correspondingly we
name the types of symmetry. For example,(φ,ψ) is aperm–irredsymmetry ifφ is of type
permandψ is of typeirred. The reason for considering these types will become clear in
the following.

We will now describe the method used to construct a fast algorithm—represented as
a sparse factorization—for the matrix–vector multiplication with a given matrixM. The
method is displayed inFig. 1and consists of the following three steps.

Step 1: Finding symmetry.The goal of this step is to make the symmetry in the matrixM
explicit in the sense that the pair of representations is actually known by group generators
and their images. Given the matrixM it is first decided which type of symmetry to use
for constructing a factorization ofM (e.g., perm–irred symmetry or mon–mon symmetry).
Then a combinatorial search is run onM for the chosen type of symmetry as described
in Section 3. The result is a pair(φ,ψ) of representations of the chosen types such that

φ
M→ ψ.
As we will see in Step 3, a symmetry(φ,ψ) is useful for factorizingM only if for

both representationsφ andψ a decomposition matrix can be determined as a product
of sparse matrices. With our current methods this can be done for representations of
type irred (the decomposition matrix is a permutation) and of typemon (of solvable
groups, seeSection 4). Thus, the following types of symmetry are of interest: mon–mon,
mon–irred, irred–mon, and the subtypes perm–perm, perm–irred, irred–perm. We omit
the type irred–irred, since it is not of practical importance (in general, it requiresM to
be already sparse—a consequence of Schur’s lemma). Since transposing a matrix with
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irred–mon (or irred–perm) symmetry yields a matrix with mon–irred (or perm–irred)
symmetry, we restrict our investigations to the latter types.

Finding mon–mon and mon–irred symmetry requires substantially different approaches
(seeSection 3). Note that matrices may have both types of symmetry, which leads to
different factorizations (e.g.,Section 6.4).

Step 2: Decomposing representations.The second step decomposes the representationsφ

andψ into a direct sum of irreducibleŝφ andψ̂ with decomposition matricesA and B,
respectively, i.e.,

φA = φ̂ = φ1⊕ · · · ⊕ φk, and ψB = ψ̂ = ψ1⊕ · · · ⊕ ψ�,
φi , ψ j irreducible.

The crucial point is thatA and B are determined as (short) products of sparse matrices,
A = A1 · · · Ar and B = B1 · · · Bs. For the typeirred this product reduces to a single
permutation; for the typemon(or perm) the product is obtained through a decomposition
algorithm that recurses over the structure of the representation (seeSection 4). As a simple
example, ifφ is recognized as a permuted direct sum then it is sufficient to decompose the
direct summands independently. The structural recursion approach is neither the one used
by Parker(1984) for theMeatAxe, nor does it just evaluate projections onto irreducibles.
The principle of theMeatAxe is to choose “random” elementsx of the group algebra
and decompose the full vector space intox-invariant subspaces until the components are
irreducible. Unfortunately, this method does not produce sparse matrices for decomposing
the representation. The recursive method for decomposing monomial representations, as
used here, is briefly explained inSection 4. A more detailed treatment is beyond the scope
of this article and we refer the reader toPüschel(2002).

Step 3: Combining decompositions.The final step is trivial but important. It computes the
matrix

C = A−1 · M · B

to make the diagram inFig. 1 commute. The matrixC is in the intertwining space
Int(φ̂, ψ̂), which implies—using Schur’s lemma—thatC contains zeros at all components
that connect inequivalent representationsφi andψ j . So, C is permuted block diagonal
with the sizes and positions of the blocks depending on the irreducibles contained inφ

andψ. For example, if all irreduciblesφi in φ are pairwise inequivalent andψ is equivalent
to φ, then there are at most

∑
i (degφi )

2 non-zero entries inC. Finally, we note that the
type of sparse matricesAi , Bj generated by the decomposition algorithm for monomial
representations preserves its sparsity under inversion.

Taken together, we read fromFig. 1 the following sparse factorization ofM:

M = A · C · B−1 = A1 · · · Ar ·C · B−1
s · · · B−1

1 .

From a different point of view, our factorization method can be viewed as a particular
type of common subexpression elimination for matrix–vector multiplication algorithms.
The common subexpressions are captured by the respective symmetry.
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3. Finding symmetries of a matrix

We now turn to the problem of actually finding symmetry, given a matrixM. For this
purpose it is useful to look at symmetry in a slightly different way: we consider individual
pairs(L, R) of invertible matrices such thatLM = M R. Clearly, this property is retained
under componentwise multiplication and inversion: ifLM = M R andL ′M = M R′, then
LL ′M = M RR′ and L−1M = M R−1. Hence, all pairs(L, R) of invertible matrices
satisfyingLM = M R form a group under componentwise multiplication. We could call it
the “universal symmetry group” ofM because it contains all the more specific symmetries
as a subgroup.

Unfortunately, as mentioned earlier, the universal symmetry is not very helpful for
decomposing the matrixM. For example, ifM is invertible, the universal symmetry is
the set of all pairs(L,M−1LM) with invertible L; the universal symmetry group is
(isomorphic to) the GLn(F). Clearly, this symmetry does not provide information about
M. There are two further problems with general symmetries: first, the group might not
be finite and thus the symmetry group could not be computed; and, second, we do not
know an algorithm for decomposing a general representation into irreducibles such that
the decomposition matrix is a product of sparse matrices.

Therefore, we introduce restrictions on the matricesL andR, which leads, as explained
in Section 2, to the types of symmetry considered in this paper: mon–irred symmetry
and mon–mon symmetry, and the subtypes perm–irred symmetry and perm–perm
symmetry.

The task of finding the symmetry of a certain type for a given matrixM can be described
as finding a generating set for the groupG of all pairs(L, R) of invertible matrices of the
given type such thatLM = M R. We call such a group asymmetry group, although it
is very important that it is not just an abstract group but a group of pairs of matrices.
The relation of this view of symmetry to the description inSection 2is as follows: let
(φ,ψ) be a pair of representations of a groupG̃. ThenG = {(φ(g), ψ(g)) | g ∈ G̃} is a
group of pairs(L, R) of matrices such thatLM = M R. Conversely, letG be a group of
matrices(L, R) such thatLM = M R. Then the canonical projectionsΠ1 = (L, R) �→ L
andΠ2 = (L, R) �→ R are representations of the groupG and the pair(Π1,Π2) is a
symmetry ofM in the sense ofSection 2. Note thatG̃ may be larger thanG, i.e.,G may
be a homomorphic image of̃G, becauseφ andψ could both map some normal subgroup
of G̃ into the trivial group. For the purpose of decomposingM, the knowledge ofG is then
as good as the knowledge ofG̃.

In the remainder of this section we first explain, inSection 3.1, the general structure
of an arbitrary symmetry group, and how it can be used to simplify the symmetry search.
Sections 3.2–3.6 are then devoted to finding the different types of symmetry.Section 3.2
deals with the perm–perm symmetry, andSection 3.3shows how the mon–mon symmetry
(of a certain class) of a matrix can be found via the perm–perm symmetry of a suitable
larger matrix.Section 3.4is concerned with finding the perm–mat symmetry, which is used
as a subroutine for finding the perm–irred symmetry inSection 3.5. Finding the mon–irred
symmetry uses a similar approach, which is sketched inSection 3.6.
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3.1. Subdirect product structure of the symmetry group

The structure of an arbitrary symmetry group is given by thesubdirect productof its
left and right projectionsΠ1(G) andΠ2(G) (with respect to a certain isomorphism). We
detail this structure formally and explain how it is used to simplify the symmetry search.

First we recall the notion of asubdirect product with identified factor groups(Huppert,
1983, Kap. I, Section 9). LetG1,G2 be groups with normal subgroupsN1 G1 and
N2 G2, and assumeϕ : G1/N1 → G2/N2 is an isomorphism of the factor groups.
Then

G1 G2 = {(g1, g2) ∈ G1× G2 | ϕ(g1N1) = g2N2}
is a subgroup of the direct productG1 × G2, called the subdirect product with identified
factor groups2.

Lemma 3.1. Let M be a matrix and G be a group of pairs(L, R) of matrices such
that LM = M R. Furthermore, letΠ1 and Π2 denote the canonical projection from G
onto the first and the second component, respectively. Then G is the subdirect product
Π1(G) Π2(G) with identified isomorphic factor groups

Π1(G)/Π1(kerΠ2) ∼= Π2(G)/Π2(kerΠ1).

Proof. The lemma can be shown by checking the definition of the subdirect product for
the isomorphismϕ defined by

ϕ(L ′ · {L | (L,1) ∈ G}) = R′ · {R | (1, R) ∈ G},
for all (L ′, R′) ∈ G. �

The subdirect structure can be used to simplify the search for symmetry. In the first step
the normal subgroups of the left and right projection are constructed. Then, in the second
step, the common factor group is constructed. We illustrate this approach with an example
for the perm–perm symmetry. Assume that we want to find the groupG of all pairs(L, R)
of permutation matrices such thatLM = M R for the matrix

M =


1 0 1 1
1 1 0 1
1 0 0 1
1 0 0 1

 .
By definition, N1 = Π1(kerΠ2) = {L | LM = M} is the group of all permutations
L of the rows ofM that leaveM invariant. Since the third and fourth row are equal,
N1 = 〈(3,4)〉. In the same wayN2 = {R | M = M R} = 〈(1,4)〉, because the first
and fourth columns ofM are equal. (We write permutation matrices as permutations in
cycle notation assuming that the matrix size is known from the context.) Now we reduce the
matrix M by partitioning its rows as(1|2|3 4) and partitioning its columns as(1 4|2|3), i.e.,

2 The symbol depicts the two towersGi � Ni ≥ E with factor groupsGi /Ni , i = 1,2, identified. HereE
denotes the trivial subgroup.
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the double rows and columns are removed. (We denote partitions by listing the elements,
separating the blocks with a vertical bar.) This leaves us with the smaller matrix

M̃ =
1 0 1

1 1 0
1 0 0

 .
The second step involves finding the common factor group of the projections ofG. The
factor group acts by permuting rows and columns ofM̃ , which in turn correspond to blocks
of rows and columns ofM. It is readily seen that the only non-trivial symmetry operation
on M̃ is (1,2) · M̃ = M̃ · (2,3). Hence, the factor groups (with rows, columns named as
for M) areG1/N1 = 〈(1,2)〉 ∼= G2/N2 = 〈(2,3)〉. As the result we obtain the symmetry
groupG = 〈((3,4),1), (1, (1,4)), ((1,2), (2,3))〉.

The subdirect structure can also be exploited for types of symmetry other than
perm–perm. If the left representation is to be monomial (i.e, of typemon), then the group
N1 = {L | LM = M} contains all monomial transformations on rows that are scalar
multiples of each other. Similarly, if the left representation is unrestricted (i.e., of type
mat), then N1 contains a general linear group acting on the null space{x | x M = 0}.
Similar statements hold for the right representation, depending on its type. In each case it
is possible to reduce the search for the symmetry by reducing the matrixM to a matrixM̃
for which the corresponding groups̃N1 andÑ2 are trivial. This reduction is mathematically
trivial, although the bookkeeping is rather involved and complicates implementation. We
omit these details.

3.2. Perm–perm symmetry

The simplest type of symmetry that we consider is theperm–permsymmetry. Given a
matrix M ∈ Fn×m, define the group of pairs of permutations

PermPerm(M) = {(L, R) ∈ Sn × Sm | LM = M R},
whereSn denotes the symmetric group permutingn elements. By abuse of language we
will frequently drop the distinction between permutation and permutation matrix. Using
Lemma 3.1it is sufficient to consider matricesM with pairwise distinct rows and pairwise
distinct columns.

An example of the perm–perm symmetry is the well known symmetry of the DFT (we
use the shorthand notationi �→ f (i ) to denote the permutation):

Lemma 3.2. Let DFTn = [e2π j k�/n | 0 ≤ k, � < n] and define Lk = (i �→ ki modn) for
each k∈ Z×n = {k | gcd(k,n) = 1}. Then

PermPerm(DFTn) = {(Lk, L−1
k ) | k ∈ Z×n }.

Unfortunately, a polynomial time algorithm for constructingPermPerm(M) for a given
matrix M implies a polynomial time algorithm for testing isomorphism of two given
graphs (Egner, 1997, Satz 3.2). The graph isomorphism problem is well studied (OPEN1
from Garey and Johnson, 1979) and no polynomial time algorithm is known for it (nor
has it been shown to be NP-complete). Hence, we should not expect an algorithm for
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PermPerm(M) that is fast for any matrixM. Fortunately, powerful necessary conditions
are known that may make an exhaustive search feasible.

From the practical point of view, the perm–perm symmetry of a matrix can be computed
with a partition-based backtracking search in a suitable permutation group as described in
Leon (1991). There is also a highly optimized implementation of this search method in
programming language C (available from Leon via his homepage). In addition, the authors
implemented a search in the languageGAP. Both implementations are available in the
library AREP (seeSection 5), and are able to handle 100× 100 matrices stemming from
signal transforms in seconds.

The perm–perm symmetry of a matrix is of interest beyond the application to signal
processing that we have in mind here. Given an incidence structure(V, B, I ) (soV andB
are disjoint finite sets andI ⊆ V×B) one can obtain the automorphism group of(V, B, I )
as the perm–perm symmetry of its incidence matrix (the matrixM ∈ {0,1}V×B such that
Mv,b = 1 if and only if (v,b) ∈ I ). As an example, the vertices of a graph are incident to
the edges. In this way, the perm–perm symmetry is closely related to automorphism groups
of many discrete structures.

3.3. Mon–mon symmetry

Themon–monsymmetry of a matrixM is a generalization of the perm–perm symmetry.
Let Monn(F) denote the group of monomial(n×n) matrices with entries from the fieldF.
Then we define for the matrixM ∈ Fn×m

MonMon(M) = {(L, R) ∈ Monn(F)×Monm(F) | LM = M R}.
It is easy to check thatMonMon(M) is a group. Unfortunately, for infiniteF, the group
MonMon(M) is not finite since scalars can be moved freely from the left ofM to the right.
This “scalar symmetry” conveys no structural information aboutM; i.e., the “interesting”
part of the symmetry is given by the factor group

MonMon(M)/F× = MonMon(M)/{(x · 1n, x · 1m) | x �= 0, x ∈ F}.
To obtain a tractable search problem, we restrict ourselves to a subtype of the mon–mon
symmetry which considers only the finite group of all monomial matrices withkth roots of
unity as non-zero entries. We call these matricesk-monomialand denote the group of all
k-monomial matrices of sizen × n by Monn(F, k). The parameterk is fixed and chosen
depending on the given matrixM. Formally, we want to find the mon–mon symmetryof
order k, defined by

MonMonk(M) = {(L, R) ∈ Monn(F, k)×Monm(F, k) | LM = M R}.
Briefly summarized, our approach computes the mon–mon symmetry of orderk of M ∈
Fn×m by computing the perm–perm symmetry of the larger matrixCk(M) ∈ Fkn×km,
whereCk is a suitablecoding function. In other words, we computeMonMonk(M) via
PermPerm(Ck(M)). The idea for this approach is based on a method described inLeon
(1991) for finding the mon–mon symmetry over finite fields. We detail the approach in the
following, starting with defining the coding functionCk.
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Definition 3.3. Let x ∈ F andk ≥ 1. We assume that the characteristic ofF is zero or
does not dividek and letωk denote a primitivekth root of unity inF. We call

Ck(x) =


x · ω0

k x · ω1
k · · · x · ω(k−1)

k

x · ω1
k x · ω2

k · · · x · ω0
k

...
...

. . .
...

x · ω(k−1)
k x · ω0

k · · · x · ω(k−2)
k

 = [x · ωi+ j
k | 0 ≤ i , j ≤ k− 1]

thek-coding of x. For M ∈ Fn×m we analogously call

Ck(M) = [Ck(Mi, j ) | 1≤ i ≤ n,1 ≤ j ≤ m] ∈ Fkn×km

thek-coding of M.

The key property ofCk is that, forx ∈ F, the(i + 1)th row of Ck(x) is obtained from the
i th row by multiplication withωk, for 1≤ i ≤ n− 1; the first row is obtained from thenth
row in this way. An analogous property holds for the columns and we get the following
lemma.

Lemma 3.4.

Ck(ω
�
k · x) = (1, . . . , k)� · Ck(x) = Ck(x) · (1, . . . , k)−�.

Corresponding to the coding functionCk, we define a group homomorphismPk that
embeds Monn(F, k) into Skn. Before we state the general definition we give an illustrative
example. We considerk = 3 and the 3-monomial matrixS = [(1,2), (1, ω2

3)] =
(1,2) · diag(1, ω2

3). The permutation matrixPk(S) is obtained by replacing each entry
in Sby a(3×3)matrix: zero entries are replaced by the all-zero matrix, and entriesωi

3 are
replaced by(1,2,3)i . We visualize this by emphasizing the resulting block structure:

S=
[

0 ω2
3

1 0

]
↔ Pk(S) =


0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

The block structure ofPk(S) can be expressed by the following decomposition:

S= [(1,2), (1, ω2
3)] ↔ Pk(S) = ((1,2)⊗ 13) · ((1,2,3)0⊕ (1,2,3)2).

For generalk andn, the block permutations inSkn arising in this way have the structure

(σ ⊗ 1k) · (τ1⊕ · · · ⊕ τn),
where σ ∈ Sn represents the “macro” permutation and theτi are powers of the
k-cycle (1, . . . , k). The group of all these permutations is thewreath productZk " Sn

(James and Kerber, 1981) in its natural permutation representation onkn points.
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Definition 3.5. Let F andk be as inDefinition 3.3and let 0≤ ui ≤ k − 1, 1≤ i ≤ n. We
define the mappingPk by

Pk : Monn(F, k)→ Zk " Sn(as a subgroup ofSkn),

[σ, (ωu1
k , . . . , ω

un
k )] �→ (σ ⊗ 1k) ·

n⊕
i=1

(1, . . . , k)ui .

By construction, it is clear thatPk is a group isomorphism.

Our algorithm for finding the mon–mon symmetry of orderk for a given matrixM
is based on the following theorem. It shows that the mon–mon symmetry of orderk
is contained, via the mappingPk, in the perm–perm symmetry ofCk(M). The proof is
straightforward using the definitions ofCk andPk andLemma 3.4.

Theorem 3.6. Let x ∈ F and k≥ 1. We assume that the characteristic ofF is zero or does
not divide k. Let M∈ Fn×m. Then

(L, R) ∈ MonMonk(M)⇒ (Pk(L),Pk(R)) ∈ PermPerm(Ck(M)).

We note that the converse is not true in general; i.e., to “decode” the mon–mon symmetry
of order k of M, we need to first intersect the perm–perm symmetry ofCk(M) with
(Zk " Sn) × (Zk " Sn). For all our practical applications, however, it has turned out that
the intersection is not necessary, i.e.,PermPerm(Ck(M)) ∼= MonMonk(M).

The remaining question is the appropriate choice of the parameterk. If F = Fq is finite
with q elements,k = q − 1 can be chosen, which guarantees that the entire mon–mon
symmetry is found. ForF ≤ C a matrix can have mon–mon symmetries of arbitrary
orderk. For example,

M =
[

a 0
0 b

]
, a,b ∈ F,

has the mon–mon symmetry[
ωk 0
0 ω−1

k

]
· M = M ·

[
ωk 0
0 ω−1

k

]
, for all k = 1,2, . . . .

If a matrix with complex entries has a monomial symmetry of orderk, then the symmetry
permutes entries with equal absolute value. For this reason, we consider all quotients
Mi, j /Mk,� with |Mi, j | = |Mk,�| �= 0. These quotients are roots of unity and we choosek
as the least common multiple of the order of those roots for which the order is finite.

As a summary, we give inFig. 2pseudocode for computing the mon–mon symmetry of
orderk for a matrixM.

Regarding the computational complexity, finding mon–mon symmetry is not easier than
finding perm–perm symmetry. Moreover, the encoding method described above increases
the size of the matrix fromn×m to kn×kmwhere the parameterk depends on the base field
over which one is to search for symmetries. The availability of very fast implementations
for the perm–perm symmetry (seeSection 3.2) makes our approach a viable solution for
smallk. For real matrices, and hence for most signal transforms, it is sufficient to choose
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Fig. 2. The algorithm for findingMonMonk(M) for a matrixM including the choice ofk.

k = 2 as the only real roots of unity are{−1,1}. We refer the reader toSection 6(in
particular6.4) for run-time examples.

3.4. Perm–mat symmetry

As a building block for computing the perm–irred and the mon–irred symmetry, we
now consider theperm–matsymmetry. As the name indicates, we are looking for all pairs
(L, R) whereL is a permutation matrix,R can be any matrix, andLM = M R. Formally,
for M ∈ Fn×m, we define

PermMat(M) = {(L, R) ∈ Sn ×GLm(F) | LM = M R}.
Not all cases of the perm–mat symmetry are interesting. For example, ifM is invertible,
then there is a matrixR, namelyR = M−1LM, for any permutationL, in which case
PermMat(M) is just (isomorphic to) the symmetric groupSn. In addition, as explained
in Section 3.1, the subdirect structure allows one to eliminate identical copies of rows
(the perm part) and to eliminate linearly dependent rows (the mat part). The following
lemma is the basis for computing the identified factor group of the subdirect product for
the perm–mat symmetry for a matrixM, which has more rows than columns. For notational
compactness we use the notationMI ,J to indicate submatrices ofM, where I and J are
either integers, sets or lists of integers, or the symbol “∗” denoting the full index set. For
example,Mi,∗ denotes thei th row of M, M∗, j denotes thej th column, andMI ,∗ denotes
the submatrix of rows ofM with indexi ∈ I .

Lemma 3.7. Let M ∈ Fn×m be a matrix with n≥ m and assume that the rows of M are
pairwise distinct, and that the columns of M are linearly independent. Choose an m-tuple I
of row indices such that the submatrix MI ,∗ is invertible. Let L(I ) denote the image of I
under the permutation L. Then

PermMat(M) = {(L,M−1
I ,∗ML(I ),∗) | L · M = M · M−1

I ,∗ML(I ),∗}.
Proof. If LM = M M−1

I ,∗ML(I ),∗ for some permutationL then (L,M−1
I ,∗ML(I ),∗) ∈

PermMat(M). Conversely, let(L, R) ∈ PermMat(M) and consider the rows inI :

(LM)I ,∗ = ML(I ),∗ = MI ,∗R= (M R)I ,∗ ⇒ R= M−1
I ,∗ML(I ),∗,

as desired. �

The preceding lemma states that a permutationL of the perm–mat symmetry is
already defined by its imageL(I ) on a certain baseI of sizem. Moreover, the mapping
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Fig. 3.PermMat(M) for an(n×m)matrix M with linearly independent columns and distinct rows. The argument
G allows one to restrict the search to a subgroup of the symmetric group.

L �→ M−1
I ,∗ML(I ),∗ is an isomorphism from the permutation group on the left ofM to the

corresponding matrix group on the right.
The lemma is the basis for the correctness of the algorithm shown in pseudocode in

Fig. 3. It computes

PermMat(G,M) = {L | (L, R) ∈ PermMat(M), L ∈ G},
for an(n×m)matrix M with linearly independent columns and pairwise unequal rows and
a subgroupG of the full permutation groupSn. The additional argumentG is useful for
the application of the algorithm to computing the perm–irred symmetry. Note that the list
I in statement(1) exists because the columns ofM are linearly independent and that the
imageL(i ) in statement(2) is uniquely defined because the rows ofM are distinct. The
algorithm uses the local functionfindperm to test whetherM̃ = M M−1

I ,∗MJ,∗ is a row-
permuted version ofM, and, if so, to compute the permutation. (The variabler contains
the i th row of M̃ .) The function interleaves constructing̃M and testing its properties to
allow an early return.PermMat may invokefindperm up tom!(n

m

)
times.

3.5. Perm–irred symmetry

This section explains how to findperm–irredsymmetries of a matrix. Throughout this
section we assume the matrixM to be square of sizen × n and invertible. Following the
mnemonic names ofTable 1, a perm–irred symmetry ofM is a pair of representations
(φ, φM ) such thatφ is a permutation representation andφM is a permuted direct sum of
irreducible representations. In other words, there is a permutationπ ∈ Sn such that

φM = (φ1⊕ · · · ⊕ φr )
π , where allφi are irreducible.
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Unlike for the perm–perm symmetry, there is no largest perm–irred symmetry containing
all others. Therefore we postpone the formal definition of the search problem and start by
defining a quantitative measure of block structure.

Definition 3.8. Let A be a square matrix (not necessarily invertible) of sizen. The
conjugated block structure(cbs) ofA is the partition

cbs(A) = {1, . . . ,n}/ ∼∗,
where∼∗ is the reflexive–symmetric–transitive closure of the binary relation∼ defined on
{1, . . . ,n} by i ∼ j ⇔ Ai j �= 0.

For the following investigations we introduce additional notation. Let% denote the
partial order defined on partitions of{1, . . . ,n} (read p % q as “p refinesq”) and
define& (“meet”: coarsest common refinement) and' (“join”: finest common union of
blocks) as the lattice operations associated with the refinement relation. Moreover, let
pπ denote the partition obtained fromp by renumbering the points with permutationπ .
Finally, let p ⊕ q denote the partition of{1, . . . ,n + m} obtained by concatenating the
blocks of p partitioningn points andq partitioningm points, formally p ⊕ q = p ∪
{n+ b | b ∈ q}.

The purpose of the cbs is to indicate how far a matrixA decomposes into a direct sum
A1 ⊕ · · · ⊕ Ar if the rows and columns are renumbered properly by conjugating with a
permutation. We will use the following properties of the cbs.

Lemma 3.9. For square matrices A, B and a permutationπ ,

(i) cbs(Aπ) = cbs(A)π .

(ii) cbs(A⊕ B) = cbs(A)⊕ cbs(B).

(iii) cbs(AB) % cbs(A) ' cbs(B) if A and B are of the same size.

(iv) cbs(A−1) = cbs(A) if A is invertible.

Proof. We prove the properties one by one.

(i) Compatibility with conjugation follows fromAi j = (Aπ)π(i ),π( j ) for all i , j .

(ii) Compatibility with the direct sum is based on the fact that the relationi ∼ j ⇔
(A ⊕ B)i j �= 0 already partitions the set{1, . . . ,n} into two unconnected subsets,
and taking the reflexive–symmetric–transitive closure does not merge unconnected
subsets.

(iii) Compatibility with matrix multiplication is a consequence of the first two properties.

(iv) Let A = (A1 ⊕ · · · ⊕ Ar )
π be a finest decomposition ofA into a permuted direct

sum. Since matrix inversion is compatible with conjugation and with the direct sum,
this impliesA−1 = (A−1

1 ⊕ · · · ⊕ A−1
r )π . As the decomposition ofA was assumed

finest,Ai cannot be decomposed further and cbs(Ai ) is the coarsest partition for alli .
Hence, cbs(A−1) is a refinement of cbs(A) and equality follows from applying this
twice as cbs(A) % cbs(A−1) % cbs(A). �
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Table 2
The lattice of all block structures found inSDFT6

6

We illustrate the cbs andLemma 3.9(i) with the following example (dots represent
entries of zero):

cbs




1 · 2 · ·
· 3 · · 4
5 · 6 · ·
· · · 7 ·
· 8 · · 9


 = cbs




1 2 · · ·
5 6 · · ·
· · 3 4 ·
· · 8 9 ·
· · · · 7


(2,3)(4,5)


= (12|34|5)(2,3)(4,5) = (13|25|4).

Now we use the cbs to find the perm–irred symmetry. Given a matrixM, we can relate
permutation groupsG ≤ Sn and block structuresp % {{1, . . . ,n}} by the mappingsΠ
andΓ defined by

Π (G) =
⊔
L∈G

cbs(M−1LM), and

Γ (p) = {L ∈ Sn | cbs(M−1LM) % p}.
This means thatΠ (G) is the block structure that the groupG admits under conjugation
with the matrixM andΓ (p) is the largest groupG ≤ Sn admitting the block structurep.
Note thatΠ (G) can be found by computing cbs(M−1LM) for a generating set ofG and
usingLemma 3.9.

Lemma 3.10. Π andΓ are order preserving mappings between the lattice of subgroups
G ofSn and the lattice of partitions p of{1, . . . ,n}. Moreover,

Π (Γ (p)) % p and Γ (Π (G)) ≥ G for all p and G.

Proof. A consequence of the fact that cbs is compatible with matrix multiplication
(Lemma 3.9) and of some simple properties of finite lattices.�

Despite the previous lemma,Π and Γ are in general not lattice homomorphisms.
For example,Table 2 shows all block structures obtainable as cbs(DFT−1

6 LDFT6) for
permutationsL ∈ S6. Yet, the partition(1|2 6|3|4|5), the “meet” of entries 4 and 6, is
not in the table. Also, the group〈(Z3 × S3) ∪ D12〉, the “join” of entries 2 and 3, is not in
the table. This shows that the lattice is a sublattice neither of all partitions of{1, . . . ,n} nor
of the lattice of subgroups ofSn.
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Fig. 4. ComputingPermBlock(M) by enumerating permutations (left) and by enumerating partitions consisting
of blocks of size at mostk (right).

On the basis ofΠ andΓ we can now formulate the search problem for the perm–irred
symmetry. Finding all perm–irred symmetries ofM is done by first determining all block
structures found inSM

n and second determining all groupsG ≤ Sn for which the blocks of
GM are all irreducible. Formally,

PermBlock(M) = {Γ (p) | p is a partition of{1, . . . ,n}},
PermIrred(M) = {G ∈ PermBlock(M) | blocks ofGM irreducible}.

For example,Table 2shows all groups inPermBlock(DFT6), which, in this case, is equal
to PermIrred(DFT6). This completes the definition of the perm–irred symmetry ofM. We
will now present two methods for computingPermBlock(M). Once this is found, it is easy
to extractPermIrred(M) from it by testing whether all characters of the direct summands
of GM are indeed irreducible. Both methods are described inEgner(1997).

Permutation-based search.The first method constructsPermBlock(M) by enumerating all
permutationsL ∈ Sn and maintaining a setT of permutation groups. Pseudocode for the
algorithm is shown inFig. 4 (left). The correctness of the algorithm rests on the following
invariant of the loop: letL1, . . . , Lk be all permutations encountered so far, and define
associated partitionspi = cbs(M−1Li M). ThenT is the set of permutation groups

T = {〈Li | pi % q〉 | q ∈ {pi | i }}.
In other words,T contains exactly one group for every partitionq encountered at this
stage, and for each suchq the group contains all permutations leading to a decomposition
of M not coarser thanq. Finally, when all permutations have been considered,T is equal
to PermBlock(M).

The approach considers alln! permutations and, for each such permutationL, the(n×n)
matrix multiplicationM−1 · (LM) has to be computed in order to find cbs(M−1LM). (As
matrices are only permuted, scalar multiplications can be precomputed in a table of size
O(n4), which is a minor improvement.) In any case, enumerating permutations means
exponential running time.
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Fortunately, there is a better way to approach the problem of computingPermBlock(M)
than through enumeration of permutations.

Partition-based search. PermBlock(M) = {Γ (p) | p} can also be approached by
enumerating partitions instead of permutations. This approach is motivated by the
observation thatΓ (p) can be computed usingPermMat with the algorithm shown in
pseudocode inFig. 4 (lower right). The correctness of the algorithm is based on the
following statement, which allows one to “split off a block” usingPermMat.

Lemma 3.11. Let p= {b, {1, . . . ,n} − b} be a partition with exactly two blocks. Then

Γ (p) = PermMat(Sn,M∗,b) = {L | (L, R) ∈ PermMat(M∗,b)}.
Proof. Consider(L, R) such thatLM∗,b = M∗,bR. Then R operates only on columns
b of M by definition. This implies that cbs(M−1LM) refines p. Conversely, ifL is
a permutation such that cbs(M−1LM) refines p, then M−1LM maps the vector space
spanned by the columnsb onto itself. Hence, there is anR such thatLM∗,b = M∗,bR. �

The algorithm inFig. 4for computingΓ (p) for arbitraryp repeatedly reduces the group
G by splitting off one block ofp at a time. Iterative application ofLemma 3.11shows that
the final result contains exactly those permutationsL for which cbs(M−1LM) refinesp.
The method is best illustrated by an example. Consider the matrix (i = √−1)

M = DFT4 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .
To computeΓ (1|2 4|3) for M we start with the groupS4 and split off the block{1}. This
does not reduce the group as the first column ofM is constant and any permutation of the
rows is a symmetry. Next, we split off block{2,4} by computing

PermMat(S4,M∗,{2,4}) = PermMat

S4,


1 1
i −i
−1 −1
−i i


 .

The columns are linearly independent and the rows distinct. We chooseI = [1,2] as a
base for the rows and consider allJ in the orbit of I underS4, which is

{[1,2], [1,3], [1,4], [2,1], [2,3], [2,4], [3,1], [3,2], [3,4], [4,1], [4,2], [4,3]}.
Consider for example,J = [2,3]. In this case,M M−1

I ,∗MJ,∗ is a row-permutedM:

M M−1
[1,2],∗M[2,3],∗ =


i −i
−1 −1
−i i
1 1

 = (1,2,3,4) · M.
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Hence,(1,2,3,4) ∈ PermMat(S4,M∗,{2,4}). On the other hand, forJ = [1,3] we obtain

M M−1
[1,2],∗M[1,3],∗ =


−i i
i −i
i −i
−i i

 ,
which is not a row-permuted version ofM. Hence, no permutationL for which L(1) = 1
andL(2) = 3 is inPermMat(S4,M∗,{2,4}). Testing the other possible imagesJ, we find

PermMat(S4,M∗,{2,4}) = D8 = 〈(1,4)(2,3), (1,2,3,4)〉.
(D8 denotes a dihedral group of eight elements.) The algorithm would go on splitting off
the final block{3}, but for the sake of illustration we compute instead the partition

Π (D8) = cbs(M−1(1,4)(2,3)M) ' cbs(M−1(1,2,3,4)M)
= (1|2 4|3) ' (1|2|3|4) = (1|2 4|3).

This shows that it is not necessary to split off the block{3} asD8 already separates it. In
effect, the example shows forM = DFT4 that

Γ (1|2 4|3) = 〈(1,4)(2,3), (1,2,3,4)〉.
The algorithm for computingΓ (p) can be used to computePermBlock(M) by simply

computingΓ (p) for all partitionsp of {1, . . . ,n}. Unfortunately, there are exponentially
many partitions. However, the method allows one to restrict the search to partitions that
consist of small blocks, only! This is the purpose of the algorithm inFig. 4 (upper right).
It computes all groups inPermBlock(M) for which the block structure consists of blocks
of size at mostk. For signal transforms, these symmetries turn out to be most useful for
obtaining sparse factorizations.

3.6. Mon–irred symmetry

The mon–irred symmetry generalizes the perm–irred symmetry in the same way
as the mon–mon symmetry generalizes the perm–perm symmetry. ForM ∈ GLn(F)
defineMonMat(M), MonBlock(M), andMonIrred(M) as the mon–mat, mon–block, and
mon–irred structures, respectively, substitutingSn in all places by Monn(F) (the group of
all invertible monomial matrices of sizen× n).

By using the subdirect structure (Lemma 3.1) we again only consider the case where
no rows of M are scalar multiples of each other. Similarly toMonMon(M) (see
Section 3.3), MonIrred(M) may also be infinite, and we solve it analogously by defining
MonBlockk(M) andMonIrredk(M), which restrict the symmetry tok-monomial matrices
(i.e., containing onlykth roots of unity as non-zero elements).

The groups inMonBlockk(M) can be constructed in a similar way toPermBlock(M).
One can either enumerate all possible (k-monomial)L or can recursively split off blocks
and useMonMat(M∗,J) to construct the largest group stabilizing the block. We do
not describe the functionMonMat here as it is very similar toPermMat. The biggest
difference is thatMonMat has to considerkn times as many candidates for ak-monomial
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matrix of sizen × n asPermMat has to consider for permutations of the same degree.
Therefore, computing the mon–irred symmetry with our methods is only feasible for very
small values of the parameterk.

4. Decomposing monomial representations

The second important step in the matrix factorization algorithm is the decomposition
of monomial representations. As explained inSection 2, we are not only interested in
the irreducible components contained in a monomial representationφ, but also in the
corresponding decomposition matrix ofφ given as a product of structured sparse matrices.

The decomposition algorithm decomposes arbitrary monomial representations of
solvable groups and is comprehensively described inPüschel(2002), which builds on ideas
of Minkwitz (1995). For the sake of completeness, we briefly survey the algorithm in this
section, restricting ourselves to its structure and main steps. Before we give the algorithm
we restate the main results that it is based on.

4.1. Background for the algorithm

We restate the following three theorems fromPüschel(2002), where they can be found
as Theorems 3.16, 3.33, and 3.34, respectively.

Let φ be a monomial representation of a solvable groupG. We recall thatφ is called
transitive if it cannot be conjugated by a permutation to be a direct sum. The following
result connects transitive monomial representations and inductions.

Theorem 4.1. Let φ be a transitive monomial representation of a group G. Then there
exists a diagonal matrix D, a subgroup H≤ G with representationλH of degree one, and
a transversal T of G/H such that

φD = λH ↑T G (induction ofλ to G with transversal T).

Let N G be a normal subgroup ofG of prime index p and assume thatφ is a
representation ofN with decomposition matrixA. Theorem 4.2explains how to construct a
decomposition matrix of the inductionφ ↑T G, andTheorem 4.3explains how to construct
a decomposition matrix for the extensionφ (if it exists). Both theorems are essentially
based on Clifford’s theory3 (Curtis and Reiner, 1962).

These two cases constitute the core of our decomposition algorithm. For the purpose
of this paper, the reader may skip the technical details; only the two formulas for the
decomposition matrixB are of importance. Note that all the factors in the formulas are
sparse. Finally, these formulas explain the structure of the factorizations that we will
present inSection 6.

Theorem 4.2. Let N G be a normal subgroup of prime index p and T a transversal of
G/N. Assume thatφ is a representation of N of degree n with decomposition matrix A such
thatφA =⊕k

i=1 ρi , whereρ1, . . . , ρ j are exactly those among theρi having an extension

3 The two theorems donot correspond to the induction case and the extension case of Clifford’s theory; both
theorems need both cases.
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Fig. 5. The divide-and-conquer algorithm (sketched) for computing a factorized, structured decomposition matrix
for a monomial representationφ of a solvable groupG.

ρ i to G. Denote by d= deg(ρ1)+ · · · + deg(ρ j ) the entire degree of the extensibleρi and
setρ = ρ1⊕ · · · ⊕ ρ j . Then there exists a permutation matrix P such that

B = (1p⊗ A) · P ·
(⊕

t∈T

ρ(t)⊕ 1p(n−d)

)
· ((DFTp ⊗ 1d)⊕ 1p(n−d))

is a decomposition matrix ofφ ↑T G.

Theorem 4.3. Let N G be a normal subgroup of prime index p with transversal T=
(t0, t1, . . . , t p−1) and representationφ a over the fieldF. Assume thatφ has an extensionφ
to G. Further let A decomposeφ such that equivalent irreducibles are equal and adjacent,
φA =⊕k

i=1 Ri , where Ri = ρni
i is a homogeneous component of multiplicity ni . We write

di = deg(ρi ). Furthermore, we require that whenever Ri ∼= Rt�
j , then even Ri = Rt�

j , and

that these components are adjacent, ordered according to Ri , Rt
i , . . . , Rt p−1

i . Then there
exist invertible matrices Ai ∈ Fni×ni and a permutation matrix P such that

B = A ·
(

k⊕
i=1

Ai ⊗ 1di

)
· P

is a decomposition matrix of the extensionφ.

4.2. The decomposition algorithm

Fig. 5 shows pseudocode for the decomposition algorithm, which uses a “divide-and-
conquer” approach that recurses over the structure ofφ by repeatedly considering a
cascade of different cases. We concentrate on the computation of the decomposition matrix
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only, omitting the computation of the corresponding irreducible components ofφ. In the
actual algorithm, both computations are necessarily intertwined (as can be seen from
Theorems 4.2and4.3).

We give an overview of the algorithm. Ifφ is irreducible, the identity is a decomposition
matrix. If φ is not transitive, we decompose it with a permutation into a direct sum of
transitive monomial representations, which are decomposed recursively. Ifφ is transitive,
we applyTheorem 4.1to reduce the decomposition problem to the case of an induction
λH ↑T G. SinceG is solvable, we now find a normal subgroupN G of prime index
and eitherH ≤ N or H � N. If H ≤ N then we decomposeλH ↑T G with a monomial
matrix M into a double induction(λH ↑T G)M = (λH ↑T1 N) ↑T2 G (explained in
Püschel, 2002) and recurse with the lower induction to find a decomposition matrixA.
The conquer step finds the decomposition matrixB usingTheorem 4.2. In the other case,
H � N, we recurse with the restriction(λH ↑T G) ↓ N. The conquer step is solved
by Theorem 4.3. Since both cases reduce the size of the group represented, the algorithm
terminates.

5. The library AREP

The authors have implemented the methods described in this article in the software
library AREP Egner and P¨uschel (1998), a refereed shared package written in the
computer algebra languageGAP (1997). The two central data types areAMat (Abstract
Matrix) and ARep (Abstract Representation), which are recursive data structures for
efficiently representing structured matrices (like the direct sum or tensor product) and
structured representations (like induction or conjugation) in a symbolic form. Based on
these data typesAREP contains

1. functions for efficiently manipulating and computing with structured matrices and
representations;

2. functions for finding the different types of symmetry described inSection 3;
3. a function for decomposing monomial representations of solvable groups into

irreducibles as sketched inSection 4; and, combining 2 and 3,
4. functions for constructing sparse factorizations for a given matrix as described in

Section 2.

Furthermore,AREP is interfaced with theSPIRAL system (Moura et al., 1998), which
allows the user to generate C or Fortran code for each fast algorithm found byAREP
(Egner et al., 2001). For more information onAREP we refer the reader to the Website of
AREP (Egner and P¨uschel, 1998).

6. Examples

This section is a gallery of a few examples for the matrix factorization algorithm
presented in this article. The matrices considered are discrete signal transforms following
the definitions ofElliott and Rao(1982) andRao and Yip(1990). All factorizations (i.e.,
fast transform algorithms) have been generated verbatim as they are presented (even
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in the format). We state the symmetries found (with varying detail) and the run-
time needed to generate the sparse factorization. All experiments were run on an Athlon
1100 MHz, running Linux. For a comparison of our generated fast transform algorithms
to the algorithms known from the literature, we refer the reader toEgner and P¨uschel
(2001).

In addition to the notation introduced inSection 1.3we will use

Rα =
(

cos(α) sin(α)
− sin(α) cos(α)

)
,

to denote a(2× 2) rotation matrix with angleα, and

DFT2 =
[

1 1
1 −1

]
.

for the DFT of size 2× 2.

6.1. Discrete Fourier transform

The DFT of sizen is defined by the matrix

DFTn = [ωkl
n | 0≤ k, � < n].

As is well known, the DFTn has a perm–irred symmetry(φ,ψ) with cyclic symmetry
groupZn = 〈x | xn = 1〉,

φ : x �→ [(1,2, . . . ,n),n], ψ : x �→ diag(ω0
n, ω

1
n, . . . , ω

n−1
n ).

As an example we considern = 8. We find this perm–irred symmetry, and, based on it, the
Cooley–Tukey fast Fourier transform (FFT) algorithm,

DFT8 = (DFT2⊗ 14) · diag(1,1,1,1,1, ω8, ω4, ω
3
8)· (12⊗ DFT2⊗ 12) · diag(1,1,1, ω4,1,1,1, ω4)

· (14⊗ DFT2) · [(2,5)(4,7),8].

This factorization has been generated in 1.4 s.

6.2. Discrete cosine transform, type II and III

The (unscaled) DCT of type III is defined by the matrix

DCT-IIIn = [cos((2k+ 1)�π/2n) | 0 ≤ k, � < n].
For n = 8 we find a perm–irred symmetry(φ,ψ) with dihedral symmetry groupD16 =
〈x, y | x8 = y2 = 1, xy = x−1〉,

φ : x �→ [(1,3,5,7,8,6,4,2),8], y �→ [(2,3)(4,5)(6,7),8],
ψ : x �→ M1, y �→ M2.
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Using the shorthand notationck = cos(kπ/8) andsk = sin(kπ/8), the matricesM1 and
M2 are given by

M1 =



c0 0 0 0 0 0 0 0
0 c2 0 0 0 0 0 s2

0 0 c4 0 0 0 s4 0
0 0 0 c6 0 s6 0 0
0 0 0 0 c8 0 0 0
0 0 0 s10 0 c10 0 0
0 0 s12 0 0 0 c12 0
0 s14 0 0 0 0 0 c14


,

M2 =



c0 0 0 0 0 0 0 0
0 c1 0 0 0 0 0 s1

0 0 c2 0 0 0 s2 0
0 0 0 c3 0 s3 0 0
0 0 0 0 s4 0 0 0
0 0 0 s5 0 c5 0 0
0 0 s6 0 0 0 c6 0
0 s7 0 0 0 0 0 c7


.

The representationψ is a permuted direct sum of irreducible representations of degrees 1
and 2: cbs(M1) = cbs(M2) = (1|2 8|3 7|4 6|5).

Based on this symmetry we find the factorization

DCT-III8 = [(1,2,6,8)(3,7,5,4),8]
· (12⊗ ((12⊗ DFT2) · [(2,3),4] · (DFT2⊕ 12)))

· [(2,7,6,8,5,4,3),8] · (14⊕ 1√
2
·DFT2⊕ 12) · [(5,6),8]

· ((DFT2⊗ 13)⊕ 12) · [(2,8,3,7,4),8]
·
(

diag(1, 1√
2
)⊕ R13

8 π
⊕ R17

16π
⊕ R11

16π

)
· [(2,5)(4,7)(6,8),8].

The factorization was generated in 1.9 s. The DCT of type II, DCT-II, is the transpose of
DCT-III and we obtain a factorization for DCT-II8 by symbolic transposition (also using
AREP) of the expression above as

DCT-II8 = [(2,5)(4,7)(6,8),8] ·
(

diag(1, 1√
2
)⊕ R3

8π
⊕R15

16π
⊕R21

16π

)
· [(2,4,7,3,8),8] · ((DFT2⊗ 13)⊕ 12)

· [(5,6),8] · (14⊕ 1√
2
· DFT2⊕ 12) · [(2,3,4,5,8,6,7),8]

· (12⊗ ((DFT2⊕ 12) · [(2,3),4] · (12⊗ DFT2)))

· [(1,8,6,2)(3,4,5,7),8].
The general form of the symmetries for the DCTs and their algebraic derivation can be
found inPüschel and Moura(2003).
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6.3. Discrete cosine transform, type IV

The (unscaled) DCT of type IV is defined by the matrix

DCT-IVn = [cos((2k+ 1)(2�+ 1)π/4n) | 0 ≤ k, � < n].
For n = 8 we find a mon–irred symmetry(φ,ψ) with dihedral symmetry groupD32 =
〈x, y | x16= y2 = 1, xy = x−1〉,

φ : x �→ [(1,3,5,7,8,6,4,2), (1,1,1,1,1,1,1,−1)],
y �→ [(2,3)(4,5)(6,7), (1,1,1,1,1,1,1,−1)],
ψ : x �→ M1, y �→ M2.

Using the shorthand notationck = cos(kπ/16) andsk = sin(kπ/16), the matricesM1 and
M2 are given by

M1 =



c2 0 0 0 0 0 0 s2

0 c6 0 0 0 0 s6 0
0 0 c10 0 0 s10 0 0
0 0 0 c14 s14 0 0 0
0 0 0 s18 c18 0 0 0
0 0 s22 0 0 c22 0 0
0 s26 0 0 0 0 c26 0

s30 0 0 0 0 0 0 c30


,

M2 =



c1 0 0 0 0 0 0 s1

0 c3 0 0 0 0 s3 0
0 0 c5 0 0 s5 0 0
0 0 0 c7 s7 0 0 0
0 0 0 s9 c9 0 0 0
0 0 s11 0 0 c11 0 0
0 s13 0 0 0 0 c13 0

s15 0 0 0 0 0 0 c15


.

The representationψ is a permuted direct sum of irreducibles of degree 2: cbs(M1) =
cbs(M2) = (1 8|2 7|3 6|4 5).

Based on this symmetry we find the factorization

DCT-IV8 = [(1,2,8)(3,6,5), (1,−1,1,1,1,−1,1,1)]
· (12⊗ ((12⊕ 1√

2
·DFT2) · [(3,4),4] · (DFT2⊗ 12)))

· [(1,3)(2,4)(5,7)(6,8),8] ·
(

14⊕ R15
8 π
⊕ R11

8 π

)
· (DFT2⊗ 14)

· [(3,5,7)(4,6,8),8] ·
(

R31
32π

⊕ R19
32π

⊕ R27
32π

⊕ R23
32π

)
· [(1,8,5,6,3,2)(4,7),8].

The factorization was generated in 6.8 s.
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6.4. Hartley transform

The (unscaled) discrete Hartley transform DHTn is defined by the matrix

DHTn = [cos(2k�π/n)+ sin(2k�π/n) | 0 ≤ k, � < n].
We find a perm–irred symmetry(φ,ψ) with dihedral symmetry groupD16 = 〈x, y | x8 =
y2 = 1, xy = x−1〉. We give onlyφ:

φ : x �→ [(1,2,3,4,5,6,7,8),8], y �→ [(2,8)(3,7)(4,6),8].
The corresponding factorization is given by

DHT8 = [(1,8)(2,4)(3,6)(5,7),8]
· (12⊗ ((12⊗ DFT2) · [(2,3),4] · (DFT2⊕ 12))) · [(2,7,6,8,5,4,3),8]
· (14⊕− 1√

2
·DFT2⊕ 12) · [(5,6),8] · ((DFT2⊗ 13)⊕ 12)

· [(2,5,3,6,4)(7,8), (1,−1,−√2,−√2,
√

2,
√

2,−1,−1)]
· (16⊕ DFT2) · [(2,5,8,7,3,4),8].

The factorization was generated in 1.1 s.
The DHT8 also has another perm–irred symmetry(φ,ψ) with symmetry groupD16.

We again give onlyφ:

φ : x �→ [(1,2,3,8,5,6,7,4),8], y �→ [(2,4)(3,7)(6,8),8].
The resulting factorization is very similar to the one above.

Furthermore, DHT8 has a mon–mon symmetry with a symmetry group of size 256 and
the structureZ2 � (Z2×Z2×Z2×Z2×D8), whereH � N denotes the semidirect product
with normal subgroupN. The resulting factorization is quite different from the one above:

DHT8 = [(1,4,6,7)(2,8,5,3), (1,−1,−1,1,1,1,−1,−1)] · (14⊗ DFT2)

· [(1,5,7,8,2,3,6), (√2,−√2,1,1,1,1,1,1)]
· (12⊕ DFT2⊕−(12⊗ DFT2))

· [(1,8,2,6,5,7,4),8] · (14⊗ DFT2)

· [(1,5,6,2)(3,7,4), (1,1,−1,−1,1,1,−1,−1)].
Generating this factorization took 2.4 s.

We also chose the Hartley transform to illustrate the run-time behavior of the three
steps in the factorization algorithm (seeSection 2) as the transform size increases.
Table 3 displays the run-time results (in seconds) for a decomposition via perm–irred
symmetry (left table) and via mon–mon symmetry (right table). The size of the group
found is in the second row and bold-faced; the run-times for the three steps in the
factorization algorithm are given in rows 3–5: find symmetry, decompose symmetry, and
combine decompositions. The bottom line shows the total run-time needed to generate the
factorization. We note that in all cases the DHT was fully decomposed; i.e., the resulting
structural expression did not contain any subblocks of size larger than 2× 2.

For the decomposition via perm–irred symmetry we observe a steep increase in run-
time for finding the symmetry, whereas decomposing the symmetry is rather fast due to
the modest group sizes (a dihedral group in all cases). In contrast, the decomposition
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Table 3
Run-time profile for decomposing a DHT across different sizes via perm–irred symmetry (top) and mon–mon
symmetry (bottom); the run-times are given in seconds

DHT size 8 16 32
Group size 16 32 64
Symmetry 0.8 64 4872
Decompose 0.1 0.8 2.1
Combine 0.2 0.5 2.2

Total time 1.1 65 4876

DHT size 8 16 32 64 128 256
Group size 256 256 512 1024 2048 4 096
Symmetry 0 0 0.6 4.8 46 4 028
Decompose 2.4 5.9 15 1319 6469 34 262
Combine 0 0 0.5 2.7 16 138

Total time 2.4 6.0 16 1381 6531 38 428

via mon–mon symmetry finds the symmetry very fast and suffers from the run-times
for decomposing the symmetry, which is due to the large group size. According to
our experience,Table 3 provides examples that serve as good representatives for the
performance of our algorithms.

6.5. Haar transform

The Haar transform HT2k is defined recursively by

HT2 =
[

1 1
1 −1

]
, HT2k+1 =

[
HT2k ⊗ [ 1 1]

2k/2 · 12k ⊗ [ 1 −1]

]
, k ≥ 1.

A fast algorithm for the Haar transform follows directly from the definition. Fork = 3
we build the corresponding matrix HT8. The transpose of HT8 has a perm–irred symmetry
(i.e., HT8 has an irred–perm symmetry). The symmetry group is the iterated wreath product
(Z2 "Z2) " Z2 of size 128 (Foote et al., 2000). By transposing the resulting factorization we
obtain the following factorization of HT8:

HT8 = [(1,8,6,4,2,7,5,3),8]
· (diag(−√2,

√
2)⊕ 14⊕ DFT2) · [(1,5,4,8,6,3,7,2),8]

· (12⊗ ([(1,2),4] · (DFT2⊕ 2 · 12) · [(2,3),4] · (12⊗ DFT2)))

· [(1,8,4,7)(3,6,2,5), (1,1,1,1,−1,−1,−1,−1)].
Generating this factorization took 6.5 s.
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