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Abstract

We present a compact characterization of network-level traffic processes for a dense urban area operating under an adaptive traffic

control system. The characterization is based on a state classification scheme that is employed at a detector level, and a state

transition model that works with combinations of detectors that are topologically dependent. Jointly, the two models provide a

concise but rich representation of traffic processes at the network level. The key insight is the identification of transient states,

termed under-utilized (U) states, where network effects such as insufficient downstream capacity are captured. In such states the

green time is not fully used. The approach provides the space-time evolution of states across the network, conditional probabilities

of upstream traffic states that drive state propagation in the near term, and probabilistic information on congested paths on the

network, where paths are described as a sequence of detectors. The paper presents empirical evidence based on the SCATS

adaptive control system in Dublin, the insights provided by the proposed approach, and the importance of under-utilized states,

which represent as much as 20% of unused capacity along certain corridors in peak periods. The results provide a basis for future

network control procedures.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Scientific Committee of ISTTT21.
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1. Introduction

Adaptive traffic control systems work by adjusting supply conditions to match locally observed traffic. Supply

considerations, typically though of as green time provided to a particular intersection approach, include a host of

factors that influence vehicle throughput. In urban networks and major corridors, throughput can be increased signifi-

cantly if groups of traffic lights are coordinated to serve major directional flows. Such systems are deployed in many

cities across the world and include SCATS (Sims and Dobinson, 1980) and SCOOT (Hunt, Robertson, Bretherton and

Royle, 1982), two of several systems proposed in the literature and available in practice.

While control mechanisms used by adaptive systems perform well for under-saturated conditions, over-saturated

conditions remain challenging. This is especially the case in general urban networks where small perturbations at
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critical locations, such as incomplete dissipation of a queue, can quickly move the system towards gridlock. While the

role of network-effects, the influence of one intersection on its topologically dependent neighbors, has been identified

as being critical, traffic dynamics of real-world systems in these regimes have not been well understood. When the

intersections are adaptively regulated, supply-side actions introduced further complexity to establish network-level

understanding of a traffic system.

This paper aims to provide empirical evidence of traffic dynamics of networks under adaptive control using real-

world data from Dublin where the SCATS system is deployed. The system is characterized by a novel three state

classification scheme that describes free-flow, congested, and transient states which are driven by network effects. In

over-saturated conditions, such network states are critical as strategies to increase supply (via increased green time)

are ineffective, since this cannot be effectively utilized. The classification scheme relies jointly on the degree of
saturation, a unit-less measure computed for each approach and flow in vehicles per hour. Since data from adaptive

control systems represents both supply and demand side of traffic processes, classical state variables of flow, density,

and speed are not directly applicable and cannot be interpreted in a coherent manner due to discrete changes in

supply and feedback mechanisms. The state of the control system is employed to further establish the penalty for

coordination, a loss in throughput at a particular location that can be solely attributed to a (sub-optimal) control

decision to favour other approaches within the coordinated subsystem.

Additionally, a network-level state transition model to capture dynamics of the three states based on a dynamic

Bayesian network (DBN) is developed (Friedman, Murphy and Russell, 1998; Neapolitan, 2003; Murphy, 2002). BNs

have been previously applied in the literature for traffic state prediction and estimation (Sun, Zhang and Yu, 2006;

Pascale and Nicoli, 2011; Castillo, Menéndez and Sánchez-Cambronero, 2008) although not in the specific context

studied herein, that of identification of relevant spatio-temporal patterns of traffic states. The DBN is calibrated based

on the classified data obtaining a compact model which represents important traffic patterns over the network. With

the compact DBN model, inferences such as evaluation of congestion propagation likelihood along any path in the

network and acquisition of conditional distribution of the states at upstream and downstream detectors, can be made.

Empirical results with a dataset in the Dublin city show that interesting state transient patterns can be revealed by

querying the learned DBN.

At the macroscopic level, the major thrust in the literature has been towards establishing relationships between key

traffic quantities of flow and density at the city-wide level. Such relationships that capture network-wide physics are

powerful and pave the way for better network operations. The theory postulates that independent of demand, network

topology and control mechanisms define a macroscopic fundamental diagram (MFD) which systematically relates the

average network-wide densities and flow (Ardekani and Herman, 1987; Mahmassani, Williams and Herman, 1987;

Daganzo, 2007; Geroliminis and Daganzo, 2008; Helbing, 2009). (Daganzo, 2007) argues for the use of MFD and

neighborhood models in adaptive control.

Studies on key properties that would make the MFD applicable (Geroliminis and Sun, 2011; Buisson and Ladier,

2009) have found that spatial variability of density to be a critical factor. (Mazloumian, Geroliminis and Helbing,

2010) asserts that spatial inhomogeneity is critical in understanding poor network capacity. Network capacity is non-

deterministic and highly variable. Similar conclusions on flux being dependent on topological features were reached

by (Mendes, Da Silva and Herrmann, 2012). Studies that address the problem of homogeneously partitioning cities

into neighborhoods such that MFDs are valid have been conducted (Ji and Geroliminis, 2012; Pascale, Mavroeidis

and Lam, in review). (Helbing, 2009) analytically derive macroscopic relations based on kinematic wave theory.

Assuming cyclical phases, relationships for three regimes are shown. Recently, (Mahmassani, Saberi et al., 2013)

conclude, via simulation experiments in Chicago, that networks tend to gridlock in many ways and network capacity

is highly influenced by demand considerations, such as adaptability of drivers and route choice.

Several studies have looked at network processes from the perspective of control engineering (?, see)for re-

views]papageorgiou2003review,papageorgiou2007its. These works aim to provide optimal control at the network

level and devise specialized traffic control strategies that mitigate gridlock. (Keyvan-Ekbatani, Papageorgiou and Pa-

pamichail, 2013) demonstrate the use of the MFD within a feedback control mechanism for gating. Gating refers to a

strategy whereby traffic is carefully metered into a protected area, so as to disperse density as insights from the MFD

suggests. They further advance this to remote gating using fewer observations (Keyvan-Ekbatani, Papageorgiou and

Papamichail, 2014) for a perimeter control strategy and show an improvement in throughput. Traffic responsive urban

control (TUC) (Dinopoulou, Diakaki and Papageorgiou, 2000) is a strategy that aims to ‘minimize and balance the
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number of vehicles on an urban link’. The model is a linear-quadratic optimal control problem that is demonstrated in

Glasgow (Diakaki, Papageorgiou and Aboudolas, 2002; Dinopoulou, Diakaki and Papageorgiou, 2006). (Aboudolas,

Papageorgiou, Kouvelas and Kosmatopoulos, 2010) formulate a quadratic program to balance link queues and report

an improvement over TUC. The model explicitly aims to reduce the risk of over-saturation and show promise for

network-wide control in Chania, Greece for a network with 16 nodes and 60 links. (de Gier, Garoni and Rojas, 2011)

use a cellular automata to conclude that adaptive control that relies on traffic states from topologically dependent

nodes outperforms more traditional adaptive control and no adaptation.

A robust analysis using a cellular automata model by (Zhang, Garoni and de Gier, 2013) provides more insights

into spatial heterogeneity and hysteresis for networks with adaptive control. The key insights, are that network het-

erogeneity increases as network density increases and that control strategies directly impact the network performance.

(Mazloumian, Geroliminis and Helbing, 2010) states that inhomogeneity of spatial densities have critical impact

on throughput and can be attributed to spillovers in networks that have significant negative impact on throughput.

(Geroliminis and Skabardonis, 2011) leverage the LWR framework to identify queue spillovers. The detectors are

mid-block detectors and using a triangular fundamental diagram, they derive expressions for critical blocking. The

main insight in that work is that queue discharge rates are lower than saturation flows when spillovers occur. Via

simulation experiments they also relate the existence of spillovers to overall network throughput.

The main motivation for our work arises from the complexity involved in managing adaptive control systems.

Since these systems evolve over time, have a large parameter space that impact efficiency, and rely on field experience

of traffic engineers to configure correctly, there is a large role for data-driven insights at the local and network level

that can be leveraged to improve services, and potentially assist mobility managers with tools to automate tasks

such that the benefits of adaptive control are realized. As a example, (Jhaveri, Perrin and Martin, 2003) show that

adaptive control systems are not ‘plug-and-play’ and validation is critical. In their simulation experiments they should

a degradation of 219%, in terms of delay, when the system is deployed without validation, and an improvement of 8%

when the system is correctly validated.

The key contributions in this paper are (a) the characterization of the dynamics of arterial networks where the traffic

process is governed by both demand and control processes, (b) identification of a transient state that can be attributed

solely to network effects, (c) an interpretation scheme of field observations based on a local state classification model,

and a network transition model used to establish network relationships. In addition, empirical insights from the

SCATS system in Dublin are also presented. While the state classification model is specific to the SCATS system,

other insights can be leveraged for other types of control systems where supply-side information is available.

The paper is structured as follows. Section 2 presents the interpretation scheme and the local state classification

model. Sections 3 and 4 present the network transition model. Section 5 presents empirical data from the SCATS

system in Dublin followed by a discussion of the results 6.

2. The State Classification Scheme

The SCATS traffic control system works by adapting supply conditions to changing traffic. The supply conditions

primarily refer to green time, but also include other parameters such as offset, cycle time, and dynamic coupling/de-

coupling of intersections that influence vehicle throughput. In coordinated settings, a sub-system is defined as a

subset of intersections that should essentially ‘move together’. The cycle time for intersections within this sub-system

is typically set to be equal, such that major directional flows can be efficiently served.

The system consists of stop-line detectors that report two critical quantities at the end of each cycle (usually 2-3

minutes in rush hours). The number of vehicles, or flow in vehicles per hour, denoted by f , and a unit-less measure

of utilization, called degree of saturation, denoted by DS . The control mechanism is driven by DS . An optimal

utilization of green time implies a DS = 100, where flows were at the optimum for that green time offered. Higher

values, indicate over-saturated conditions, in which case the system aims to provide additional green time to that

approach (or sub-system) such that the DS returns to the target levels, typically around 90% utilization. SCATS

computes DS based on detector occupancy rates as

DS = 100 · g − (T − t · f )

g
(1)
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where g is the green time for that phase, T is the time for which the sensor is not occupied during the green phase, f
is the number of vehicles and t is the temporal gap between consecutive vehicles at the maximum flow. At optimal

flow rates, DS = 100, since the temporal gaps are equal to the time that detector is not occupied. For larger values

the system is considered over-saturated, while for smaller values, the system is considered at free-flow. Using this

principle, the control mechanism aims to keep the DS 90, a target utilization, by allowing additional green time to

approaches with a high DS . In coordinated settings, the cycle time for a sub-system is determined by the detector

with highest DS .

Degree of saturation DS is therefore a local utilization measure, that the control mechanism uses to evaluate if the

detector is over-saturated (DS ≥ 100) or not. The expected fundamental relationship between f and DS is similar

to the triangular fundamental diagram, in that flows increase with utilization up until a threshold, past which there

is a severe degradation of flows due to congestion. In practice, as the data from Dublin describe in more detail in

Section 5 show, this relationship between the flow f and DS in dense networks is not as systematic, with high levels

of dispersion in the under-saturated regime.

This dispersion in the under-saturated conditions is demonstrated to be due to two distinct regimes. One in the free-

flow state, where utilization of green time is as expected, and the other, where vehicular flows are low, but with high

DS leading to under-utilization of green time. The second state is transient in nature, and can be directly explained

by the traffic processes at downstream and upstream intersections. These ‘network-effects’ lead to the paradoxical

behavior of high utilization and low flows.

2.1. Interpretation of states

Figure 1 depicts the three states based on data from one detector. A free-flow (F) state is where flows increase

with utilization proportionally to the optimal service rate. This represents normal and under-saturated conditions.

In this case, a phase serves the entire queue. A congested (C) regime is detected when DS is higher than the one

corresponding to maximum flow, while flow is low. This C state corresponds to a congested regime.

These two states would describe the fundamental diagram between f and DS with the expected triangular shape.

As outlined before a dispersion in the undersaturated regime is actually observed and the paper is devoted to model

it. A third under-utilized (U) state shows low flow values for under-saturated cycles (DS < 100). The consequence

of such cycles is that the green time is not completely used over that cycle despite higher than normal occupancy of

the detector, as seen by the high but under-saturated DS . We present empirical evidence that the existence of these

states are the direct result of network effects, such as down stream capacities on one or more approaches not being

available to meet throughput needs. Their existence is related to spillovers that propagate through the network and

cause residual queues.

The behavior of the three states can be also described using the detector occupancy profiles as shown in Figure 2.

SCATS uses stop line detectors that measures traffic for the entire cycle length. During the red phase r, the detector is

completely occupied should there be vehicle waiting to be served. During the green time g it registers the passing of

vehicles. An example of the temporal signature of the sensor in the three different states are shown. While the F state

shows free flowing vehicles, with low detector occupancy, the C state shows slow moving vehicles, with long detector

stays, leading to high DS . To achieve, high (but under-saturated) DS and low f , the U state has a characteristic

detector signature, where a platoon of vehicles is served till such time there is a spillover, which leads to higher DS .

Despite both having low flows, the critical difference between C and U states is that the congested regime C has

low unoccupied detector time T (see Equation 1), while the U has near optimal T for part of the phase, and then

is completely occupied, the average of which results in low flows for the cycle, but higher (but under-saturated)

utilization DS .

Section 5 demonstrates the critical nature of the U state from an empirical standpoint. The existence of U states

is symptomatic of local perturbations that are likely to amplify downstream, and move the system to the congested

regimes, especially if these transient states are observed at critical locations at critical times of the day. When the U
state occurs the flow is lower than it would be expected if a F state were observed for the same value of DS , this is

clear looking to fig 1. The difference between the actual flow and the corresponding value in F state can be interpreted

as a capacity loss in terms of a portion of green time that is not efficiently used by the vehicles. A similar loss can

be computed for the C state if the actual flow is compared with the maximum flow. The U state plays a key role in
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Fig. 1. Observed flow and degree-of-saturation and the three states for a single detector

Fig. 2. Detection of F, U and C state. The detector profile in the three cases is showed.

determining the amount of wasted capacity in the system and while it is transient, analysis have been conducted on

real data from Dublin city resulting to presence of state U accounting for as much as 20% of lost capacity.

With this interpretation of the field data, the subsequent state classification scheme captures this three-state model,

which captures the under-utilized states at the detector level. Since this indicates the existence of network effects,

the next section presents a network transition model that seeks to leverage this state information to derive congestion

propagation paths.
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Fig. 3. Calibration of the classification parameters for a turn lane (left) and a main line lane (right)

2.2. The classification algorithm

The classification method uses the four detector-specific parameters Qopt, DS max, αQ and σQ. These parameters

are calibrated from historical data as shown below (Section 2.3). The capacity rate, defined as Q = f /DS , is a very

important measure of the service rate of the traffic light in terms of vehicles per hour of green time (veh/h/g). Qopt

is defined as the service rate of a detector in free-flow conditions. DS max is value of DS that corresponds to the

maximum achievable flow. σQ is a dispersion parameter for utilization at maximal service flow, and αQ is a parameter

that delineates free-flow service rates from transient ones.

Given the observed flow f , utilization DS , a derived capacity rate Q = f /DS and a set of calibrated parameters,

the state of a detector can be classified based on the following expression.

s( f ,DS ,Q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U, if f > Q − αQ and Q < Qopt − σQ and DS < DS max,

C, if f > Q − αQ and Q < Qopt − σQ and DS ≥ DS max,

F, otherwise.

(2)

The conditions can be interpreted using Figure 3. The free-flow F state occurs around an optimal capacity rate

Qopt with a dispersion of σQ. For capacity rate values that exceed this (Q < Qopt − σQ), the state can either be

congested C or transient U. High capacity rates (beyond the theoretical limit) can occur in practice. To classify these

as free-flow, the second condition restricts C and U states to only when capacity rates are lower than the optimal rate

(Q < Qopt − σQ). The last condition distinguishes between congested and transient states using degree of saturation

DS .

This classification scheme is simple and can be calibrated as shown next. The three state model explicitly captures

network efforts that arise in arterial networks.

2.3. Calibration and implementation

Since real-world data can be noisy and contain outliers, a filtering procedure is employed to exclude outliers, e.g.

very high values of the capacity Q observed for low flows, before calibrating the needed parameters. Depending on the

traffic intensity at each detector, the parameters can be very different. Figure 3 shows the results of the classification

algorithm for two sensors on a turn lane and on the main line.
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The parameters can be calibrated from data as follows.

1. Qopt first estimate: A preliminary classification on DS and f can be done using reconstituted flow frec which

is another variable reported by SCATS and is defined as the expected flow for a certain value of DS and can be

considered as a preliminary estimation of Qopt, since it tends to be too optimistic.

2. F state first classification: A preliminary identification of the F state is conducted selecting the samples where

Q ∈ (( frec ± f t
rec) ∗DS ) where f t

rec is computed from the standard deviation of the reconstituted flow collected by

the sensor over a sufficient interval of time. f t
rec needs to be large enough to provide a good identification of the

F state.

3. Qopt second estimate: Given the samples identified as F a least squares linear fitting method is applied to them

in order to estimate the Qopt, the standard deviation of this distribution stdQ is then computed.

4. σQ and αQ estimates: The dispersion parameters are computed from the standard deviation by σQ = stdQ and

αQ = 1.5 · stdQ∗. The calibration of σQ and αQ depends on the shape of diagrams in fig. 3 and can change for

different areas of the city.

5. DS max estimate: Due to the effect of outliers, taking the highest value of f is not reliable to estimate the fmax,

we compute the average of the highest N values of f taken into the interval 90 < DS < 130, N depends on the

amount of available data.

This three-state classification model is specific to the SCATS adaptive system, since it leverages stop-line detectors

and DS metrics that are unique to SCATS. Mid-block detectors, such as those employed by SCOOT, report occupancy

fraction directly [? ]. Given detector profiles similar to those shown in Figure 2, additional models to derive similar

U states can be constructed directly from the detector signatures, or model-based analytical expressions as shown in

(Geroliminis and Skabardonis, 2011).

To translate the state and flow values in terms of lost throughput, we can write an expression for a loss function
that compares the ideal flow under the current supply conditions to the current flow. This represents the magnitude of

the under-utilization for U and C states.

L( f ,DS ,Q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Qopt · DS − f if s( f ,DS ,Q) = U,
fmax − f if s( f ,DS ,Q) = C,
0 otherwise.

(3)

in the section 5, L( f ,DS ,Q) is used to evaluate the detrimental effect of these states on traffic.

3. Network traffic modelling

Given the three-state detector-level model, a network transition model that relates detectors that are topologically

dependent is developed. The main aim of the network transition model is to leverage the local three-state model with

link level processes, to provide a concise characterization of network processes. The key considerations needed to

model dynamics over a network are that the anisotropic properties of traffic be considered, the correlations over space

and time be captured, and the spatial decay of statistical dependence, i.e. links located far apart can be treated as being

independent.

Therefore, a directed spatio-temporal graph model is considered via a dynamic Bayesian network (DBN). Bayesian

networks (BN) are directed acyclic graphs whose nodes represent random variables and edges the conditional depen-

dence among them. For our application, nodes denote the traffic state observed in different time instants and/or spatial

locations, edges their probabilistic relations. The computation of the probability distribution of traffic state over the

entire network can be decomposed in smaller subnetworks where each subnetwork defines the spatial relation on

adjacent nodes (linked by edges). Specifically, to capture spatial and temporal traffic dynamics, the BN needs to be

dynamic to capture the temporal evolution of the system (Murphy, 2002). DBNs are defined for this scope, as they

generalize the BN to model the evolution of stationary processes. In particular, in DBNs, we make a Markov assump-

tion on the temporal evolution of traffic, i.e. traffic state at time t is independent from traffic at time earlier than t − 1

given that the traffic at time t − 1 is known.
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A. Road  network                                                                                        B. Dynamic Bayesian network 

Fig. 4. A. A network graph with connections between downstream and upstream detectors. B. A dynamic Bayesian network created from the

network graph.

To construct the DBN, first a spatial network that consists of topologically dependent sensors is constructed. A

time-expanded graph of this base network is then considered, where each time-step is a fixed duration of time. In

practice, SCATS reports data at the end of each cycle. As a result, the time series for each set of intersections are

typically asynchronous. Procedures to regularize this are also needed to train the model.

Any number of higher order models can be considered including those with more sophisticated dependence struc-

tures, such as n-order temporal dependence. For large-scale implementations, calibration of such models is computa-

tionally prohibitive. Interpretation of such models is also complex due to higher dimensional transition probabilities.

The added value in terms of explanatory power therefore are negligible. The Markovian and stationarity assumptions

made herein therefore represent a trade-off between a concise, feasible, and applicable solution versus efficiency of

computations.

3.1. DBN definition

Denote the set of detectors asV = {v1, v2, · · · , vn}. We build the DBN starting from the graph G(E,V) describing

the urban network. E is the set of links between detectors where a link (vi, v j) between two detectors vi and v j exists

if and only if there is direct flow from vi to v j. Figure 4.A shows a set of 6 detectors v1, v2, v3, v4, v5 and v6 and the

network created by connecting upstream and downstream sensors.

For any detector vi observed at time t we define the state vt
i ∈ {F,U,C}, obtained from the classification algorithm

described in section 2. Vt is the set of nodes at time t, {vt
1
, vt

2
, · · · , vt

n}. The DBN considered in this work is represented

as a graph G(Et,Vt ∪ Vt+1), where the set of vertices is the union of the sets of states of detectors at time t and t + 1.

The edges Et are built as follows:

• for any i ∈ V create a direct edge from vt
i to vt+1

i to represent conditional self-dependence of the detector from

time t to time t + 1

• if (vi, v j) ∈ E then create a direct edge from vt
j to vt+1

i to represent the causality relationship between upstream

and downstream detectors. As the traffic states as defined in this paper are strictly depending on the availability

of downstream capacity,(the presence and severity of spillover effects is a key interpretation of the classification

procedure), we make the assumption that states propagates mainly in the backward direction. Then the edge is

created from the downstream sensor to the upstream sensor.

An example of the building process is given in fig 4. The network graph G(E,V) shown in Figure 4.A is used to

derive the DBN G(Et,Vt ∪ Vt+1) shown in Figure 4.B. If we look to node vt+1
3

, its set of parents is composed by vt
3

(self-influence) and vt
2
, vt

6
(downstream influence).
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Network structures can also be directly learned from the data using a structure learning task. However, in this

application, structure learning is not reliable and returns sub-optimal solutions to the network structure. This is due to

the exponential increase in the search space as the number of nodes in the network increases. Searching for the optimal

network structure subjective to different objective functions such as the AIC or the BIC score (Neapolitan, 2003)

becomes computationally expensive and for a specific time budget often return local optima. Given the physical

traffic processes, direct causal relationships between topologically dependent sensors can be assumed safely without

the need for learning the network structure.

3.2. Parameter learning

Given the known BN structure, for a node vt
i, the learning phase involves estimating the conditional probability of

the traffic state P(vt
i |pa(vt

i)), given the states of its parents pa(vt
i) from the graph G. Denote Dt = Vt ∪Vt+1 as the states

of detectors observed at time t and t + 1. Assume that the training data contains observations of network states in the

time interval 1, 2 · · · , S . The log-likelihood of the training data is defined as:

L =
n∑

i=1

S∑

t=1

log P(vt
i |pa(vt

i),Dt) (4)

The log-likelihood function can be further decomposed into independent component corresponding to each node

in the network. A maximum likelihood estimation procedure to learn P(vt
i |pa(vt

i)) for each node in the network is

employed (Neapolitan, 2003).

This procedure relies on a complete time series of traffic states for each node of the network. The state classification

scheme output is used as input to this learning routine. In the case of Dublin, roughly three months of data were

employed. We use the BNT Matlab toolbox1 to learn the network parameters.

In order to use the BNT toolbox, we first created a network structure as defined in subsection 3.1. The network was

constructed manually for the location of interest by visualizing the positions of the sensors on the map. Automatic

network construction is considered as a future work. Subsequently, we collected historical data and created a table

in which each column corresponds to a node in the DBN associated with a sensor and rows are classified states of

the sensors at a given timestamp. The network structure and the data table were served as input for learning the

parameters of the DBN with the BNT toolbox. Recall that each node in the DBN has three states. Depending on the

spatial configuration of the network the number of transition probabilities that need to be estimated is fairly limited

(in the case of Dublin the maximum cardinality of the parent set was 16). The model can be trained in a reasonable

amount of time on reasonable hardware.

Based on our empirical study, the behavior of traffic varies most across three different time intervals: 0-7 AM and

20-24 PM when the traffic is very spare, 7-10 AM and 17-20 PM when the traffic is heaviest and from 10 AM to

17 PM when the traffic is moderate. Therefore we divided the time into three mentioned categories and learned a

different DBN for each of them. Our key assumption is that within an interval of interest, the data is stationary, i.e.

the conditional distribution P(vt
i |pa(vt

i)) is independent from t. In our framework, it is possible to consider smaller

interval splits in which the stationary assumption would hold with stronger confidence. However, since the number of

rows in the training data table is proportional to the length of the split intervals, more data is needed to learn a reliable

DBN when the time interval length is set to a small value.

4. Inference and Pattern Discovery

Armed with the local state classification, and network transition probabilities, we now focus on evaluation of

interesting traffic states patterns over the network. The basic premise is that state and transition probabilities can be

queried in a variety of ways. Here we present two specific types of queries, related to link and path processes where

U state is critical. The U state is effectively related to network effects, a lack of capacity downstream causes a U state

1 https://code.google.com/p/bnt/
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upstream propagating over the network. The analysis of propagation over links or sequence of links, i.e. paths, is then

important to catch these network effects. Specifically we are interested in detecting the most critical links or paths in

the network where the strong propagation of congested states (C) or transient states (U) is observed.

Having the learned DBN, we consider different types of inference to discover interesting patterns from the data.

We are interested in two types of patterns. The first one concerns how likely the congestion state propagates along

a link of interest in the network. The second one relates to the likelihood of congestion propagation along a path

of arbitrary length. Although the latter type of pattern is more general than the former one, we consider these two

patterns separately because the latter one requires much more elaborated work to query from the DBN. In the following

subsections we will discuss these patterns in detail. In the following subsections the method is presented taking as

an example the patterns of state C. The analysis is not limited to the propagation of C, also patterns of U states or a

combination of the two can be discovered using this procedure.

4.1. Congestion propagation pattern on links

Given a link (vi, v j) where vi is the sensor at upstream and v j is a sensor at downstream, we are interested in

acquiring the likelihood of congestion propagation from v j to vi at time t + 1 given that v j is congested at time t. This

likelihood can be formally represented as the probability of vt+1
i = C given that vt

j = C and all other parents of vt+1
i are

in the free-flow state at time t.
For example, consider the link (v3, v6) in figure 4.A, assume that congestion happens at location vt

6
at time t and no

congestion is observed at location vt
2

or vt
3

(other parents of vt+1
3

) at time t. The likelihood of congestion propagation

along the link (v3, v6) can be calculated as Pr(vt+1
3
= C|vt

6
= C, vt

3
= F, vt

2
= F). This conditional probability can be

queried directly from the DBN.

In the experiments, we used this method to query for the congestion propagation likelihood for several links of

interest with the same starting point. In doing so we can discover interesting patterns and provide with deep insights

on why some links are more vulnerable to congestion propagation than the others. These patterns can be useful in

exploratory analysis of network behaviors at link levels.

4.2. Congestion propagation pattern on paths

We define the likelihood of congestion propagation on paths with arbitrary length. A path in this context is defined

as a sequence of topologically connected detectors. To simplify the discussion, we will focus on the case when the

path length is equal to 2. The discussion can be easily extended to the general case for paths of arbitrary length.

Given a path (vi, v j, vk), we define the likelihood of congestion propagation along this path as the joint probability

of two events:

• Event 1 (E1): vt+1
j = C, vt

k = C and P = F for any P ∈ pa(vt+1
j ) and P � vt

k

• Event 2 (E2): vt+2
i = C, vt+1

j = C and P = F for any P ∈ pa(vt+2
i ) and P � vt+1

j

The former event corresponds to the congestion propagation likelihood along the link (v j, vk) at time t and the

latter event corresponds to the congestion propagation likelihood along the link (vi, v j) at time point t + 1. Calculation

of the likelihood of congestion propagation of a path with length 2 requires knowledge about events happening at

three consecutive timestamps t, t + 1 and t + 2. While the DBN described in subsection 3.1 only represents the

knowledge about events happening at two consecutive timestamps, it is not straightforward to evaluate the likelihood

of congestion propagation of a path with length 2 using the learned DBN. However, the following theorem shows that

the joint probability of event 1 and 2 can be decomposed into components which can be calculated by querying the

DBN described in subsection 3.1.

Theorem 1. The congestion propagation likelihood can be evaluated as follows:

Pr(E1, E2) = Pr(vt+2
i = C|vt+1

j = C; P = F, P ∈ pa(vt+2
i ), P � vt+1

j ) ∗ (5)

Pr(vt+1
j = C|vt

k = C; P = F, P ∈ pa(vt+1
j ), P � vt

k) ∗ (6)

Pr(vt
k = C; P = F, P ∈ pa(vt+1

j ), P � vt
k) (7)
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Proof We rewrite Pr(E1, E2) in the following format:

Pr(E1; E2) = Pr(vt+2
i = C; vt+1

j = C; vt
k = C; (8)

P = F, P ∈ pa(vt+1
j ), P � vt

k; P = F, P ∈ pa(vt+2
i ), P � vt+1

j ) (9)

= Pr(vt+2
i = C|vt+1

j = C; P = F, P ∈ pa(vt+2
i ), P � vt+1

j ) ∗ (10)

Pr(vt+1
j = C|vt

k = C; P = F, P ∈ pa(vt+1
j ), P � vt

k) ∗ (11)

Pr(vt
k = C; P = F, P ∈ pa(vt+1

j ), P � vt
k) (12)

The second equality is due to the Markov property of Bayesian network. The theorem is proved.

The three components in theorem 1 can be evaluated by querying the DBN thanks to the stationary assumption

we made in this paper. For example, the congestion propagation likelihood on the path (v4, v5, v6) in Figure 4 can be

calculated by Theorem 1 as Pr(vt+2
4
= C|vt+1

5
= C, vt+1

4
= F) ∗ Pr(vt+1

5
= C|vt

6
= C, vt

5
= F) ∗ Pr(vt

6
= C, vt

5
= F). The

first two components in that formula correspond to the likelihood of congestion propagation along the link (v4, v5) and

(v5, v6) respectively.

It is important to notice that the likelihood of congestion propagation along a path is slightly different from the def-

inition of congestion propagation on a link which considers the conditional distribution instead of joint distribution.

The difference is due to different purposes of usage. For links, we are interested in comparing the likelihood of con-

gestion propagation between links with the same starting point. While for paths we are more interested in comparing

the likelihood between any path on the network. The likelihood computed are used to rank the paths (or links) in order

to identify the most critical one. If spillover or capacity loss are observed on specific locations over the network the

procedure presented in this section can be used to find the most likely path causing it. In the next section experimental

findings of critical paths and links in the Dublin city centre will be presented. A useful feature of the BNT toolbox

is that it allows us to efficiently calculate conditional distribution of a state given observed states of any set of nodes

in the DBN. This is usually done via giving an evidence set as an input to the enter engine function and performing

conditional distribution calculation with the marginal nodes function of the BNT toolbox 2. Based on this feature we

can evaluate the the congestion propagation likelihood Pr(E1, E2) in three steps as shown in theorem 1.

5. Empirical evidence from Dublin

The SCATS traffic control system is deployed in over 700 intersections in Dublin, Ireland. The real-time data

from the strategic monitor is used in this analysis, and provides information on phases, flows, degree-of-saturation

and other measures at the end of each cycle length. The system is linked and has defined sub-systems within the core

down-town area where we focus on 125 detectors in two sub-systems. For calibration and training purposes, weekday

data for each of the 125 detectors spanning three months is employed. The data is from February, 2013 till April,

2013. The study area and SCATS layout is shown in Figure 5.

The state classification and network transition models are implemented on this sub-network and in this section we

discuss the key characteristics observed. The critical nature of the transient U state is highlighted via the capacity loss

function.

5.1. Classification results

The classification parameters are calibrated over the three months data. The real time procedure is then tested over

a set of 10 days in May 2013. Figure 6 shows a snapshot of the classification results in the afternoon rush hours

period at 5:39 pm on the 10th of May. Each dot is a sensor, the colour identifies its state as in Figure 3. While a

subset of detectors are in free flow, areas where a capacity loss is observed can be easily identified over the network.

The presence of the U state helps in the detection of corridors and links where the green time is not being completely

exploited and spillover effects are observed.

2 http://bnt.googlecode.com/svn/trunk/docs/usage.htmlmarginal
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Fig. 5. Dublin network showing SCATS intersections and a sub-network

Fig. 6. Snapshot of the states identification from the 10th of May at 5:39 pm.

Figure 7 shows the time series of state classification over the Eastbound Quays corridor on a typical weekday.

Some features of congestion evolution along the Quays is very well represented in this picture. In the last two sensors

17-262-2 and 197-120-1 congested traffic is observed in the afternoon with a mix of C and U states, in particular

some of the C states on 17-262-1 become U when observed on 197-120-1. Identifying U states is very important in

this case as it represent a congestion even if under-saturated values of DS are observed, failing in detecting it as a

congested condition would result in a failed detection of a capacity loss at that location. Failing in detecting this loss

can be also be the cause of green time wasting. This phenomenon can be observed if we look to sensor 193-108-2 and

focus on the joint behavior of states and green time during the morning rush hours. In this case even if more green
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Fig. 7. Typical weekday along the Eastbound Quays corridor showing the traffic states along a path and supply conditions per cycle (direction of

travel is top to bottom)

time is given when a congestion is observed, the recovering to a F state does not take place, as the system stays in U
state, and the increasing in green time is wasted by the system.

5.2. Critical paths identification and loss function

The identification of critical propagation paths over the network is crucial when the network effects of C and U
states are analyzed. The method presented in section 3 is used here to detect the critical paths over the network. We



218   Alessandra Pascale et al.  /  Transportation Research Procedia   9  ( 2015 )  205 – 224 

Fig. 8. Critical paths identification over the network. Red lines indicate sensors included along congested paths while black dots indicates other

sensors.

Fig. 9. Capacity loss observed over the sensors along the paths identified in fig. 8.

queried for the likelihood of congestion propagation along different paths of length two in various locations of the

network and did exploratory analysis on the results.

One of the most interesting results is shown in fig 8. The likelihood of congestion propagation of every path

starting from the six upstream sensors located at intersection 193 on two approaches 135 and 108 were queried from
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(a) AM Peak period without loss due to U state

(b) PM Peak period without loss due to U state

(c) AM Peak period with U states

(d) PM Peak period with U states

Fig. 10. Capacity loss along the Eastbound Quays corridor showing the loss function with and without the U states (direction of travel along y-axis

top to bottom)

the learned DBN. These paths yield toward the three downstream sensors at intersection 26 and three other sensors

at intersection 197. Among these paths, we identified 6 different partially overlapped critical paths with highest
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congestion propagation likelihood both for C and U states (highlighted as red lines in the figure). These paths start

from sensors 193-108-0, 193-108-2 and 193-135-2. Interestingly, all of them end at a common detector that is the

197-120-0 located on a left turn lane bringing to O’Connell Street, one of the biggest road in Dublin city centre. It is

then identified as the most critical source of backward spillover for that area of the network.

Another interesting pattern we discovered is that the congestion propagation likelihood along the left lane of the

Ormond Quay Lower street corresponding to the path (193-108-0, 26-110-0, 197-120-0) is some orders of magnitude

lower than the congestion propagation likelihood of the other paths. Looking closer to this location we observe that

the left lane of the Ormond Quay Lower street is reserved for buses. Therefore, vehicles on the private lanes willing to

turn left to the O’Connell street use the other two lanes that become then critical for traffic congestion. These patterns

are automatically detected by the algorithm and give an insight that might be used for planning operation on the traffic

control system.

Figure 9 shows the capacity loss observed on the sensors along the paths (plot as red dots in fig. 8). The highest

under-utilization of capacity happens during morning hours and the contribution to that of U and C states is almost

equal. As a consequence U and C state have the same impact on the control system performances in terms of capacity

loss. The correct detection and evaluation of the effect of U state is then fundamental when a specific traffic control

strategy needs to be evaluated. In particular for sensor 193-135-2 the U state affects more the capacity loss than the

C state, having U state in that particular location is then more critical than the C state as more spillovers are then

observed propagating over it.

Figure 10 shows the effect of capacity loss computed with and without the U states over morning and afternoon

periods along the Eastbound Quays corridor. The most important insight from the figure is that detecting and comput-

ing the loss in case of U state gives a more complete information on capacity loss profiles respect to considering only

the C state. This is evident in the interval 8:45-9am and 5:30-7:30pm. In particular if we consider time 5:30pm in fig.

10(b) where the loss is computed only looking at C states the major effect seems to be observed locally only around

Inns Quay. If we exploit also the information coming from the U states, see fig. 10(d), then the real spreading of this

phenomenon can be distinguish, specifically a corridor of loss from Bachelor Walk to Inns Quay.

5.3. Interpretation of the states for coordinated control

U and C states have a relevant interpretation in cases of coordinated control. The control strategies of SCATS are

decided and implemented over subsystems. Each subsystem is a group of intersections that have common control

decision (cycle length, plan, and coordinated offsets), at each cycle the approach with the higher DS is defined as

‘master’ because it leads the final decision (particularly on the cycle length) on the control strategy. SCATS provides

more green time to the approach with the highest DS . This strategy could potentially lead to large under-utilization

of capacity, if the approach is impacted by spillovers, and the desired throughput not realized. These situations can be

easily identified by the method presented in this paper.

Figure 12 shows a set of intersections belonging to the same subsystem. At this time instant 5:49pm the detector

with the black circle is the one leading the subsystem cause it has the highest value of the DS . It is located on one of

the left turn lanes and his high DS is due to the fact that it is affected by a spillover starting in the top part of the road

and backward propagating. The high value of the DS would indicates that this sensor needs more green time in order

to serve the demand. Even if more green time is given to this approach (or to the corridor) it is not used efficiently

as the spillover, identified as the sequence of U and C states upstream, prevents the normal flow of cars during green

time. This phenomenon is a direct consequence of the fact that the sensor is not the source of the spillover but it is

affected by it. A portion of the green time is then wasted over that approach. Moreover the figure shows with yellow

arrows other competitive approaches that could use the green time more efficiently. On these lanes the measured DS
is still high but on F state meaning that there are not any spillovers and that the green time is currently fully utilized.

5.4. Throughput over the network

We now focus on sub-network throughput and aim to relate the vehicle exit rates from the sub-network based on

sub-network density. To do this, a subset of 25 detectors on the sub-network that are exit sensors are identified, and

throughput along with network-level loss measured. Figures 11(a) shows the relationships between network-level

state (as described by the loss function) and the throughput. Throughput degrades as the sub-network loss function
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(a) Network-wide loss versus throughput

(b) Temporal profile of network-wide throughput

Fig. 11. Network level throughput

increases. Recall that the loss function is related to the existence of U and C states, therefore this shows the empirical

relationship between the existence of transient and congested states on network-level throughput. Figure 11(b) shows

the temporal variation in daily throughput profile for all weekdays of February, 2013.

The severity of loss in throughput is less than that reported in the literature via simulation, see, for example

(Geroliminis and Skabardonis, 2011). This is most likely since highly congested, grid-lock like conditions were not

observed within this network during this period. The impact of spatial heterogeneity of congestion on throughput was
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Fig. 12. Effects of coordination in control analyzed using U and C states.

also studied, but no clear conclusions could be drawn from the results. Several measures of spatial heterogeneity were

considered, but the throughput had very high dispersion, mainly on account of different phase times at exit nodes.

6. Discussion

A state classification and transition model is presented for a dense network controlled by an adaptive control

system. Empirical data from Dublin is used to demonstrate the existence of transient U states that occur solely due

to network effects. While such states are not classified by the control system as over-saturated, they represent major

capacity losses along arterial corridors.

The main insight presented in this paper is based on the interpretation scheme that directly leverages degree-of-

saturation measurements and flow measurements to detect the three traffic states. Moreover a compact description of

network level effects of the states is provided, a method for the automatic identification of critical links and paths on

the network is also proposed.

Real-world data from Dublin, where the SCATS system is deployed, has been used to calibrate and validate the

classification procedure and the paths discovering. In particular the method proposed has been proved to provide

relevant insights on the detrimental effects of the U and C state in specific locations over the network. The capacity

loss function has been used to quantify the consequences of U state over corridors. Moreover when the control

strategy runs over coordinated intersections, the three state model gives important instruments to identify wasting in

green time due to the non optimal configuration of the subsystems.

In its current form, the classification model is specific to the SCATS system, but similar data-driven approaches can

be considered if detector occupancy signatures are available. Preliminary examination of SCOOT data from London

(Pascale, Mavroeidis and Lam, in review) is encouraging. Alternative schemes for state detection need to be developed

for such cases. In the network transition models, stationarity assumptions made during the learning phase can be also

relaxed. A limitation of the current study is that special turning restrictions and mid-block friction that may cause

lower discharge rates are not explicitly accounted for. These aspects will be the focus of future studies.
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The work presented in this paper has the main objective to help traffic engineers gain insight on the performances

of adaptive control systems implemented in the real world. These systems have a high level of complexity given by

the large number of variables dynamically changing over time and the large number of configuration parameters in

practice. Moreover they need to be calibrated and validated in cities that are evolving. Our methods contribute towards

pattern detection of congestion are a starting point to improving services or planning new control strategies.
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