
ELSEVIER Theoretical Computer Science 141 (1995) 1-52

Theoretical
Computer Science

Fundamental Study

A neural compiler

FrCdCric Gruaua*“**, Jean-Yves Ratajszczakb*C, Gilles Wiberb*”
‘Ecole Normale Suphrieure de Lyon, Loboratoire de l’lnformatique, du Parail&lisme, 46 All&e d’ltalie.

69364 Lyon Cedex 07, France
bEcole Nationale Supkrieure d’lnformatique et de Maitimatique Appliqukes de Grenoble,

Campus de Saint Martin &H&es. 38000 Grenoble, France
’ Centre d’Etude Nucliaire de Grenoble, Dipartement de Recherche Fondamentale, Matiire Condenske,

I7 rue des Martyrs, 38041 Grenoble, France

Received February 1994; revised July 1994

Communicated by M. Nivat

Abstract

This paper describes a neural compiler. The input of the compiler is a PASCAL Program.
The compiler produces a neural network that computes what is specified by the PASCAL
program. The compiler generates an intermediate code called cellular code.

Contents

1.
2.

3.

4.

5.

Introduction ... 2

The neural networks that are used 4

2.1. Sigmofd ... 4
2.2. The dynamic. .. 5
Overview of cellular encoding ... 6

3.1. The basic cellular encoding .. 6

3.2. How to encode recursive grammars 8
3.3. Microcoding. .. 10

3.4. Advanced program symbols. 13

Principles of the neural compiler 14

4.1. The stages of the compilation. 14
4.2. Structure of the compiled neural network 15

4.3. Compilation of a PASCAL instruction 16

4.4. Compilation of the PASCAL program 18

The macroprogram symbols. ... 19
5.1. Kernel of the PASCAL .. 20

5.2. Control structures ... 21

* Corresponding author. Email: gruau@lip.ens-lyon.fr.

03W-3975/95/.$09.50 0 1995-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(94)00200-2

2 F. Gruau et al. / Theoretical Computer Science 141 (1995) l-52

5.3. Procedures and functions ... 22
5.4. The arrays. ... 23
5.5. The enhanced PASCAL. ... 24

6. Examples of Compilation. ... 25
6.1. Compilation of two Standard PASCAL programs 26
6.2. How to use the CALLGEN instruction. 29
6.3. How to use the #IF instruction. 30

7. Conclusion and applications. ... 31
7.1. Neural network design. .. 31
7.2. Tool for the design of hybrid systems. 33
7.3. Automatic parallelization ... 33

A. Appendix: Small example of compilation 34
B. Appendix: The other macroprogram symbols. 35
C. Appendix: Technical implementation. 41
Acknowledgement. ... 51
References .. 51

1. Introduction

We all know that neural nets are at the origin of all the computer science, that is, the
very existence of digital computers. The automata theory founded by Kleene in 1956
[8) (the date of his fundamental publication, with the revealing title “Representation
of events in nerve nets”) is directly issued from the neuron model proposed by MC
Culloch and Pitts [1] in 1943. In 1945, Von Neuman was also using a system of formal
neurons that was a direct offspring of MC Culloch and Pitt& model, to describe the
logic of the very first computers. Despite these facts, Rosenblatt’s perceptron [11]
developed in the years 1950, has not been transformed into a working tool. This is due
to theoretical difficulties shown in the work from Minsky and Papert [lo], but also
because at this time, it was not possible to implement simulations on machine. The
power of machines was ridiculous compared to now. Moreover, a link was missing in
the theory: the fact that a neural network can simulate a Turing machine. In other
word, it is the proof that any computable function can be computed by a neural
network. Odd enough, this equivalence proof was brought only recently by Siegel-
mann and Sontag, in 1991 [13]. In [14], Siegelmann and Sontag did a real time
simulation for real time equivalence. Going from Turing machines to modern pro-
gramming languages with variables, procedures and data structures, took about 15
years. Here, we consider that the first realization of the Turing machine dates to 1945,
and that the first languages like FORTRAN, PASCAL, or LISP (PASCAL can be
considered as a form of ALGOL) appeared around 1960. It took 10 more years to
learn how to compile these languages efficiently. Siegelmann [12] has developed
a theoretical language for neural networks called AEL, trying to exploit the parallel-
ism and the analog aspect of the neurons. But her language was not yet implemented
with a compiler.

In [3,5], Gruau describes the principles of neural compilation. In this paper, we
describe a neural compiler that has been actually programmed. The input of the
compiler is a PASCAL program. The compiler produces a neural network that

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52 3

computes what is specified by the PASCAL program. This work is complementary to
the work of Siegelmann on AEL. We proposed a method to actually build the neural
network from a program, but did not concentrate on which language should be best
adapted to neural network compilation (although we did add a few instructions to
standard PASCAL that allow to exploit parallelism and hierarchical design). On the
other hand, Siegelmann studied the language, but not the compilation.

Since the compiled neural network is a data flow graph, neural compilation shares
some similarities with compilation for data flow machines like the one presented by
Veen, 1991 [16]. However, our method of compilation is different. It is entirely based
on graph rewriting. As we will see, graph grammars is a simple and efficient tool that
not only produces the data flow graph but also provides each cell with (x, y)

coordinates. These coordinates can be used to map the neural net on a multiprocessor
system, or to draw the neural net automatically.

The steps of the neural compilation are described in details. The basis of the
compiler is to use a list of cellular operators, which are listed in the appendix, and are
defined using their microcode. These operators called program symbols, add or
suppress cells, establish or cut a connection. In other words, they implement truly
physical operations on the neural net that is being built. They allow to encode a neural
net by specifying how to build it step by step. The encoding is called cellular encoding.
Macroprogram symbols represented in a geometrical way, translate the PASCAL
declarations of the program (that build data structure like array) and the PASCAL
instructions, into operations on neural network that can be implemented using
a sequence of program symbols. By applying these program symbols, we can see the
neural net that is being built step by step, on the computer screen.

Thanks to the neural compiler, the simulation of Siegelmann and Sontag is
transformed into the effective building of a neural net that behaves like a given
PASCAL program. Modern computers have completely changed our life. The impact
of a neural compiler could be as important if we carry on the comparison. It could
make it possible to manage neural computers of billions of neurons, as conveniently as
we are now using computer with billions bytes of memory. Personal computer would
be replaced by personal neurocomputer that can offer extra learning capabilities.

The compiled neural network structure is fixed and do not change in time according
to the particular inputs. The neural network has therefore a limited memory. For this
reason, one cannot compile instructions for dynamic memory allocation. If there are
recursive procedures one must specify before compilation an upper bound on the
number of recursive encapsulations. However in the case of divide and conquer
algorithm the compiler itself can compute the exact number of recursive encapsula-
tions that is needed, and the user need not specify bounds.

The compiler produces a cellular code from the PASCAL program, and develops
a neural network from the cellular code, which is then fixed. The run of the PASCAL
program is simulated by relaxing the compiled network. A future direction it to
develop the neural network at run time. The subnetwork simulating a procedure
would be developed only when that procedure is invoked. That can be done with

4 F. Gruau et al. / Theoretical Computer Science 141 (199.5) 1-52

relatively few changes with the technique presented in this paper. The generation of
the cellular encoding can also be done during run time. Both changes will transform
the neural compiler into a neural interpreter. The neural interpreter does not need to
be provided with a bound on the number of recursive encapsulations, and it can
translate instructions for dynamic memory allocation. The neural interpreter would
spare the compilation time but would be slower to run than the compiled neural
network.

The paper begins with a presentation of the kind of neural networks that are
compiled. The compiler generates an intermediate code constituted by sequences of
program symbols called cellular code. A background on cellular encoding is given. We
then describe in detail the neural compiler. We explain the stage of the compilation,
and the structure of a compiled neural network. We describe how to compile
separately a PASCAL instruction. and then, how to compile the whole PASCAL
program. Two small examples of compilation are reported. They illustrate the ex-
planations. We then give a precise geometrical description of how to translate each
construct of the PASCAL language into a macroprogram symbol. We start by
a kernel of the PASCAL language, and extend progressively to control structure,
function and procedure, array data structure, and constructs of an extended PASCAL
that allow to exploit the power of neural networks (parallelism, learning). We show
the interest of the neural compiler with height examples of compilation. In the
conclusion we propose future applications of the neural compiler. We will see that
neural compilation can be used for the design of huge neural networks, automatic
parallel compilation, and the compilation of hybrid systems.

2. The neural networks that are used

A neural network is an oriented graph of interconnected cells. Each cell computes
an activity using the activities of the cells connected to its input, and sends its activity
to the cells connected to its output. A neuron is determined by the way it computes its
activity. An ordinary neuron makes a sum of its inputs, weighted by the weights of the
connections, subtracts a threshold, and finally, applies a function called sigmdid. The
neural network makes a computation by iterating each of its neurons. The order of
iteration determines the dynamic of the neural net. The dynamic can be parallel, each
neuron updates its activity at the same time, or sequentiak neurons update their
activity one after the other. We are now going to describe the particular sigmdid and
the particular dynamic we will use for neural compilation.

2.1. Sigmdid

We use four different kinds of sigmo’id listed in Fig. 1.
Moreover, we use nonclassical neurons that make the product of their inputs, and

that divide the first input by the second input. This is used to multiply and to divide

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

Fig. 1. Different kind of sigmoids used: (a) adds two numbers,(b) and(c) compare two numbers,(d) tests the
equality of two numbers.

two numbers. Siegelmann and Sontag allowed for only one kind of sigmo’id, piecewise
linear between 0 and 1. We preferred to use a small set of sigmo’ids for efficiency. For
example, it is possible to simulate arithmetic operations on binary coded number with
Siegelmann and Sontag’s sigmo’id, but it costs a lot of neurons.

2.2. The dynamic

The neural network is a data-flow graph. A neuron computing an arithmetic
operation with two operands must wait for the two operands to come before starting
to compute its activity. We use a particular dynamic (denoted go). The neurons
decide to start their computation using three rules:
l A neuron computes its activity as soon as it has received all the activities from its

input neighbors.
l The input units are initialized with the input vector.
l A neuron sends its activity to the output neighbors, when it is initialized, of if it has

just computed its activity.
There is no special threshold units to encode the threshold. At a given moment, all the
neurons that can compute their activity, do it. The dynamic Q0 is half way between
the sequential dynamic and the parallel dynamic. There is no need for a global entity
to control the flow of activities. Two other dynamics are used by the compiler.

The dynamic g1 concerns neurons having exactly two inputs. As was the case for
go, the neuron waits until it has received an activity from both its neighbors. If the
first input is strictly positive, the neuron send the activity of the second neighbor.
Otherwise, the neuron do not propagate any activity. The dynamic 9i allows to
block a flow of activities.
A neuron with dynamic zB~ compute their activity whenever an activity is received
from one of its input neighbors. Its activity is the activity of that particular
neighbor. In order to work correctly, such a neuron must not received two activities
at the same time. Dynamic gZ can merge on the same neuron, activities coming
from different parts.
Gruau [3] shows that it is possible to simulate the dynamic go 9i g2 with the

traditional parallel dynamic. The number of units is multiplied by 6, and the time
needed to relax by 4. Dynamic g1 and 9i correspond to the “branch” and the
“merge” node used in data flow models.

6 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

3. Overview of cellular encoding

Cellular encoding is a method for encoding families of similarly structured neural
networks. Cellular encoding was previously proposed by Gruau as a way to encode
a neural net on chromosomes that can be manipulated by the genetic algorithm

C4, 7, 61.

3.1. The basic cellular encoding

In this section we present the basic cellular encoding. The cellular code is represent-
ed as a grammar tree with ordered branches whose nodes are labeled with name of
program symbols. The reader must not make the confusion between grammar tree and
tree grammar. Grammar tree means a grammar encoded as a tree, whereas tree
grammar means a grammar that rewrites trees.’

A cell is a node of an oriented network graph with ordered connections. Each cell
carries a duplicate copy of the cellular code (i.e., the grammar tree) and has an internal
reading head that reads from the grammar tree. Typically, each cell reads from the
grammar tree at a different position. The labels of the grammar tree represent
instructions for cell development that act on the cell or on connections of the cell.
During a step of the development process, a cell executes the instruction referenced by
he symbol it reads, and moves its reading head down in the tree. One can draw an
analogy between a cell and a Turing machine. The cell reads from a tree instead of
a tape and the cell is capable of duplicating itself; but both execute instructions by
moving the reading head in a manner dictated by the symbol that is read. We will refer
to the grammar tree as a program and each label as a program-symbol.

A cell also manages a set of internal registers, some of which are used during
development, while others determine the weights and thresholds of the final neural
net. The link register is used to refer to one of possibly several fan-in connections (i.e,
links) into a cell.

Consider the problem of finding the neural net for the exclusive OR (XOR)
function. Neurons can have thresholds of 0 or 1. Connections can be weighted - 1 or
+ 1. In this section, we use a variant of sigmoid (b) of Fig. 1. If the weighted sum of its

input is strictly greater than its threshold, the neuron outputs 1, else it outputs 0. The
inputs of the neural net are 0 or 1.

The development of a neural net starts with a single cell called the ancestor cell
connected to an input pointer cell and an output pointer cell. Consider the starting
network on the right half of Fig. 2 and the cellular encoding depicted on the left half of
Fig. 2. At the starting step 0 the reading head of the ancestor cell is positioned on the
root of the tree as shown by the arrow connecting the two. Its registers are initialized

1 In [6], we have demonstrated that cellular encoding represents a parallel graph grammar, this is why we
use the term grammar tree.

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

Fig. 2. Step 0: Development of the neural net for the exclusive-OR (XOR) function in the right half of this
figure. The development starts with a single ancestor cell labeled a and shown as a circle. The 0 inside the
circle indicates that the threshold of the ancestor cell is 0. The ancestor cell is connected to the neural net’s
input pointer cell (box labeled “input”) and the neural net’s output pointer cell (box labeled “output”). The
cellular encoding of the neural net for XOR is shown on the left half of this figure. The arrow between the
ancestor cell and the symbol 8EQ of the graph grammar represents the position of the reading head of the
ancesotr cell.

with default values. For example, its threshold is set to 0. As this cell repeatedly
divides, it gives birth to all the other cells that will eventually become a neuron and
make up the neural network. A cell is said to become a neuron when it looses its
reading-head. The input and output pointer cells to which the ancestor is linked
(indicated by boxes in the figure) do not execute any program-symbol. Rather, at the
end of the development process, the upper pointer cell is connected to the set of input
units, while the lower pointer cell is connected to the set of output units. These input
and output units are created during the development, they are not added indepen-
dently at the end. After development is complete, the pointer cells can be deleted. For
example, in Fig. 6, the final decoded neural net has two input units labeled a and c, and
one output unit labeled d. We will now describe the kernel of the program symbol.

A division-program symbol creates two cells from one. In a sequential division

(denoted by SEQ) the first child cell inherits the input links, the second child cell
inherits the output links of the parent cell. The first child connects to the second
with weight 1. The link is oriented from the first child to the second child. This is
illustrated in steps 1 and 3. Since there are two child cells, a division program-
symbol must label nodes of arity two. The first child moves its reading head to the
left subtree and the second child moves its reading head to the right subtree.
Finally, when a cell divides, the values of the internal registers of the parent cell are
copied in the child cells.
The Parallel dioision (denoted by PAR) is a second kind of division program symbol.
Both child cells inherit the input and output links from the parent cell (in steps
2 and 6). The sequential and parallel division are canonical because they treat all
the input and output links uniformly, regardless of their number. Section 3.3
introduces more complex divisions.
The ending-program symbol denoted END causes a cell to loose its reading head and
become a finished neuron. END labels the leaves of the grammar tree (i.e., nodes of
arity 0).

8 F. Gruau et al. / Theoretical Computer Science 141 (1995) l-52

l A value-program symbol modifies the value of an internal register of the cell. The
program-symbol JNCBIAS increments (and DECBIAS decrements) the threshold of
a cell. INCUR increments (and DECLR decrements) the value of the link register,
which points to a specific fan-in link or connection. Changing the value of the link
register causes it to point to a different fan-in connection. The link register has
a default initial value of 1, thus pointing to the leftmost fan-in link. Operations on
other connections can be accomplished by first resetting the value of the link
register. The program symbol denoted VAL+ sets the weight of the input link
pointed by the link register to 1, while VAL- sets the weight to - 1 (see step 7). The
program-symbols VAL+ or VAL- do not explicitly indicate to which fan-in connec-
tion the corresponding instructions are applied. When VAL or VAL- is executed it
is applied to the link pointed to by the link register.

l A unary program-symbol CUT cuts the link pointed by the link register. This
operator modifies the topology by removing a link.
Operators INCLFL, DECLR, CUT are not illustrated, they are not required for the

development of a neural net for the XOR problem. The sequence in which cells
execute program-symbols is determined as follows: once a cell has executed its
program-symbol, it enters a First In First Out (FIFO) queue. The next cell to execute
is the head of the FIFO queue. If the cell divides, the child which reads the left subtree
enters the FIFO queue first. This order of execution tries to model what would
happen if cells were active in parallel. It ensures that a cell cannot be active twice while
another cell has not been active at all. In some cases, the final configuration of the
network depends on the order in which cells execute their corresponding instructions.
For example, in the development of the XOR, performing step 7 before step 6 would
produce a neural net with an output unit having two negative weights instead of one,
as desired. The waiting program-symbol denoted WAIT makes the cell wait for its next
rewriting step. WAIT is necessary for those cases where the development process must
be controlled by generating appropriate delays (Figs. 3-6).

3.2. How to encode recursive grammars

Up to this point in our description the grammar tree does not use recursion (note
that recurrence in the grammar does not imply that there is recurrence in the resulting
neural network). Nonrecursive grammar can develop only a single neural network.
But one would like to develop a family of neural networks, which share the same
structure, for computing a family of similarly structured problem. For this purpose,
we introduce a recurrent program-symbol denoted REC which allows a fixed number of
loops L. Each cell contains a register called life. The cell which reads BEC executes the
following algorithm:

life:=life - 1
If (life > 0) reading-head := root of the grammar tree
Else reading-head := subtree of the current node

F. Gruau et al. / Theoretical Computer Science 141 (1995) l-52 9

Fig. 3. On the left: the execution at step 1 of the sequential division SEQ pointed to by the cell a of preceding
figure causes the ancesotr cell a to divide into two cells a and b. Cell a feeds into cell b with weight + 1. The
reading head of cell a now points to the left subtree of the Cellular Encoding on the left (the box with PAR)
and the reading head of new cell b points to the right subtree (the box at the second level down with SEQ).
On the right: The execution of the parallel division PAR at step 2 causes the creation of cell c. Both cell a and
c inherit the input formerly feeding into a. Both cells a and c output to cell b (the place where a formerly sent
its output). The reading head of cell a now points to the left subtree (END) and the reading head of the new
cell c points to the right subtree (which also has an END).

Fig. 4. On the left: the execution at step 3 of the sequential division SEQ pointed to by the cell b of preceding
figure causes the cell b to divide into two cells b and d. Cell b feeds into cell d with weight + 1. The reading
head of cell b now points to the left subtree (the box at the third level with PAR) and the reading head of new
cell d points to the right subtree (the box at the third level down with VAL-). On the right: The execution of
the two end-program symbols. The END’s causes the cells a and c to loose their reading head and become
finished neurons. Since there are two END’s, it takes two time steps, one time step for each END.

Fig. 5. On the left: the execution of the parallel division ‘PAR” at step 6 causes the creation of cell e. Both
cell b and e inherit the input from cell a and c formerly feeding into b. Both cells b and e send their output to
cell d. (The place where b formerly sent its output.) The reading head of cell b now points to the left subtree
(INCBIAS) and the reading head of the new cell e now points to the right subtree (which has an END). On the
right: The cell d executes the value-program symbol VAL-. The link register is one (the default value) it
points the left-most link. The action of VAL- is to set the weight of the first link to - 1. The heavy line is
used to indicate a - 1 weight.

10 F. Gruau et al. / Theoretical Computer Science 141 (1995) l-52

&I output

Fig. 6. On the left: Neuron b executes the value-program symbol INCBIAS. The action of INCBIA~ is to
increase the threshold of cell b by 1. After execution, the threshold of cell b is 1, and the reading head of cell
b points to an END at the fifth level of the tree. On the right: The last tree steps consist in executing three
m-program symbols. The three FIND’S cause the cells b, e and d to lose their reading head and become
finished neurons. Since there are now only finished neurons, the development is finished. The final neural
net has two input units a and c, and one output unit d. The neuron c is the second input unit, bnecause the
link from the input pointer cell to c is the second output link of the input pointer cell.

where life is a register of the cell initialized with L in the ancestor cell. Thus a grammar
develops a family of neural networks parametrized by L. The use of a recurrent-
program symbol is illustrated in Figs. 7 and 8. The cellular code in these figures is
almost the same as the cellular code of a XOR network. The only difference is that
a program symbol END has been replaced by a program symbol REC. The resulting
cellular code is now able to develop a neural net for the parity function with an
arbitrary large number of inputs, by assembling copies of a XOR subnetwork. In Fig.
8 the network for parity of 3,5 and 7 inputs is shown. This implementation of the
recurrence allows a precise control of the growth process. The development is not
stopped when the network size reaches a predetermined limit, but when the code has
been read exactly L times through. The number L parameterizes the size of the neural
network.

3.3. Microcoding

The program symbols introduced in the preceding section are not sufficient to do
neural compilation. We had to introduce many other division program-symbols, as
well as program-symbols that modify cell registers, or that make local topological
transformations, or that influence the order of execution. Each new program symbol
may have an integer argument that specifies a particular link or a particular new
register value, this favors a compact representation. The program symbols are micro-
coded. The program-symbol’s microcode are listed in Appendix C. A microcode is
composed of two parts. The first part specifies the category of the program symbol. It
uses three capital letters. DIV indicates a division, TOP a modification of the
topology, CEL, SIT, LNK a modification of respectively a cell register, a site register
or a link register. EXE indicates a program symbol used to manage the order of
execution, BRA tests a condition on the registers of the cells or on the topology, if it is

F. Gruau et al. / Theoretical Computer Science 141 (199.5) l-52 11

Fig. 7. A recurrent developmental program for a neural network that computes the even parity for three
binary inputs. The life of the ancestor cell is 2. The first three steps are the same as those shown in the
preceding figures. During the fourth step, cell a executes a recurrent-program symbol. Its reading head is
backtracked the label (SEQ) on the root of the grammar-tree. The situation of cell a is similar to the
beginning of the development at step 0. The life of a has been decremented and is now equal to 1. Cell a will
give birth to a second XOR network, whose outputs will be sent to the child cells generated by cell b.

parity of 3 inputs parity of 9 inputs parity of I8 inputs

Fig. 8. The final decoded neural network that computes the even parity of 3,9 and 18 binary inputs. The
initial life is respectively 2,8 and 17. A weight - 1 is represented by a dashed line. With an initial life of L we
develop a neural network for the L + 1 input parity problem, with L copies of the XOR network.

true, the reading head is placed on the left subtree, else it is placed on the right subtree.
HOM refers to a division in more than two child cells, AFF enhances the display. The
second part of the microcode is an operand. For CEL, SIT, LNK the operand is the
name of the register whose value will be modified using the argument. If there is an
arithmetic sign, the operator applies the arithmetic operation to the actual content of
the register and the argument and places the result in the register. Else it simply sets
the register with the argument. For BRA the operand is the name of the condition. For
DIV, the operand is a list of segments. Each segment is composed of an alphabetic
letter and some arithmetic signs. The arithmetic signs specify a sublist of links, and the
letter specifies whether to move or to duplicate this sublist. When the cell divides, the
first child cell inherits all the input links, the second child cell inherits all the output
links. The segments are then decoded, they specify how to duplicate or move links
between the two child cells. Fig. 9 gives an example of a DIV microcode analysis. If the

12 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

Fig. 9. Microcoding of the program-symbol ADL 2. (Add on Link), 2 is an argument. This program symbol
adds a cell on the link number 2. The microcode is DIVm < sm > 2. (a) Before the division ADL. (b)
Division in two child cells. (c) The segment “m > ” is analyzed. (d) The segment s is analyzed. (e) The
segment “m < ” is analyzed.

(4 (b) (cl

Fig. 10. The difference between segment’s microcode with d and with r. (a) Before the cell dvision; the cell
which divides is labeled b, it has an input neighbor labeled a. (b) The input link duplicated using
a d microcoding. The first child is the first output neighbor of cell a. (c) The input link is duplicated using
a r microcoding. The first child is the second output neighbor of cell a.

segment’s letter is a capital, the links are duplicated or moved from the output site of
the second child cell to the output site of first child cell. If the letter is a small letter, the
links are duplicated or moved from the input site of the first child cell to the input site
of the second child cell.
l The letter m or M moves the sublist.
l The letter d or D duplicates the sublist.
l The letter r or R is the same as d or D except that the added links are not ordered

in the same way, by the neighboring cell. Fig. 10 explains the difference between d
and r.

A particular segment with the letter s means: connect the output site of the first child
cell to the input site of the second child. This segment needs no arithmetic sign.
Relation symbols and other special signs specify the sublist of links to be moved or
duplicated. < , > , = , specify the links lower than, equal, or greater than the
argument, * speci5es all the links. # and $ refer to the first and the last link, ^ refers to
links from the site of the neighboring cell, - is used when it is necessary to count the
links in decreasing order, rather than in increasing order, - placed before the three
capital letter exchanges the role of the input site and the output site, - is used to
replace the argument by the value of the link register.) is used to replace the argument
by the number of input links divided by two.

A similar microcoding is used for the operands of TOP, that locally modifies the
topology, by cutting or reordering links. In this case, the single child cell inherits the
output links of the mother cell, and the analysis of the segments indicates movements
of links from the input site of the mother cell to the input site of the child cell.

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52 13

In Appendix C there are also a number of program symbols which are used only for
labeling cells. During the development of the network graph, the software that we
have programmed can indicate the program symbols read by the cell. Neuron keep
their reading head on the cellular code, on the last program symbol read. Therefore we
use dummy program symbols to label leaves of the code. This enables us to see on the
computer screen what function a given neuron performs.

3.4. Advanced program symbols

In this section, we describe some other program symbols used for the compilation
of PASCAL programs. These program symbols are not described by their microcode,
we explain them separately.

The program symbol BLCC blocks the development of a cell. A cell that reads BLOC

waits that all its input neighbors cells become finished neurons. BLCC avoids that
a particular piece of cellular code is developed to early. The compiler generates many
grammar trees of cellular code: one tree for the main program and one tree for each
function. These grammar trees have a number. The argument of the JTJMP program
symbol specifies the number of a grammar tree. A reading cell that executes the
program symbol J?VIP x places its reading head on the root of the grammar tree which
number is x. JMP x is equivalent to the recurrent program symbol REC if x is the
number of the tree that is currently read by the cell.

Links can be distributed into groups of links called subsites. Figs. 11(a) and (b)
describe how a site divides into two subsites. Two conditions are required for a site to
split: First the site flag-register called divisible must be set to 1. Second, a neighboring
cell must divide. The distribution of links into group of links is interesting only with
respect to the SPLIT program symbol. The execution of the SPLJT program symbol is
done in two stage described in Fig. 1 l(c)-(e): First, some links are duplicated, so that
the number of links on each output and input subsite is the same (Fig. 1 l(e)). We call
n the number of links on each subsite. In the second stage, the cell splits into n child
cells. Each child cell has as much input (resp. output) links as there are input (resp.
output) subsites in the mother cell.

PAR

!P@
(a) (b)

Fig. 11. Use of subsites. On the left: Splitting of a site into 2 subsites. A subsite is indicated by a small black
disk. (a) Before the parallel division of the cell labeled PAR (b) After the parallel division, a subsite has been
created by the neigbor cell. On the left: the SPLIT program symbol. (c) Before the execution of program
symbol SPLIT. (d) Result of the splitting division. The four child cells read the same node. (e) The
intermediate stage.

14 F. Gruau et al. / Theoretical Computer Science 141 (1995) I-52

4. Principles of the neural compiler

4.1. The stages of the compilation

We will now present the neural compiler. The neural compiler has been pro-
grammed. The software is called JaNNeT (Just an Automatic Neural Network
Translator). JaNNeT encompasses three stages that are shown in Fig. 12(a)-(c). The
input of the compiler is a program written in an enhanced PASCAL. The output is
a neural net that computes what is specified by the PASCAL program. The PASCAL
is said to be “enhanced” because it proposes supplementary instructions compared to
standard PASCAL.

The first stage is the parsing of the program and the building of the parse tree. It is
a standard technic that is used for the compilation of any language. Nevertheless, this
parse tree has a somewhat unusual form. In Appendix C, a grammar defines the kind
of parse tree that we use. The third stage uses cellular encoding. It is simply the
decoding of the cellular code that has been generated at the second step. This
decoding uses the development of a network graph, seen in Section 2.

The second stage is the heart of the compiler. This stage is a rewriting of trees. The
rewriting of a tree (in a simple case) consists in replacing one node of the tree by
a subtree. The added subtree must specify where to glue the subtrees of the node that is
being rewritten. During the second stage each node of the parse tree is replaced by
a subtree labeled with program symbols of the cellular encoding. When the program
symbols of that subtree will be executed by a cell c, they will make a local graph
transformation, by replacing cell c into many other cells, connected to the neighbors
of cell c. Each node of the parse tree can therefore be associated to a local transforma-
tion of a network graph of cells. This transformation is called a macroprogram symbol.
A macroprogram symbol makes a transformation bigger that the one done by
a program symbol of the cellular encoding scheme. A program symbol creates no
more that one cell (except for the SPLIT), or it modifies no more than one register. It
uses no more than a single integer parameter. A macroprogram symbol can create
many cells, modify many registers, and often needs more than one parameter. The
macroprogram symbols are implemented using subtrees of program symbols listed in
Appendix C. The presentation of the compilation method will be done with few
reference to the cellular encoding. We will consider the compilation at the level of

macroprogram symbols.

PaSCd Parse Cellular
program Tree Code

(a) (b) (c) (4

Fig. 12. Stages of the neural compilation. (a) Parsing of the PASCAL Program. (b) Rewriting of the parse
tree into a cellular code, using a tree grammar. (c) Decoding of the cellular code into a neural network. (d)
scheduling and mapping of the neural network on a physical machine. This stage is not yet done.

F. Gruau et al. J Theoretical Computer Science 141 (1995) 1-52 15

In its present release, JaNNeT does not produce instructions that can be executed
by a particular neural computer. It produces a neural network, which is a format that
suits a neural computer with many processors dedicated to neuron simulation.
Presently, the neural network generated by JaNNeT are simulated on a sequential
machine. The last stage shown in Fig. 12(d) consists in mapping the neural network on
a physical architecture of a neural computer. This step must take into account the
memory size of one neuron, the communications between processors, and the
granularity of the computation made by one neuron.

4.2. Structure of the compiled neural network

The compiled neural network behaves like a data flow graph. Fig. 13 describes
a simple example of compiled neural network. Each variable V of the PASCAL
program contains a value. The variable is initialized at the beginning of the program.
Then it changes following the assignments that are made. For each variable V, there
corresponds as many neurons as there are changes in Vs value. All these neurons
represent the values taken by V during a run of the program. At a given step of the
run, V has a given value u. The value v is contained in one of the neuron that
represents V. This neuron is connected to the input neighbors that contain values of
other variables, which have been used to compute u. The same neuron is connected
with output neighbor that contain values of other variables. The outpurt neighbors
use the value of V to compute the new value of the variable that they represent.

a b c

0 ---r2__fi__A__

“‘~Y-Y’Y 1 -- _ ----- L - _I_ - -

a2

‘i,

U 2 ---_- ------ --

3 _-._____ i-Y --
. _

Fig. 13. Result of the compilation of the PASCAL program: uar a, b, c: integer; begin a = a + b; c = c + b;
b = a + c; end. Each dotted line corresponds to the compilation of one instruction. The neurons make

a simple addition of their inputs (the weights are 1, the sigmdid is the identity). The line 0 represents the

initial environment. It encompasses three values a, b and c stored in three neurons a,, bl and ci At line 1,
the value of a has changed, it is now contained in a new neuron ar, that computes the sum of a and b. In
order to make this sum, neuron a2 is connected to neuron ai and b,. The value of c changes at the next line,
finally, the value of b also changes. One can see that the two first instructions: a= a + b; c + b can be

executed in parallel by neurons a2 and ea. On this example, each variable is represented by two neurons
during the run of the program.

16 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

The environment in compilation means the set of variables that can be accessed
from a given point of the program. Before the execution of each instruction, the
environment is represented by a row T of neurons. This row contains as many neurons
as there are variables. Each of these neurons contains the value of the variable that it
represents, at this particular moment.

An instruction modifies the environment, by modifying the value of some given
variables. An instruction is compiled into a neural layer that computes the modified
values, from the old values stored in the row I of neurons. The new values are stored in
a row rI of neurons. Hence the whole PASCAL program is compiled into a sequence
of rows r, rl, r2, . . . alternated with neural layers that compute the new values. There
are as many such neural layers as there are PASCAL instructions.

4.3. Compilation of a PASCAL instruction

The idea of the compilation method is to translate each word of the PASCAL
language into a modification of a network graph of neurons. At a coarse granularity,
the compilation of a program is decomposed in the compilation of each instruction.
Each instruction is translated into a neural layer that is laid down, and a row of
neurons that contains the environment modified by the instruction. So the compila-
tion is a construction process. The compiler builds the row of neurons that contains
the initial environment, by translating the part of the parse tree where the variables
are declared. Then the compiler lays down consecutively neural layers, by compiling
the program instruction by instruction.

This idea of progressive building of the compiled neural network can be applied
with a granularity smaller than a PASCAL instruction. A PASCAL instruction can be
decomposed into words of the PASCAL language, these words are organized accord-
ing to a tree data structure called parse tree (see Fig. 14). we can associate each word of
the PASCAL language with a local modification of a network graph of cells, so that
the combined effect of these small modifications transforms a single cell into a neural
layer that computes what is specified by the PASCAL instruction. This is modeled
using a system similar to the cellular encoding. The neural network will be developed
during many steps. Certain neurons will have a copy of the parse tree, and a reading
head that reads a particular node of the parse tree. They will be called reading cell
rather than neuron, because their role is not to do the computation corresponding to
a neuron, but to divide, so as to create the neural layer associated to the PASCAL
instruction. Each cell reads the parse tree at a different position. The labels of the parse
tree represent instructions for cell development that act on the cell. As we already
pointed out in Section 4.1, these instructions called macroprogram symbol can be
decomposed into a sequence of program symbols of the cellular encoding scheme.
During a step of development, a cell executes the macroprogram symbol read by its
reading head , and moves its reading head towards the leaves of the parse tree. A cell
also manages a set of internal registers. Some of them are used during the develop-
ment, while others determine the weights and the thresholds of the final neurons.

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52 17

:= ASSIGN

a t
IDF-ON-OP

a

A
+ A

a b
IDF-LECT IDF-LECT

a b

Fig. 14. Parse tree of the instruction “a: = a + b”. On the link side: the parse tree is labeled with words of
the PASCAL program. We will use another format described on the right. The labels are made of two parts:
the first part specifies the kind of the node, the second part is an attribute. For example, IOF-AFF indicates
that the node contains the name of a variable that is modified, IDF-LEC: the name of a variable which is read,
BIN-OP the name of a binary operator like the addition, ASSIctN corresponds to an assignment. For nodes
IDF-AFF and IDF-LEC, the attribute contains the name of the variable to modify or to read. For BIN-OP, the
attribute contains the name of the particular binary operator.

IDF- IDF-

LECT LEbCT a

ASSIGN

LECT LEbC’T a

Fig. 15. On the left: Development of the neural network translating the PASCAL instruction “a: = a + b”.

The development begins with an ancestor cell labeled 1 connected to three neurons labeled a, b and c which
store the state of the environment before the instruction is executed. On the left side, we represent the parse
tree of the PASCAL instruyction. The arrow between the ancestor cell and the symbol A8EIQN of the parse
tree represents the reading head of the ancestor cell. On the right: execution at step 1 of the macro program
symbol AMIC+N, read by the ancestor cell 1. Cell 1 divides into two child cells 1 and 2. Both child cells inherit
the input links.

Consider the problem of the development of a neural net for compiling the
PASCAL instruction “a: = a + b”. The development begins with a single cell called the
ancestor cell, connected to neurons that contain the initial values of the environment.
Consider the network described on the right half of Fig. 15 on the right. At the
beginning, the reading head of the ancestor cell is placed on the root of the parse tree
of the PASCAL instruction, as indicated by the arrow connecting the two. Its regi-
sters are initialized with default values. This cell will divide many times, by execut-
ing the macroprogram symbols associated to the parse tree. It will give birth to the
neural network associated to the parse tree. At the end, all the cells loose their reading
head, and become finished neurons. When there are only finished neurons, we have
obtained the translated neural network layer. In all the following examples it is
important to keep in mind that in the figures, the input and output connections are
ordered. The connection number is coded by the position of the connection on the
circle that represents the cell. For example, in Fig. 15, the link from cell b to cell 1 has
number 2 (Figs. 16 and 17)).

18 F. Gruau et al. 1 Theoretical Computer Science 141 (1995) 1-52

ASSIGN

LECT LECT
a b

ASSIGN

Fig. 16. On the left: execution at step 2 of the macro program symbol IDF-AFF, read by the cell 1. Cell
1 deletes its first link, and moves its fourth link back in the first position. On the right: execution at step 3 of
the macro program symbol BLNOP read by cell 2. Cell 2 divides into three cells 2, 3 and 4. Cells 3 and
4 inherit the input links of their mother cell, and are connected on the output to cell 2. Whereas cell
2 inherits the output links of the mother cell, looses its reading head and becomes a neuron. The sign
+ inside the circle indicates that it makes the addition of its inputs.

ASSIGN

IDF-

AF&

IDF- 1 IDF- 1
LECT LEGT
a L-l b

Fig. 17. (a) Step 4: On the left: execution at step 4 of the macroprogram symbol IDF-LEC, read by cell 4. The
cell 4 disappears, after having connected its first input neighbor to its output neighbor. On the right:
execution at step 5 of the macro program symbol JDF-LEC, read by cell 3. The cell 3 disappears, after having
connected its second input neighbor to its output neighbor. There are no more reading cells. The
compilation of the PASCAL instruction “a: = a + b” is finished. The ancestor cell 1 is connected to the three
neurons that contain the values of the modified environment. It can start to develop the next instruction.

4.4. Compilation of the PASCAL program

We have shown how the parse tree of a PASCAL instruction can be interpreted as
a tree labeled with macroprogram symbols. When these program symbols are ex-
ecuted by cells, they develop a neural layer that translates what is specified by the
PASCAL instruction. This method can be generalized to the whole PASCAL pro-
gram. The total program can be represented by its parse tree. Fig. 18 on the left
represents the parse tree of the PASCAL program ““program p; va,r a: integer; begin

read (a>; write <a>; end.“. The first nodes of the parse tree are used to declare
variables. They will create the first layer of neurons that contain the initial values of
the variables. The following nodes of the parse tree correspond to the instructions.
They will create many layers of neurons that make the computations associated to
these instructions. Consider the starting neural network, on the right half of Fig. 18.
The input pointer cell and the output pointer cell to which the ancestor cell is linked,

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52 19

Fig. 18. On the left: The parse tree of the PASCAL Program: “program p; var a: integer; begin read (a>;
write (a); end,” This parse tree does not have the usual form. It contains nodes for the declaration of
variables, and the labels are not organized in a standard way. This particular form helps the implementation
of the neural compiler. Appendix C contains a BNF grammar thart defines these parse trees. On the right:
The development begins with an ancestor cell labeled 1 and represented as a circle. The ancestor cell is
connected to an input pointer cell (box labeled “input”) and an output pointer cell (box labeled “output”).
The arrow between the ancestor cell and the parse tree represents the reading head of the ancestor cell. The
development is reported in Appendix A.

do not execute any macro program symbols. At the end of the development, the input

pointer cell points to the input units of the network, and the output pointer cell points
to the output units. The development of the network is reported in Appendix A.

5. The macroprogram symbols

We have presented the method of neural compilation and the compilation of
a small PASCAL program. The method is based on the association of each label of
the parse tree with a macroprogram symbol. We call each macroprogram symbol
with the name of the associated label. A macroprogram symbol m replaces the
cell c that executes it, by a graph d of reading cells and neurons. This graph is
connected to the neighbors of c. The term “neighbor” refers to two cells connected
either with a direct connection or, indirectly, through special neurons called pointer
neurons. The graph d must specify where the reading cells are going to read in the
parse tree. In general, each reading cell will read one of the child node of the node
labeled by M.

In this section, we detail all the macroprogram symbols, by drawing their associated
graph d, and explaining it. We will put forward an invariant pattern: when a cell is
being rewritten by a macroprogram symbol, its neighbor cells are always of the same
type, in the same number. If the environment contains n variables, the cell will have
n + 2 input links, and two output links. The first input (resp. output) link points to the
input (resp. output) pointer cell. The second input link is connected to a cell called
“start” cell, the last n input links point to neurons that contain the values of the
variables. The second output link points to a cell labeled “next”. The input and output
pointer cell points to the input and output units of the neural net. The start cell starts
the neural network by sending a flow of null values. The “next” cell connects the graph
generated by the macroprogram symbol, with the rest of the network graph. By
extension, the cell that is rewritten is called the ancestor cell.

20 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

The parse tree that we use are described by a simple grammar in Appendix C. This
grammar details the list of macroprogram symbols and how they are combined. We
will use the nonterminal of this grammar to explain the macroprogram symbols. We
classify two kinds of macroprogram symbols, the macroprogram symbols of the type
“expression”, they correspond to labels generated using the nonterminal (expr), and
produce neurons that are used to compute values. And the macro program symbols of
the type “modification of environment” that modify the environment. In the invariant
pattern, if the macro program symbol is of the type “expression”, the “next” cell is
always a neuron, else it is a reading cell.

The first macro program symbol executed during the compilation of a program is
the macroprogram symbol PFtOclRAM (Fig. 23 on the left). This macroprogram
symbol creates the invariant pattern. By recurrence, this invariant is kept afterwards
because the reading cells generated by each macroprogram symbol have their neigh-
bors that verify the invariant pattern.

We sometime use cellular encoding in our description. In the implementation, the
macroprogram symbols are decomposed in program symbols. For each macropro-
gram symbol, these decompositions are reported in Appendix C. The program
symbols of cellular encoding implement small modifications of graph. In the contrary,
the macroprogram symbols create many cells, connected in a complex manner. The
decomposition of macroprogram symbols into program symbols is a quick and simple
way of implementing macroprogram symbols. During the compilation, it may happen
that some cells, after the execution of a macroprogram symbol, block their develop-
ment until all their input neighbors are neurons. When they unblock, they usually
execute a piece of cellular code before going back to read the PASCAL parse tree.

5.1. Kernel of the PASCAL

We consider in this section, programs that are written with a reduced instruction
set: the kernel of the PASCAL, that allows to write only very simple programs. We
consider for the moment only scalar variables, we will see arrays later. The declaration
of variables are translated into a string of DECL macroprogram symbols in the
PASCAL parse tree. The effect of each DECL is to add an input link to the ancestor cell.
This link is connected to a cell that it itself connected to the “start” cell with a weight
0 (Fig. 23 on the right and Fig. 24 on the left). This last connection ensures that the
neurons corresponding to the variable will be activated, and will start the network.
We suppose that each variable is initialized with the value 0.

The sequential execution is implemented using a string of reading cells, associated
to a list of instructions. The cell of the string at position i reads the sub parse tree of
instruction number i of the list. On right half of Fig. 24, the input neighbors of cell
1 are neurons that contain the values of the environment. Cell “i + 1” has a single
input neighbor which is the cell i. Cell 2 must delay its develpment until cell 1 has
finished to develop the subnetwork associated to instrution 1. Cell 2 blocks its
development until all the input neighbor cells have became neurons.

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52 21

The assignment (Fig. 15 on the right) is the most simple example of instruction.
Each variable corresponds to a particular input link of the ancestor cell. The storage
of a value in a variable is translated by connecting the neuron that contains the value
to the ancestor cell. The connection must have the right number, in order to store the
value in the right variable. The management of the connection number is done by the
macroprogram symbol IDF-AFF, Fig. 16 on the left. Similarly, in order to read the
content of a variable, it is enough to know its link number (Fig. 17). The translation of
IDF-LEC is done by connecting the neuron that contains the value of the variable to
the neuron “next” that needs this value.

The input units of the neural net correspond to the values read during the execution
of the PASCAL program. If in the PASCAL program the instruction read a appears,
there will be one more input unit created. By setting the initial activity of this input
unit to V, the variable a will be initialized with u. The output units correspond to the
values written during the execution of the PASCAL program. If the instruction write
a appears, there will be one more output unit created. Each time the instruction write
a is executed, the value of this output unit will be the value of a. A neuron is an input
unit if it is connected to the input pointer cell. It is an output unit if it is connected to
the output pointer cell. The mcroprogram symbol READ adds a connection from the
input pointer cell to the neuron that represents the variable, and the macroprogram
symbol ‘WRITE adds a connection between the neuron that represents the variable and
the output pointer cell (Fig. 25 on the left and Fig. 26 on the right).

An arithmetic expression is translated in a tree of neurons, each neuron implements
a particular arithmetic operation using a particular sigmo’id. Unary operators are
implemented in the same way as binary operators (Fig. 16). Two cells are created
instead of three. The first cell will develop the sub network corresponding to the sub
expression to which the unary operator is applied. The second one will place its
reading head on the cellular code that describes how to develop a subnetwork for
computing the unary operator. When a constant is needed in a computation, this
constant is stored in the bias of a neuron n whose sigmo’id is the identity (Fig. 29). This
neuron is linked to the “start” cell that will control its activity, that is to say, at what time,
and how many times, the neuron n sends the constant to other neurons that need it.

5.2. Control structures

Until now, the macroprogram symbols were rewriting one cell into less than 3 cells.
We are going to present a new kind of macroprogram symbols. The IF rewrites a cell
into a graph of cells whose size is proportional to the size of the environment. This
represents a step in the complexity of the rewriting. This new class of macroprogram
symbols can be implemented using the SPLJT program symbol and subsites (see
Section 3.4). The PASCAL line if a then b else c can be translated by the boolean
formula: <a AND b) OR ((NOT a) AND c> or by the neuronal formula: (a EAND b)
AOR ((NOT a) EAND c). The neurons EA.ND (extended AND) and AOR (arithmetic
OR) have respectively the dynamic .Q1 and gz described in Section 2.2. These neuron

22 F. Gruau et al. / Theoretical Computer Science I41 (1995) l-52

do not perform a real computation, they are used to control the flow of activities.
Their behavior is thus completely described by the dynamic. AOR and EAND corres-
pond to the MERGE and BRANCH nodes in the dataflow formalism. The TRUE value is
coded on 1, and the FALSE is coded on - 1. A logical NOT can be implemented with
a single neuron that has a - 1 weight. In Fig. 30, we can see a layer of six neurons
EAND, divided into two sublayers of three neurons. These sublayers direct the flow of
data in the environment towards either the subnetwork that computes the body of the
“then” or the subnetwork that computes the body of the “else”. A layer of three AOR
neurons retrieves either the output envionment of the “then” subnetwork, or the
output environment from the “else” subnetwork, and transmits it to the next instruction.

The instruction while (condition) do (body) corresponds to a recurrent neural
network in which an infinite loop of computations can take place using a finite
memory. The flow of activity enters the recurrent neural network through a layer of
AOR neurons. Then, it goes through a network that compute the condition of the
while. If the condition is false, the flow of activities goes out out of the recurrent neural
networks. Otherwise, it is sent to a subnetwork that computes the body of the loop.
After that, it goes through a layer of synchronization neurons and is sent back to the
input layer of AOR. The synchronization is done to avoid that a given neuron in the
body of the loop updates its activity two times, whereas in the mean time, another
neuron has not updated it at all. In the case of two encapsulated loops, the neurons
corresponding to the inner loop come back to their initial state when the computa-
tions of the inner loop are finished. They are ready to start another loop if the outer
loop commands it. The neuron “start” is considered as if it was storing the value of
a variable. There is a copy of it in the layer of AOR neurons. It is connected to all the
neurons that contain constants used in the body of the loop, and activate these
neurons at each loop iteration.

The compilation of the REPEAT is very similar to the WHILE. The computation of
the condition is done at the end, instead of at the beginning.

5.3. Procedures and functions

We now explain how to compile procedures and functions. We will refer to the
following PASCAL Program:

program proc_furlc
Vax glob: integer
Procedure proc2(paf2: integer)
vax 10~2: integer;

begin

(* global variable * >
(*formal paramter * >
<*variable local to procedure proc2*)

. . .

end;
Procedure procl @afl : integer)
var 10~1: integer;

<*formal parameter * >
<*variable local to proedure procl * >

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52 23

bwm
proc2@ef2);
end;

BEGIN
proci(pefl)

END.

(*paramter *>
(*passed by value to proc2*)
(*body of the main program*)
(*pa.rameter * >
(zpaased by value to procel*)

We use a slightly modified invariant pattern, where the environment contains three
variables. The first variable is global, the second is a parameter passed to a procedure,
the third is one is a local variable of a procedure. In all the figures, the first output link
of cell 1 points to the output pointer cell and the second link points to the next cell. If,
sometimes, the inverse is represented, it is only for a purpose of clarity in the
representation. It allows to have a planar graph.

Consider the moment when procl calls proc2. The environment on the neuronal
side encompasses the input pointer cell, the “start” cell, the global PASCAL variable
glob and the local variables pefl and 10~1. We want to translate the calling of
procedure proc2. First we suppress the local variables pefl and 10~1. This is done by
the macro program symbol C&P described Fig. 34. Then we develop the para-
meters passed by value from procl to proc2 (macroprogram symbol COMMA Fig. 36).
Finally, the ancestor cell will develop the body of proc2. The body of pro02 begins
with the macroprogram symbol PROCEDURE that inserts a cell. When the translation
of procedure proc2 is finished, this cell will pop the local variables proc2 (cellular code
POP Fig. 37 on the right). After that, a cell (inserted by a CALL-P) executes a cellular
code RESTORE that allows to recover the local variables of procl. Putting aside the
local variables of procl ensures that each variable can be assigned a fixed connection
number. The macroprogram symbols CALL-P, CALGF and POP use two parameters:
GLOBAL is the number of global variables in the environment and LOCAL is the
number of local variables. The macroprogram symbol CALL-F is simpler than
CALL-P. It does not need to create a cell that will restore the enrivonment of the
calling procedure, because a function returns a value instead of a complete environ-
ment. The macroprogram symbol PUECTION has no effect. It is not necessary to create
a cell that will pop the environment of the function. The macroprogram symbol
BETURN also has a null effect.

5.4. The arrays

The arrays are a very important data structure in a programming language like
PASCAL. We had to use a special kind of neurons in order to be able to handle
arrays. These neurons are called pointer neurons. They are used only to record the
array data structure in a neural tree. The pointer neurons are nodes of the neural tree.
The data are the leaves of the neural tree. The use of pointer neurons ensures that the
ancestor cell possesses exactly one input link per variable. It allows to handle the
variables separately, when one wants to read or to modify them. Using pointer

24 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

neurons, one can represent array with arbitrary dimension. The invariant must be
extended. It now contains pointer neurons. Fig. 40 uses an example of extended
invariant, that represents a one-dimensional (1-D) array with two elements. A tree of
depth d can represent an array with d dimensions. The use of many layers of pointer
neurons for storing an array with many dimensions is necessary to handle each
column separately, in each dimension.

When an array variable is declared, the structure of neural tree is created for the
first time. For this purpose, the type of a variable is coded in the parse tree as a string
of macroprogram symbols TYPE-AFtBAY (see Fig. 41). Each of these macroprogram
symbols is associated to one dimension of the array, and creates one layer of pointer
neurons, in the neural tree. Each macroprogram symbol TYPE-ARRAY has a single
parameter which is the number of columns along its associated dimension. The string
of TYPE-ARRAY is ended by a macroprogram symbol TYPE-SIMPLE which was
already described in Fig. 24 on the left.

Many macroprogram symbols must handle neural trees. For example, the IF,
WBILE, X-AOR, X-SYNC are macroprogram symbol that must re-build the structure
of pointer neurons. Since the depth of the tree can be arbitrary big, the tree of neuron
must be processed recursively. Cellular encoding allows recursive development as
described in Section 3.2. A 2-ary program symbol BPN x is used to stop the recursion.
It tests whether the neighbor x is a pointer neuron, or not. Depending on the result of
the test, the left or the right subtree will be executed.

The reading of an array, like a := t[il, 121 is translated by an unusual parse tree.
The parse tree used for t[il, i2] is indicated Fig. 43. The reading of an array is
interpreted as the result of a function read-index defined by a cellular code that has
d + 1 inputs for an array of d dimensions. The inputs are the d indices plus the name of
the array. The function read-index returns the value read in the array. The writing of
an array like for example t[il, iz]: = v is translated in a parse tree indicated Fig. 44.
The writing of an array of d dimensions is interpreted as the result of a function
writ&index defined by a cellular code, with d + 2 inputs and one output that is an
array. The inputs are the d indices, the value to assign, the name of the array. The
function write_index returns the modified array after the writing. For either reading
or writing in arrays, the number of used neurons is proportional to the number of
elements in the array. However if the indices used to read or to write the array are
known at compilation time (for example the instruction a[O] = 1) the neural net is
automatically simplified during the development, and the final number of used
neurons is constant.

5.5. The enhanced PASCAL

We now describe the compilation of new instruction that have been added to the
standard PASCAL. These instructions exploit the power of neural networks. The
instruction CALLGEN allows to include a neural network directly defined by a cellular
code. Alternatively, CALLGEN can be considered as a call to a function defined by

F. Gruau et al. / Theoretical Computer Science I41 (1995) I-52 25

a cellular code. It is similar to a machine call in classic programming languages. At the
beginning of the PASCAL program, there must be an instruction #include (me-

name) that indicates the name of a file where the cellular codes of the functions to
be called are stored. The syntax of the CALLGEN is the following: <idfD) : = CALLclEN

(“code-name”, (idfl), . . . , (idk)). the result of the call will be a value assigned to the
variable idf~. The code name indicates the particular cellular code of the called
function. idfl , . . . , idfk are the parameter passed to the function, The macroprogram
symbol CmEN has the same effect as CAILF except that the body of the called
function is not specified by a parse tree, but by a cellular code that has been defined
before the compilation takes place. The CALLGEN includes a neural layer that
computes the called function. The neurons that contain the values of idfl , . . . , idf~ are
connected to the input of the included neural network. The output of the included
neural network is connected to the neurons representing the variable ifdO. The philosophy
of the CALL&EN is to define a number of functions that can be used in various context, or
to include some neural networks that have been trained. The neural networks included by
a CALLGEN never use global variables. Hence the global variables are suppressed before
the calling. Examples of predefined functions in Appendix c are:
l function 1eR returns the left half of an array,
l function right returns the right half of an array,
0 function concat merges two arrays,
l function int_tomay adds a dimension to an array,
l function array-to&t suppresses a dimension to an array,
l function random initialize an array with random values in { - l,O, l}.

The compiler can do automatic parallelization of a program written with a divide
and conquer strategy. In this strategy, a problem of size n is decomposed into two
subproblems of size n/2 and then into four subproblems of size n/4 and so on until
problems of size 1. The array functions left and right are used to divide the data of
a problem into two equal parts. The decomposition process must be stopped when the
size of the problem is 1. We must test during the development of the neural net, when
the number of elements of the array is 1. In one case, the part of the parse tree
corresponding to the decomposition must be developed. In the other case, the part of
the parse tree corresponding to the problem of size one must be developed. We use
a static IF to do this test. The syntax is the same as the normal II?. The name IF THEN,

ELSE are replaced by #IF #THEN, #ELSE. However, the condition of the #IF is
always of the type t = 1, where t is an array. This expression tests whether the array
t has one or more than one element. If it is the case, the ancestor cell goes to read the
left subtree of the .#ELSE parse tree label. Otherwise it goes to read the right subtree.

6. Examples of compilation

In this section, we propose a few examples of compilation that illustrate the
principles of the compiler and its interest. In order to run a compiled network, on

26 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

must intialize the input unit with the value read during the execution of the PASCAL
program. The neural net makes its computation with a data driven dynamic which is
halfway between parallel and sequential. When the network is stable, the computation
is finished. The output units contain the values that are written by the PASCAL
program.

Examples of compiled neural networks are drawn in Figs. 19 and 22. The drawing
have been produced automatically by the compiler. Each cell possesses a rectangular
window. The ancestor cell possesses a window that covers all the drawing area.
Whenever a cell divides, each child cell inherits half of the window. The division is
made horizontally if the two cells are connected, and vertically otherwise. A cell is
drawn at the middle of its windows. An additional mechanism ensures that each cell
possesses a window of approximately the same area.

6.1. Compilation of two standard PASCAL programs

Fig. 19(a) shows a network compiled with the following program:

Program P;
type tab = array [O. .7] of integer;
v&r t: tab; i, j, max, aux: integer;

begin
PMJd G>;
whilei<7do

be@n
j:=i+ l;max:=i;
whilej<=7do

be#n
if t[ma,x] < t[j] then max: = j fi;
j:=j + 1;

end,
aux:= t[i]; t[i]:= t[max];
t[max]:= aux; i:= i + 1;

end;
write <t>;

end.

There are nine input units, the “start” cell plus the eight values to be sorted. There
are eight output units that correspond to the instruction write(t). Recurrent connec-
tions are drawn using three segments. The two encapsulated loops are mapped on two
sets of recurrent connections. Fig. 20 shows the step of development for the bubble
sorting neural network. During one step, all the cells that are not blocked are iterated
sequentially. At step 63, the eight cells colored in grays are deleted. At step 95, the first
recurrent neural network for the outer loop is born. At step 59, the second

F. Gruau et al. / Theoretical Computer Science 141 (199.5) l-52 27

(a) Buble sorting of 8 numbxs

(c) Simulating an animal behavior

(b) Computing fibonaci until value 6

(d) Merge sorting of 8 integers

Fig. 19. Examples of compiled neural networks.

recurrent neural network for the inner loop is born. At step 223, all the recurrent links
of each of the two recurrent neural network are drawn as a single line to spare room.
From steps 223 to 356, instruction for reading and writing in arrays are translated.

Fig. 19(b) shows a neural net that has been compiled with the following program:

program Ftbonacci;
v&r resul: integer; a: integer;
function flb (n: integer>: integer;

begin
if(nc = l)thenresul:= 1

else resul:= flb(n - 1) + flb(n - 2) fl;

return (resul);

28 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

step 191 step 223 step 255

step 287 step 3 19 step 356

Fig. 20. Steps of the development of the neural network for the bubble sorting of eight integers.

end;
begin

read(a); write (fib (a>>;
end.

This example illustrates the fact that if the program to be compiled uses recursive
calls, the depth of recursion must be bounded, before the compilation begins. The
initial life of the ancestor cell is 6. Hence the depth of recursion is bounded by 6. This
net can compute flb<i) for i c ‘7. The number 6 is the value used to initialize the life
register of the ancestor cell. Fig. 21 shows how the neural net evolves when the life is
increased from 1 to 4.

F. Gruau et al. / Theoretical Computer Science I41 (1995) 1-52 29

fibonaci(i), iR fibonaci(i), i<3 fibonaci(i), i<4 fibooaci(i), i-5

Fig. 21. The neural network for the Fibonacci function developed with an nitial life, respectively, L = 1,2,
3 and 4. The corresponding networks are self-similar. The networks can compute Fibonacci(i), i < L + 2.

6.2. How to use the CALLGEN instruction

We have added to the PASCAL language two instructions: CALLGEN and
#include that allow to include in the final network, smaller networks whose weights
have been found using a learning algorithm. The code of these nets are stored in a file
which name is indicated by the instruction #include. We now show an example of
PASCAL program that uses the CALLGEN instruction. The compiled net is shown
in Fig. 19(c).

#include “animaLa”
Program anin=&
type tab = AF!RAY[O. . 191 of integer; tab2 = ARRAY [0 . .Q] of integer;
var pixel: tab; feature: tabs; position, is-bad, move: integer;
function opposite(position: integer>: integer;
begin return (1 -position); end;
begin

read(pixe1); feature: = CALLC+EN(“retina”, pixel);
position: = CALLGEN<“position _object”, feature>;
is-bad: = CAUGEN(“predator”, feature);
if <is-bad = 1) then move: = opposite@osition)
else move: = 0 fl;
write(CALLGEN(“motor”, move));

end.

In the file animal.a are stored the cellular codes of different layered neural
hnetworks. The net-work retina inputs 20 pixels, and outputs a list of 10 relevant
features. The network position-object determines from these features, the position of
an object, if an object lies in the visual field. The neural net predator determines
whether the object is a predator animal. The neural net motor commands 4 motor
neurons for moving the legs. The whole compiled neural net simulates the behavior of
an animal in front of a predator. The input units are the pixels, and the output units
are the neurons of the leg muscles. This neural net can be stored in a library, in order
to be included in a bigger neural network. It illustrates how easy it is to interface the

30 F. Gruau et al. / Theoretical Computer Science 141 (1995) l-52

PASCAL language with predefined neural nets. The compiled neural net encompasses
many neural layers, plus one part that is purely symbolic. This is the part that
corresponds to the if instruction. So the compiler not only links together various
neural networks, but it allows to make symbolic computations from the outputs of the
neural networks, and it can manage the input/output.

6.3. How to use the #IF instruction

The instructions #IF XTHEN #ELSE allow to test at compile time whether an array has
more than one elements. This instruction allows automatic parallelization of a pro-
gram written with a “divide and conquer” strategy (Section 5.5). We need other
predefined functions to enrich the array data structure: functions left and right
extract the left part and the right part of an array, int-toarray and a,rray-to-int add or
suppress a dimension. The following PASCAL program uses the instruction #IF. The
compiled net is shown Fig. 19(d).

#include “array. a”
program merge sort;
const infini = 10000; type tab = ARRAY [O.. 71 of integer; var w: tab;
function merge (t: tab; n: integer; u: tab; m: integer): tab;
var v: tab; i, j, a, b: integer;

begin
v: = CAT.LCEN<“concat”, t, u); a: = t[O]; b: = u[O];
while(i+j<n+m)do
begin

if (a < b) then
be~v[i+j]:=a;i:=i+l;if(i<n)thena:=t[i]elsea:=infinifl;end
else

beginv[i+j]:=b;j:=j+l;if(j<m)thenb:=u~]elseb:=infinifi;end

fi;
end;
return(v);

end;

function sort (t: tab; n: integer): tab;
begin#IFt=l

#THEN return <t>

end

#ELSE return (merge (sort <CALLCIEN(“leR”, t>, n DIV 2), n DIV 2,
sort<CALLC+EN(“right”, t>, n - <n DIV 211, n - (n DIV 2)))

#FI;

begin read(w); write(sort(w, 8)); end.

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52 31

Function merge is written in standard PASCAL (except one use of CALLGEN).
Function sort uses the #IF instruction. The file axray.a contains the library of the
cellular codes of the functions manipulating arrays. The compiled neural net has nine
input units: the start cells plus eight integers to sort. It has eight output units for the
eight sorted integers. The structure of the net can be understood. The first layer of four
recurrent neural nets outputs four sorted lists of two integers each. The second layer
outputs two sorted lists of four integers. Although it is recursive, the function sort can
be compiled on a finite graph, because it is applied to a finite array of integers. As
opposed to the Fibonacci function, there is no need to specify a bound on the number
of recursive encapsulations. Since we have used the divide and conquer strategy, the
network sorts n integers in a time which is O(n) (here we assume that the neurons can
do their computations in parallel). We have also compiled many other programs using
the divide and conquer strategy. The convolution, the matrix product, the maximum
of an integer list, are programs that are compiled on a neural net able to do the job in
a time O(ln(n)). Fig. 22 shows the compiled neural nets. We wrote a PASCAL
program that simulates a feed-forward layered neural network, with matrix vector
multiplication and random weights in (0, - 1, l}. Fig. 22 (c) shows the compiled
neural net, it is a layered neural net!

7. Conclusion and applications

In this paper, we describe a neural compiler that has been actually programmed.
The input of the compiler is a PASCAL Program. The compiler produces a neural
network that computes what is specified by the PASCAL program. The principle of
compilation is not difficult. It consists in the rewriting of the parse tree in a cellular
code, and the development of the cellular code, which can be formalize as the
derivation of a graph grammar. Experimental results show that the compiler works.
The neural compiler is called JaNNet (Just a Neural Network Translator). Neural
compilation is based on a new paradigm: Automatic building of neural networks
using an algorithmic description of the problem to be solved. This paradigm is at the
exact opposite of the existing trend which present neural networks as machine that
learns by themselves. As a conclusion, we want to show that JaNNet can reproduce
and even improve three kinds of compilation.

7.1. Neural network design

The interest of a language for describing neural networks like SESAME [9] is to
facilitate the design of large and complex neural networks. These languages propose
to first define some “building block” neural networks. Then, the building blocks are
used to build more complex neural networks. The latter can again be composed, and
so on... This hierarchical design is very practical. We have added an instruction
CALLQEN to the standard PASCAL language that allows to achieve the same effect

32 F. Gruau et al. J Theoretical Computer Science 141 (1995) 1-52

(a) Multiplication vector vector (b) Maximum of 32 integers

(c) Multiplication Matrix Vector (d) Multiplication M&i 1x Math.

Fig. 22. Other examples of compiled neural networks that can do computation in parallel.

with JaNNeT. When it compiles a neural net, JaNNeT produces its cellular code. This
cellular code can be stored in a file, and called using CALLGEN, so as to be included
in a bigger neural network. This technic allows a modular compilation, from the
compilation point of view. It permits a hierarchical design, from the neural network
design point of view. But JaNNeT goes further than a language of description like
SESAME. JaNNeT gives the possibility to combine neural building blocks without
mentioning the physical connections between the networks. The specification is made
on a logical, soft level. A human being understand much better a soft description
where it is enough to describe the logical steps of a computation, rather than an
intricate set of connections. JaNNeT allows the design of huge neural networks. In the
near future, machines with millions of neurons will be available, and the advantages of
a logical description will become obvious. Moreover, JaNNeT produces a graphical

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52 33

representation of the neural net that exploit the regularities of the graph. To our
knowledge, this is the very first software able to do that.

7.2. Tool for the design of hybrid systems

JaNNeT is a process that can compile a PASCAL program towards a neural
network. If we would like to compile a base of rules used in expert systems (artificial
intelligence), towards a neural network, we just need to write the base of rules in
PASCAL, as well as the inference motor. Hence JaNNeT includes the compiler of base
of rules, used in the so-called hybrid systems, which goal is to combine artificial
intelligence and neural networks. However, JaNNeT can be used for the design of
hybrid system in a more efficient way. The compiler can put in the same connectionist
model, algorithmic knowledge (that knowledge is compiled) and “fuzzy knowledge”
(that one is learned in a fixed size neural networks). The compiler can build hybrid
systems that encompass two layers. The first layer is learned and it is subsymbolic. It
grounds symbols on fuzzy and distributed data. The second layer is compiled, it
makes a computation on these symbols.

7.3. Automatic parallelization

The numerical examples show that JaNNeT can automatically parallelize algo-
rithms written with a “divide and conquer” strategy. Many algorithm can be pro-
grammed in that way. However, in its actual version, JaNNeT does not produce
instructions for a particular parallel machine. It produces a neural network. The
missing step consists in mapping this network on a multiprocessor system. This step
must take into account the size of the memory of each processor, the communications
between processors, and the granularity of the neuronal computation. The neural
networks produced by JaNNeT can be mapped on a three-dimensional (3-D) grid.
The three dimensions represent the size of the environment, the functional parallelism,
and the time. It is possible to project the network along the third dimension so as to
map the neural net on a 2-D array of processors.

We must also parallelize the compiler itself. If the compiler takes one hour to
compile a program that afterwards runs in one second on a parallel machine, it
prevents the interactive use of JaNNeT. We have a model of abstract parallel machine
that may allow both parallel compilation and parallel run. This machine is a 2-D grid
of processors were a particular processor can dynamically decide to become a connec-
tion. A line of such processors can pass information from arbitrary distant point in
constant time.

Since the compiled neural net is a data flow graph, a comparison with existing
compiler for data flow machine is needed. The main feature of our parallel compiler
will be to use a precise architecture (a 2-D grid), and to ensure that two tasks which
need to communicate data will be executed by two neighboring processors. The
review done by Veen, 1986, in [15], and the research monograph [2] (1991) do not

34 F. Gruau et al. / Theoretical Computer Science I41 (1995) 1-52

report such direction of research in the data flow community. Last, the advantage of
JaNNeT compared to the data parallel approach described by Zima et al. [17](1993)
or the data flow approach by Veen et al. [16] is that the user does not need to add in
his program indications about where (on which processor) to store the data.

Appendix A: Small example of compilation

This appendix describes the compilation of a very simple PASCAL program:
program p; vaz a: integer; begin write(a); read(a); end.“. Fig. 18 describes the initial
setting, at step 0 (Figs 23-27).

PROGRAMM PROGRAMM

READ

I
IDF-

AFFa LECTa

Fig. 23. On the left: execution at step 1 of the macro program symbol PROQRAM. The ancestor cell 1 gives
birth to two other cells. A cell labeled “start” and another one labeled “next”. The “start” cell controls the
propagation of the activities. The “next” cell has not finished its development. It waits all its neighbors to
become finished neurons. The cell 1 now reads the DECL node. On the left: execution at step 2 of the macro
program symbol DECL. The ancestor cell gives birth to another cell labeled “var”. This cell represents the
variable a. The input and output connections of the ancestor cell are now complete and represent
a topological invariant. The first input (resp. output) link points to the input (resp. output) pointer cell. The
second input link points to the “start” cell, the rest of the input links point to “var” neurons. The second
output link points to the “next” cell.

PROGRAMM

;;&-@gJi3

READ
I

IDF- ;Dr: +$c&

AFFa LECTa

Fig. 24. On the left: execution at step 3 of the macro program symbol TYPE-SIMPLE. The effect is to nullify
the weight of the connection to the neuron that represents variable a. A weight 0 is represented by a dotted
line. On the right: execution at step 4 of the macroprogram symbol SEMI-COL. This macroprogram symbol
composes two instructions. Cell 1 gives birth to another cell labeled 2. Cell 1 goes to read the macroprogram
symbol that corresponds to the instruction read a. Cell 2 is blocked on the instruction write a

F. Gruau et al. / Theoretical Computer Science 141 (1995) I-52 35

PROGRAMM

DECLs

TYPE

SIMPLE

SEMI-

COL

Fig. 25. On the left: execution at step 5 of the macro program symbol READ a A neuron labeled var is
created. It contains the new value of variable a. This neuron is connected to the input pointer cell. On the
right: execution at step 6 of the macroprogram symbol IDF-AFF. The neuron “var” that contains the old
value of a will he deleted because it has no more output links. The cell 2 is unblocked, and carries on its
development.

PROGRAMM

Fig. 26. On the left: unblocking at step 7 of the cell 2. Before to start the compilation of the WRITE, cell
2 executes a small piece of cellular code. It merges the input links of cell 1. The cell 1 will be deleted. Now,
the invariant is restored. Cell 2 can start the compilation of the next instruction. On the right: execution at
step 8 of the macroprogram symbol WRITE. The cell 2 gives birth to another cell 3, connected two times to
the output pointer cell. The cell 3 possesses all the input connections of cell 2. Cell 2 becomes a neuron.

outpu

Fig. 27. On the left: execution at step 9 of the macroprogram symbol IDF-LECT. Cell 3 selects the input that
corresponds to variable a, and connect that input to the output pointer cell. Then, cell 3 disappears. On the
right: unblocking at step 10 of the cell “next’ which is deleted. Its deletion leads to the suppression of neuron
2. The final neural net encompass two input neurons: the start cell and the input variable a; and one output
neuron: the variable a. This neural net reads a and write a. It translates what is specified by the PASCAL
program.

Appendix B: The other macroprogram symbols

In this appendix we describe the macroprogram symbols that have not yet been

illustrated (Figs. 28-46)

36 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

inst, expr

w7-J

Fig. 28. Invariant pattern. We show here the network graph of cells after the declation of two scalar
variables. We can see the two corresponding neurons labeled ‘Bar”. These neurons “var” with the neuron
“start’ will consrtitute the first layer of the final neural network. The graph of this figure is an invariant
pattern that will be taken for the initial configuration, for all the next macroprogram symbols. This avoids
repetition and stresses the importance of the invariant pattern in the design of the macroprogram symbol.
Cell 1 will be called the ancestor cell.

INT-CST

:S

Fig. 29. Execution of the macroprogram symbol INT-CBT by the ancestor cell of the invariant pattern. This
macroprogram symbol has one parameter which is the value of the constant. The macroprogram symbol
INT-CST 3 has the following effect: It sets the bias of the ancestor cell to the value 3, and deletes all the links,
except the link to the “start” neuron and the link to the “next” neuron. The sigmdid of the ancestor cell is set
to the identity, and the ancestor cell becomes a neuron labeled 1. When the constant is needed, the neuron
“start” is used to activate the neuron 1, which delivers the constant coded in its bias.

EAND

Fig. 30. Execution of the macro program symbols P ad THEN by the ancestor cell of the invariant pattern.
For the sake of clarity, we have represented the combined action of IF and THEN. Four reading cells, and
a layer of 6 neurons EAND are created. Cell 1 will develop a subneural net that computes the value of the
condition. TRUE is coded on value 1, and FALSE is coded on value - 1. The logical operation NOT is
realized using a weight - 1 (dashed line). Depending on the value of the condition, the flow of values
contained in the environment is sent to the left or to the right. The reading cell 2 and 3 develop, respectively,
the body of the “then” and the body of the “else”. Cell 4 possess two input subsites which are represented as
small black disks. It is blocked on a piece of cellular code called X-AOR

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52 31

Fig. 31. Execution of the cellular code X-AOR by cell 4 of the preceding figure. The cell 4 has two input
subsites that distribute its input links into two lists. The cell 4 produces a layer of AOR neurons. This layer
retrieves either the output environment from the body of the “then” or the output environment from the
body of the “else”; and transmits it to the next instruction.

D

Fig. 32. Execution of the macroprogram symbol WHILE by the ancestor cell of the invariant pattern. Many
cells are created: three reading cells, 3 AOR neurons, 6 RAND neurons and one neuron labeled 4, used to
forward the environment. The layer of AOR neurons merges the flow of values that comes either from the
top of the network (first iteration) or from the bottom (other iterations). The cell 1 develops a neural net that
computes the condition of the while. As in the case of the IF, the RAND neurons are used as switching for the
flow of activities. If the condition is true, the flow of values is forwarded in the body of the loop, else it turns

to the right and exits the loop. The cell 2 develops the body of the WHILE. The cell 3 develops an
intermediate layer in the loop, which will synchronize the flow of activities.

Fig. 33. Execution of the cellular code X-RYNO by cell 3 of the preceding figure. Cell 3 gives birth to a layer
2 of three neurons plus one neuron S whose dynamic is the normal dynamic. This layer is inserted between
the layer of neuron “ENV” that stores the output environment of the body of the WHLLE, and the layer of
AOR at the beginning of the loop. The neuron S is connected from its input site, to all the neurons in the
“ENV” layer. The neuron S is active only when all the environment is available. The neuron S is linked to
the three neurons of layer I from its output site, with weights zero (dotted line). These connections block the
neurons while S is not active. So the three neurons of layer 1 are unblocked at the same time, and the flow of
values is synchronized.

38 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

Fig. 34. Execution of the macroprogram symbol CALL-P by the ancestor cell of the invariant pattern. The
environment has three variables. The CALL-P has one parameter (attrb) which is the name of the called
procedure. Three cells are created. Cell 1 develops different subnetworks: one subnetwork for each
parameter to pass to the called procedure. The cell 2 develops the body of the called procedure. Its reading
head is placed on the root of the parse tree that defines the called procedure. The cell 2 is not connected to
the neurons that contain the local variables of the calling procedure: pef.t and 1001. These variables cannot
be accessed from proc2. Cell 3 is blocked on a cellular code RESTORE. It will restore the environment of the
calling procedure, when the translation of the called procedure is finished.

Fig. 35. Execution of the cellular code RESTORE by cell 3 of the preceding figure. Cell 3 is unblocked when
the body of pro& is developed. Cell 3 is linked to cell 2 which is linked to the global variables, that may have
been modified by the called procedure. The execution of FGSSTORE brings together the modified global
variables, and the unchanged local variables of procl.

Fig. 36. On the left: execution of the macro program symbol COMMA by the ancestor cell of the invariant
pattern. This macro program symbol creates two cells. Cell 2 develops a subnetwork for computing the
value of a parameter, cell 1 continues to read the parameter list. On the right: execution of the macro
program symbol NO-PARAM by cell 1, assuming that the end of the parameter list is reached. The end of the
list is marked by a NO-PAPA&l that simply eliminates cell 1.

F. Gruau et al. / Theoretical Computer Science 141 (1995) l-52 39

PROC;EDURE

inst-list

input start g:: @& x 2

next output

Fig. 37. On the left: execution of the macroprogram symbol PFLOCEDURE by the ancestor cell of the
invariant pattern. This macroprogram symbol adds an intermediate cell 2, blocked on a POP cellular code.
On the right: when the translation of the procedure is finished, cell 2 is unblocked. and execute the cellular
code WP. POP retrieves only the global variables. The local variables are not connected to neuron 2 after
the execution of POP. This macro program symbol is equivalent to the pop instruction of a machine
language, used for the return of subroutines.

Fig. 38. Execution of the macroprogram symbol CALL-F by the ancestor cell of the invariant pattern. This
macroprogram symbol has the same effect as CALL-P except that it does not create the cell 3, because it is
not necessary to restore the environment.

alob Def2 loc2

Fig. 39. Execution of the macroprogram symbol RETURN by the ancestor cell of the invariant pattern. This
macroprogram symbol has a null effect.

I)

PN

PN

Fig. 40. Representation of arrays. On the left: extended invariant pattern, the environment contains a scalar
variables and a 1-D array with two elements. On the right: representation of a 2-D array, using a neural tree
of pointer neurons, of depth 2. Layers of pointer neurons are marked by “PN”. The layer D contains the
values of the array.

40 F. Gruau et al. / Theoretical Computer Science 141 (1995) l-52

Fig. 41. Execution of the macro program symbol TYPE ARRAY. This macroprogram symbol develops the
neural tree of pointer neurons that is required to encode an array. We need d macroprogram symbols TYPE
ARBAY in order to represent an array of d dimenions. ‘I”ypE-ARRAY has one parameter which is the number
of columns along the associated dimension.

c5 next 25 next

Fig. 42. Execution of the cellular code X-AOR by cell 4 of the figure that describes the IF macroprogram
symbol. The result is the production of a layer of AOR neurons, and the duplication of the neural tree that
gives a structure to the data.

CALLGEN
llect-index

NO-PARAM

Fig. 43. Reading of a 2-D array [0..1][0..2] of integers. The indx il is 2, the index i2 is 1. The two first
layers of neurons EQBs have a sigmoid that tests the equality to zero. They output 1 if the net input is 0,
otherwise they output - 1. These EQB neuron’s threshold are indicated. The third layer of neurons
computes logical ANDS. In this layer, a single neuron outputs 1, the one that corresponds to the element that
must be read. All the other neurons of this layer output - 1. The fourth layer of neurons is a layer of EAND
neurons. Only one of these neuron is activated. It propagates the element of the array that is read. Last,
a neuron AOR merges all the output lines and retrieves the element that is read. The instruction CALIxlEN is
almost like CALGF, except that all the links to the global variables are deleted. CALLCEN is described in the
next to the next figure.

F. Gruau et al. / Theoretical Computer Science 141 (1995) l-52 41

CALLGEN

T COMMA

Fig. 44. Writing in 2-D array [0..1][0..2] of integers. The index il is 2, the index i2 is 1. The first three
layers are the same as in the preceding figure. The fourth layer contains twice as much EAND neurons
arranged in pairs. Each pair corresponds to an element of the array. In each pair, one neuron is activated,
and the other one is not. The left neuron is never activated except in a single case, when the element
corresponds to the place where we want to write. The next layer is a layer of AOR neurons. Each AOR neuron
retrieves the element of the old array, or the value v that is written if the element corresponds to the place
where we are writing. Last, a neural tree of pointer neurons preserves the structure of 2-D array.

Fig. 45. Execution of the macroprogram symbol CALLGEN by the ancestor cell of the invariant pattern.
CALLOEN has the same effect as C-F except that the cell 2 which will execute the body of the function
written in cellular code, does not have connections to the global variables of the PASCAL program.

Appendix C: Technical implementation

Registers of the ceN

Moreover, links have three registers, one for the weight weight, one for the state
state, and one for the mark of beginning of a subsite begin-sub-site. Sites have a single
register called divisible (Table 1).

42 F. Gruau et al. / Theoretical Computer Science 141 (1995) l-52

(4

(b)

IDFLEC #THEN

Fig. 46. On the top (a): execution of the macroprogram symbol # P by the ancestor cell of the invariant
pattern. Three cells are created. Cell 2 goes to read a macro program symbol IDF-LEC that will select the
array variable which is concerned by the test. Cell 3 is a neuron that will be used later by cell 1 to restore the
environment, once the test is finished. On the middle (b): execution of the macroprogram symbol IDF-LEC,
by cell number 2 of the preceding figure. On the bottom (c): execution of the macro operator #THEN by cell
1. Cell 1 tests the number of input links of its first neighbor. Here this number is 2 because the array has two
elements. If this number is greater than one, cell 1 places its reading head on the right subtree, as it is the
case here. Otherwise it goes to read the left subtree. Finally, cell 1 merges the links of the neuron 3.

Table 1
The registers of a cell

Name

Reading head
Life
Bias
Sigmo

Dyn
Link register
Simplif

Type
x, y,dx,dy

Role

Reads at a particular position on the cellular code
Counts the number of recursive iterations
Stores the bias of the future neuron
Stores the sigmoid
Stores the dynamic
Points to a particular link
Specifies the level of simplifiability
Specifies whether the cell is a neuron or a reading cell
Specifies a window where to draw the cell

F. Gruau et al. / Theoretical Computer Science 141 (199.5) 1-52 43

Syntax of the microcoding of cellular operators

The following grammar generates the microcode of operators:

(microcode)::= (top))(div)I(reg)I(exe)~(aff)

(top): : = - TOP (segments) 1 TOP (segments)

(div)::= (divl)l(div2)

(divl): : = - DIV(segments)IDIV(segments)

(segments): : = (segment) (segments) I (segment)

(segment): : = (operator) (operand) I (operator)^(operand) 1 s

(operator): : = mlMlrlRldlD

(operand)::=*l>I > =I<(< =l=l%l#

(div2): : = HOM(number)

(reg): : = CELL(character)~SI(character)~LNK(character)

(exe): : = EXE(chars.cter)~BBA<character)

(aff): : = AlW(charaoter)

The nonterminal (number) is rewritten into a number, The nonterminal (charac-
ter) is rewritten into a character. The character is: For the nonterminal CEL, SIT,
LNK, the abbreviated name of a cell register, a site register or a link register; for EXE,
it reminds what kind of movements the reading head does. For BRA, it specifies the
kind of condition that is tested, for AFF is indicated the kind of the neuron that is
displayed.

LIST of program symbols and their microcode

The letter x indicates that the program symbol uses an integer argument. i is the
number of input links, o is the number of output links, r is the value of rthe link
register.
*w***********w*** Local Topological Transformation ************************

CUTL x TOPm-<m-B Cuts the input links i-x
CDTBIX TOPm< Cuts the right input bnks starting from link x
cuTx TOPm cm> cuts input link x
CLIP TOPm_ cm_ > Cuts input link r
CUT0 x - TOPm <m> cuts output link x
MRGX TOPm <d^*m> Merges the input link of input neighbour x

44 F. Gruau et al. / Theoretical Computer Science I41 (1995) I-52

MGX TOPm_ <d_**m_ > Merges the input link of input neighbour r
CPFO x - TOPm < d* # m > = Copies first output of output cell x
CHOP1 x TOpm= Cuts all the input links except link x
CHOP0 x - TOPm= Cuts all the output links except link x
CHHL TOPml > Cuts the first input links from 1 until i/2
CHHB TOPmJ c = Cuts the last input links from i/2 + 1 until i.
PUTFX TOPm=m<m> Puts link x in first position
PTJTLX TOPm <m>m= Puts link x in last position
SWITCH x TOPm < m%m > %m = Makes a link permutation between last link and

UIlkX

TOP Deletes the neurone
CYC TOPS Creates a recurrent link

**** Cell division into two childs which will execute a separate code w*w***
PAR DIVd*R* Parallel division

SEQ DlVs Sequential division
XSPL x DIVm<=s Gradual division
SEP DIVd*MI > Separation division
ADLX DIVmcsm > Adds a cell on link x
ADX DIVm_<sm_> Adds a cell on link r
PARX DIVmcsd=m> Duplicates link x, Add a cell on link x
SPLFI x DIVd<=s Duplicates first x inputs
SPLFILx DlVd-< =s Duplicates ilrst i-x inputs

SPLLI x DIVsd->= Duplicates last input starting at link x
SPLLIL x DIVsd > = Duplicates last input starting at link i-x

*+ Cell division into more than two childs which will execute the same code ***
CLONE x OLC Clones into xchilds, x is the argument
SPLIT HOMO Splits into y childs, y is computed from the

topology
TAB HOMl Same has split, but child i has its bias set to i
SPLlTN HOM2 Same as split, but the sub-sites are merged

******+******++**++*+++ Modification of a register *************+**+**+*+*+

SBIAS x CELb Sets the bias to the argument
SBIASO CELb 0 Sets the bias to 0

SBIASl CELb 1 Setsthebiastol
INCBIAS CEL+b 1 Increments the bias
SSIGMO x CELs Sets the type of sigmoid
SDYN x CELd Sets the dymamic
EVERX CELe Sets the level of simpliilability
LRX CELl Sets the link register
INCLB CEL+l 1 Increments the link register
DECLB CEL+l -1 Decrements the link register
SITE SITD Sets the d&&ability of the sub sites to the

argument

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52 45

Sill SITd Sets the d&&ability of the input sub-sites to the
argument

SIT0 - SITd Sets the divlsability of the output sub-sites to
the argument

DELSITE SIT0 Merges all the input sites snd all the output
sites

DELSITI SIT0 Merges sll the input sites
DELSITO - SIT0 Merges all the output sites
MULTSIT SITm Creates one input site for each input link
VALX LNKV Sets the value of the input weight r to x
VALO -LNKv Sets the value of the output weight r to x
VAL- LNKV -1 Sets the value of the input weight r to - 1
FlANDx LNK? Setsweightxtoarandomvaluein{ - l,O, 1)

************+***+ Mansging of the execution order +***+***+***************

WAITX EXEW

WAIT ExEf

JMPX llBQ
BBC EXEr

END BXEe
BLOC l=Eq

BLB?.S BBAf
BUNx BBAu
BPN BRAp
BLBx BBAl

waits xsteps
Waits one step if no arguments are supplied
Includes subnetwork x
Moves the reading head back to the root of the
currently read subtree
Becomes a finished neuron
Waits for the neighbor to loose their reading
head
Tests if the value of the life register is one
Tests if the neighbor has xinput links
Tests if the neighbour is a pointer neuron
Tests if the value of the link register equals the
argument

******j************** Enhancimj &splay of the graph *+*******t*************

PN AFFpn Draws a pointer neuron
VAB A_FPvar Draws a neuron that contains the value of

a vsriable
I+**++****+****+** Operators for labeling ********+****+***+*************

RINS

IJNS

PN-
VAF-
EAND-
AOR
INK
STJP-

DJPl%!-
SDPEQ-
PLUS-

ExEf
ExEf
CELe
EXEe

BXEe
BXEe
EXEe
EXBe

It indicates insertion of the right sub-tree
It indicates insertion of the left sub-tree
It is a pointer neuron
It contains the initial value of a variable
ItisadynsmicENAD
ItisadynamicAOR
It compares the 2 inputs
It compares the 2 inputs
It compares the 2 inputs
It compares the 2 inputs
It adds the 2 inputs

46 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

MOINS-

MULT-
QUO_
NOT-
OR
AND

N-EQ
EQ-
EQB-
START-

ExEe It multiplies the 2 inputs
EXEe It divides the first input by the second inputs
ExEe It does a logical NOT
EXE0 It does a logical OR
EXEe It does a logical AND
EXEe It tests if the two inputs are different
ExEe It tests if the two inputs are equal
EXEe It tests if the input is equal to bias
EXEe It is a Start neuron

It substracts the first input from the second
inputs

Syntax of the parse trees that are used

The following grammar generates parenthesized expressions that can be interpreted
into well formed parse trees. A parse tree can be the parse tree of the main program,
the parse tree of a procedure, or the parse tree of a function. The compiler generates
a list of trees, one tree for the main program, and one tree for each function or
procedure. The parenthesized representation used here is a bit unusual. We do not put
parenthesis when there is a single subtree. When there are two subtrees, we consider
that the right subtree is a trunc, and put only the left subtree between parenthesis. This
special representation allows to write a simple grammar. Capital letters and parenth-
esis are terminals of the grammar. Nonterminals are written using small letters,
between brackets.

(parse-tree) : := (program) 1 (procedure) 1 (function)

(program)::= PROMAM (decl-list) (in&-list)

(procedure) : := PROCEDURE (decl_list) < insttlist)

(function)::= FUNCTION (decl-list) (in&-f)

(decl_list) : := DECL attrb ((type)) (decl-list) IDECL attrb (type)

(type) : := TYPE-ARRAY attrb (type) I TYPE-SIMPLE

(inst-list) : := SEMI-COLON ((in&)> (in&list) 1 (inst)

(inst_f)::= SEMI-COLON ((in&)> (ins_f)IRFTUN (expr)

(inst) : := (write) I (read) I(assign) I (if) I (#if> I

<while) I <m-t> I<caR-p) I <callgen)

(assign)::= ASSIGN ((idf-aff)) (expr)

(read)::= READ (idf-aff)

F. Gruau et al. / Theoretical Computer Science 141 (1995) l-52 41

(icKaff> : := lDF_AFF attrb

(write) : := WRlTE (expr)

(if)::= IF ((expr)) (then)

(then)::= THEN <(inst_list)> (in&-list)

(#if)::= #IF((idf-lect))(#then)

(#then) : := # THEN <(in&-list)) <in&-list)

<while)::= WHILE ((expr)) (inst-list)

(repeat)::= REPEAT ((expr)) (inst-list)

(call_p) : := CALLP attrb (paran-list)

(parandiet) : := COMA ((expr)) (param-list) (NO_PABAM

(mUgen) : := CALLGEN attrb0 (paran-list)

(expr)::= (read_asray)~(write_erray)~(idf_lect))

<con&) 1 (bin_op) ((un_op)l (calI_f)

(read-array) : := CALLGEN attrbl (param_list)

<writ&array) : := CALLGEN attrb2 (pram-list)

(idf-lect) : := lDF_LEC attrb

(con&) : := IN’I-CST attrb

(bir_op)::= BINOP attrb ((expr)) (expr)

(bin-op) : := UNOP attrb (expr)

(Cal-f) : := CALLF attrb (param_list)

This grammar generates parse trees with nodes having sometimes some attributes.
Table 2 indicates what each attribute represents.

Predefnitions

The predefinitions are elementary cellular codes that are used many times. They are
defined separately in order to reduce the size of the cellular code generated by the
neural compiler.

Arithmetic operators

Elementary codes implements arithmetic operators, using neurons, as well as the
AOR and EAND dynamic. The sigmdids are in increasing order: Identity (l), Pi-
units(3), stair step-L(5), stair step-R(6), equality to zero (7) Div-unit (8)

48 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

Table 2
The attributes of the parse tree

Name Function of the attribute

DECL
TYPE-ARRAY
IDF-AFF
IDF-LEC
INT-CST
CALL-P
CALL-F
CALL-GEN
CALL-GEN

CALL-GEN

BINOP
UNOP

Name of the declared variable
Dimension of the array
Name of the variable to assign
Name of the variable to read
Value of the integer constant
Name of the procedure to call
Name of the function to call
AttrbO is the name of a pre-encoded solution
Attrbl is the name of a procedure
For reading an array
Attrb2 is the name of a procedure
For writing an array
Name of the binary operator
Name of the unary operatot

OR SBIAS 2 (SSIGMO 5 stair step-l (OR-))
AND SSIGMO 5 stair step-l (AND-)
NEG LR 1 (VAL-1 (NOT-))
INFEQ LR 1 (VAL-1 (SSIGMO 6 stair step-R (INFEQ-)))
SUPEQ LR2 (VAL-1 (SSIGMO 6 stair step-R (SUPEQ-)))
INF LR 1 (VAL-1 (SSIGMO 5 stair step-l (INF-)))
SUP LR 2 (VAL-1 (SSIGMO 5 stair step-l (SUP-)))
EQ LR 1 (VAL-1 (SSIGMO 7 equality to zero (EQ-)))
NEQ SEQ (JMP EQ) (JMP NEG)
PLUS SSIGMO 1 identity (PLUS-)
MOINS LR2 (VAL-1 (SSIGMO 1 identity (MOINS-)))
MULT SSIGMO 3 PI Unit (MULT-)
QUO SSIGMO 8 DII’ Unit (QUO-)
EOR SDYN 2 (AOR-)
EAND SDYN3 (EAND-)

Reading and writing in an array

We list the cellular codes of the two functions for reading and writing in a multi-
dimensional array. The function WRITE-INDEX needs three elementary pieces of
code that recursively call themselves. The function RED-INDEX needs two.

WRITE-INDEX SITE 1 (CUTLE 3 (CUT0 1 (MULTSIT (SEQ (ADL 1 (SITE0
(JMP CREAT-EQB)) (MRG-2 (SPLIT (JMP WRITE-INDEX-l)))) (SITE 0

(BLOC (PN-2)))))))
CREAT-EQB TAB (VAL-1 (SSIGMO 7 (EQB-)))

F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52 49

WRITE-INDEX-l BUN 3 (JMP WRITE-INDEX-2) (SEQ (SPLLIL 3 (SITE 0
(CUTRI 3 (ADL 2 (JMP CREAT-EQB) (SPLIT (JMP AND))))) (MRG-2 (SPLIT
(JMP WRITE-INDEX-l)))) (SITE 0 (BLOC (PN-2))))

WRITE-INDEX-2 BPN 2 (SITE 0 (JMP WRITE-INDEX-3)) (MRG 3 (MRG 2 (SEQ
(SPLIT (JMP WRITE-INDEX-2)) (SITE 0 (BLOC (PN-2))))))

WRITE-INDEX-3 SEQ (PAR (CUT 3 (LR 1 (VAL-1 (JMP EAND)))) (CUT 2 (JMP
EAND))) (JMP AOR)

READ-INDEX SITE 1 (CUTLE 3 (CUT0 1 (MULTSIT (SEQ (ADL 1 (SITE 0 (JMP
CREAT-EQB) (MRG-1 (SPLIT (JMP READ-INDEX-l)))) (BLOC (JMP READ-

INDEX-2))))))
READ-INDEX-l BUN2 (JMP X-EAND) (SPLLIL 3 (SITE 0 (CUTRI 3 (ADL 2

(JMP CREAT-EQB) (SPLIT (JMP AND))))) (MRG-1 (SPLIT (JMP READ-IN-

DEX-1))))
READ-INDEX-2 SPLIT (BPN 1 (JMP AOR) (SEQ (LR-1 (JMP X-MRG)) (SITE 0

(BLOC (PN-2)))))

Recursive macroprogram symbol for the manipulation of the environment

These are elementary codes that are used in many places in the cellular code
generated by the compiler. Theses code apply recursively the same operation to all the
environment and the neural trees.

X-MRG BLR 0 (MG (ADDLR-1 (JMP X-MRG))) (JMP READ-INDEX-2)
X-EAND SPLIT (BPN2 (JMP EAND) (MRG2 (SEQ (JMP X-EAND) (SITE 0

(BLOC (PN-2))))))
X-AOR SEQ (MRG 2 (MRG 1 (SPLIT (BPN 1 (JMP AOR) (JMP X-AOR))))) (SITE 0

(BLOC (PN-2)))
X-DYN SPLIT (BPN 1 (EVER 1 (SDYN 2)) (SEQ (MEG 1 (JMP X-DYN)) (SITE 0

(BLOC (PN-2)))))
X-SYNC IPAR 1 (VALO (EVERO)) (SITE0 (BLOC (DELSITO (SPLITN (EVER

1)))))
REPEAND SPLIT (BPN 2 (JMP EAND) (MRG 2 (JMP REPEAND)))
WHILEND SPLIT (BPN 1 (END) (MRG 1 (JMP WHILEND)))
READ-l BPN 3 (CUT 3 (LR 2 (VAL 0))) (SEQ (MRG 3 (SPLIT (JMP READ-l)))

(SITE0 (BLOC (PN-2))))
WRITE-l BPN 1 (END) (MRG 1 (SPLIT (JMP WRITE-l)))

Rules for rewriting nodes of the parse tree

There is one rules for each label of the PASCAL parse tree. The left member of each
rule is a label of the PASCAL parse tree, the right member is a cellular code.

IF SITE 1 (SPLLIL 1 (CPFO 1 (SITE 0 (DELSIT (RINS)))) (SEQ (SITE0 (SPLFI 2
CUT 2 (PAR (WAIT 2 (SITE 1 (JMP X-EAND))) (LR 1 NOT SZMPLZFZE (VAL-1

50 F. Gruau et al. / Theoretical Computer Science 141 (1995) 1-52

(SITE 1 (JMP X-EAND)))))) (CUT 1 (CPFO 1 (LINS))))) (BLOC (CUT0 1 (JMP

X-AOR)))))
THEN PAR (CUT 3 (BLOC (DELSIT (RINS)))) (CUT 2 (BLOC(DELSIT (LINS))))

REPEAT SITE 1 (CYC (SITE 0 (XSPL 1 (SITE 1 (JMP X-DYN)) (SPLF 1 (CPFO 1
(BLOC (DELSIT (RINS)))) (BLOC (MRG 2 (SITE 1 (SPLLIL 2 (CPFO (SITE 0

(DELSIT (LINS)))) (PAR (CUT0 1 (CUT0 1 (LR 1 (VAL-1 (SEQ (WAIT 2 (JMP

REPEAND)) (JMP X-SYNC)))))) (CHOP0 2 (SEQ (JMP X-EAND) (SITE0

(BLOC (END))))))))))))))
WHILE SITE 1 (CYC (SITE0 (XSPL 1 (SITE 1 (JMP X-DYN)) (BLOC (SITE 1

(SPLLIL 1 ((CPFO 1 (SITE 0 (DELSIT (LINS)))) (PAR (CUT0 2 (SPLFI 2 (CUT 2

(JMP X-EAND)) (SITE 0 (CUT 1 (BLCO (SEQ (CPFO 1 (RINS)) (BLCO (SITE 1

(CUT0 1 (SEQ (MRG 1 (WAIT (JMP (WHILEND))) (JMP X-SYNC)))))))))))
(CHOP0 2 (LR 1 (VAL-1 (SEQ (CUT2 (JMP X-EAND)) (SITE0

(BLOC (END))))))))))))))
PROGRAM IPAR 1 (START-) (SEQ (CPFO 1 (SWITCH 1 (LINS))) (BLOC (MRG 1

(CUT0 1))))
NO-LIST CUT0 1 (CUT 1)
DECL IPAR 2 (RINS) (PUTL 2 (BLOC (LINS)))

TYPE-ARRAY SEQ (CLONE ATTR (LINS) (BLOC (EVER 2 (PN)))
TYPE-SIMPLE VAR (LR 1 (VAL 0 (EVER 2)))
SEMICOL SPLFI 1 (CPFO 1 (LINS)) (BLOC (MRG 2 (RINS)))

ASSIGN SPLFIL 1 (CPFO 1 (RINS)) (BLOC (LINS))

IDF-AFF SWITCH attr (CUTL 1 (CUT 1 (CUT0 1)))

IDF-LEC CUT0 1 (CHOP attr (BPN 1 (END) (MRG 1 (PN-2))))

COMMA PAR (LINS) (RINS)
UNOP SEQ (CPFO 1 (LINS)) (CUT0 1 (JMP attr))
BINOP SEQ (CPFO 1 (PAR (LINS) (RINS))) (CUT0 1 (JMP ATTR))

INT-CST CHOP 2 (CUT0 1 (SBIAS ATTR (LR 1 (VALO (EVER 2)))))
CALL-F SPLFI GLOBAL (CPFOl (RINS)) (BLOC (JMP ATTR (CUT01

(CHOP 2 (LR 1 (VAL 0))))))
NO-PARAM KILL ()

FUNCTION ou RETURN LINS ()

CALL-P SPLLI LOCAL (CPFO 1 (SPLFI GLOBAL (CPFO 1 (RINS)) (BLOC
(JMP ATTR (END))))) (BLOC (MRG 1 (CUT0 1)))

PROCEDURE SEQ (CPFO 1 (LINS)) (BLOC (MRG 1 (CUTRI GLOBAL (CUT0 1))))
READ SPLFIL 1 (SPLF12 (CHOP ATTR) (MRG 3 (SITE 1 (MULTSIT (JMP

READ-l))))) (BLOC (RINS))
WRITE PAR (CHOP0 1 (SEQ (CPFO 1 (RINS)) (BLOC (JMP WRITE-l])))) (CUT

1 (CUT0 1))
#IF SEQ (CPFO 1 (PAR (CUT0 1) (RINS))) (BLOC (MRG 2 (LINS)))
#THEN BUN ATTR (CHOP 1 (MRG 1 (RINS))) (CHOP 1 (MRG 1 (LINS)))
CALLGEN SPLF12 (CPFO 1 (RINS)) (BLOC (JMP ATTR (CUT0 1 (CHOP2

(LR 1 (VAL 0))))))

F. Gruau et al. / Theoretical Computer Science I41 (1995) I-52 51

Library of functions for handling arrays

These functions enrich the array data structure, they are used to implement the
automatic parallelization of divide and conquer algorithms.

left CUTLE 3 (CUT0 1 (MRG 1 (CHHR 1 (PN-2))))
right CUTLE 3 (CUT0 1 (MRG 1 (CHHL 1 (PN-2))))
concat CUTLE 3 (CUT0 1 (MRG 2 (MRG 1 (PN-2))))
int-to-array CUTTLE 3 (CUT0 1 (PN-2))
array-to-h CUTLE 3 (CUT0 1 (MRG 1 (BPN 1 (END) (MRG 1 (PN-2)))))
randomize CUTLE 3 (CUT0 1 (JMP rand))
rand BPN 1 (LR 1 (VALO (RAND))) (SEQ (MRG 1 (SPLIT (JMP rand))) (PN-2))

Library of layered neural networks

The following cellular code correspond to neural networks that are included in the
PASCAL program anima1.p

retina CUTLE 3 (CUT0 1 (SEQ (MRG 1 (SPLIT)) (SEQ (CL0 10 (EVER 0)) (BLOC

(PN-2)))))
position-object CUTLE 3 (CUT0 1 (SEQ (SEQ (MRG 1 (CL0 2 (EVER 0))) (CL0 2
(EVER 0))) (EVER 0)))
predator CUTLE 3 (CUT0 1 (SEQ (SEQ (MRG 1 (CL0 3 (EVERO))) (CL0 3
(EVER 0))) (EVER 0)))
motor CUTLE 3 (CUT0 1 (SEQ (EVER 0) (SEQ (CL0 2 (EVER 0)) (SEQ (CL0 4

(EVER 0)) (PN-2)))))

Acknowledgment

This work was supported by the Centre d’Ctudes nucltaire de Grenoble, the
European community within the working group ASMICS, and the NFS grant
IRI-9312748. Michel Cosnard gave us the idea to compile a language like PASCAL.
Without his advice, instead of PASCAL, we would have compiled a poor language
without variables. We are thankful to Pierre Peretto and Michel Cosnard for their
many encouragements. The introduction is inspired of a report on Gruau’s Ph.D.
thesis from Maurice Nivat. We thank Pascal Koiran and Hava Siegelmann for their
helpful comments about this paper.

References

[II MC Cullochs and W.S. Pits, A logical calculus of the ideas immanent in nervous activity, Bulk Math.
Biophy. 5 (1943) 115-133

52 F. Gruau et al. / Theoretical Computer Science 141 (1995) I-52

[2] J. Gauidopt and L Boc. Advanced Topics in Dataflow Computing (Prentice-Hall, Englewood Cliffs, NJ,
1991).

[3] F. Gruau, Cellular encoding of genetic neural network, Research report 92.21, Laboratorie de
1’Informatique du Parallblisme, Ecole Normale Sup&ieure de Lyon, 1992.

[4] F. Gruau, Genetic synthesis of boolean neural networks with a cell rewriting developmental process,
in: D. Schaffer and D. Whitley, eds., Combination of Genetic Algorithms and Neural Networks (IEEE
Computer Sot. Press, Silver Spring, MD, 1992).

[S] F. Gruau, Process of translation and conception of neural networks based on a logical description of
the target problem, Patent EN 93 158 92, 30 December 1993.

[6] F. Gruau, Neural network synthesis using cellular encoding and the genetic algorithm, Ph.D. Thesis,
Ecole Normale Sup&ieure de Lyon, 1994. anonymous ftp: lip.ens-lyon.fr (140.77.1.11) directory
pub/Rapports/Ph.D. file PhD94-01-E.ps.2 (english) PhD94-01-F.Ps.Z (french).

[7] F. Gruau and D. Whitley, Adding learning to the cellular developmental process: a comparative
study, Evolutionary Computation VIN3, 1993.

[8] S.C. Kleene, Representation of events in nerve nets, in: Shannon and MC Carthy, eds., Automata
Studies (Princeton University press, Princeton, NJ, 1956). 3-40.

[9] A. Linden and C. Tie@ Combining multiple neural network paradigm and application using sesame,
in: Internat. Joint ConJ on Neural Networks (IEEE Computer Sot. Press, Silver Spring, MD, 1992).

[lo] M. Minsky and S. Pappert, Perceptrons: An Introduction to Computational Geometry (MIT Press,
Cambridge, England, 1969).

[l l] F. Rosenblatt, A probabilistic model for information storage and organization in the brain, Psych.
Rev. 62 (1958) 386-407.

Cl23 H. Siegelmann, Neural programming language, in: Co@ of the American Association for Artificial
Intelligence (1994).

[13] H. Siegelmann and E. Sontag, Turing computability with neural networks, Appl. Math. L&t. 4 (6)

(1991) 77-80.
[14] H. Siegelmann and E. Sontag, On the computational power of neural networks, in: ACM Workshop

on Computational Learning, Pittsburg (1992) 440-449.
[15] A. Veen, Data flow machine architecture, ACM Comput. Surveys 18 (04) (1986) 365-396.
[16] A.H. Veen and R. Born, Computing C for the ddtn data-flow computer, in: J.L. Gaudiot and L. Bit,

eds., Advances Topics in Data-Flow Computing (Prentice-Hall, Englewood Cliffs, NJ, 1991).
[17] H. Zima, P. Brezany, B. Chapman and J. Hulman, Automatic parallelization for distributed memory

system, in: European Informatics Congress Sysem Architecture (1993).

