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The importance of Lyapunov functions is well known. In the general setting of nonau-
tonomous linear delay equations v ′ = L(t)vt , we show how to characterize completely
the existence of a nonuniform exponential contraction or of a nonuniform exponential di-
chotomy in terms of Lyapunov functions. This includes uniform exponential behavior as
a very special case, and it provides an alternative (usually simpler and particularly more
direct) approach to verify the existence of exponential behavior or to obtain the robustness
of the dynamics under sufficiently small perturbations.
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1. Introduction

We consider a linear delay equation

v ′ = L(t)vt . (1)

Let T (t, s) be the associated evolution operator (see Section 2). Eq. (1) is said to admit a nonuniform exponential contraction
if there exist constants a < 0, D > 0 and ε � 0 such that

∥∥T (t, s)
∥∥ � Dea(t−s)+ε|s|, t � s. (2)

The more general notion of nonuniform exponential dichotomy corresponds to the existence of nonuniform exponential be-
havior along stable and unstable directions. Using the so-called Lyapunov regularity theory, we can show that the nonuniform
exponential behavior is very common when compared to what happens in the uniform setting. Essentially, the existence
of nonzero Lyapunov exponents leads to a nonuniform exponential behavior. We refer to the books [1,4] for detailed dis-
cussions. We also refer to the book [10] for a discussion of the geometric theory in the infinite-dimensional setting, with
emphasis on delay differential equations (see also Section 7.5 for a discussion of the consequences of nonuniform hyperbol-
icity).

Our objective in this note is to characterize the existence of a nonuniform exponential contraction or of a nonuniform ex-
ponential dichotomy in terms of Lyapunov functions. The importance of Lyapunov functions is well established, particularly
in the study of the stability of solutions of differential equations, both in the finite- and in the infinite-dimensional settings.
It goes back to the seminal work of Lyapunov in his 1892 thesis, republished most recently in [13]. Among the first accounts
of the theory are the books by LaSalle and Lefschetz [12], Hahn [9], and Bhatia and Szegö [7]. Unfortunately, there exists
no general method to construct explicitly Lyapunov functions for a given dynamics. On the other hand, to know that there
exists a Lyapunov function may be quite helpful for the stability theory. Our work can be partly seen as a development
of somewhat related approaches in the books by Dalec’kiı̆ and Kreı̆n [8] and Massera and Schäffer [14], which go back to
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Lyapunov in the finite-dimensional setting, although they only consider the case of uniform exponential behavior. We refer
to the book by Mitropolsky, Samoilenko and Kulik [15] for a detailed study of Lyapunov functions in the particular case of
uniform exponential dichotomies for ordinary differential equations.

2. Setup

Given r � 0 (the delay), we consider the Banach space C = C([−r,0],R
n) of continuous functions φ : [−r,0] → R

n with
the norm

‖φ‖ = sup
{∥∥φ(θ)

∥∥: −r � θ � 0
}
.

Given linear operators L(t) : C → R
n for t ∈ R such that (t, v) �→ L(t)v is continuous, we consider Eq. (1), where v ′ denotes

the right-hand derivative and where vt(θ) = v(t + θ), θ ∈ [−r,0]. We assume that there exists κ > 0 such that

t+r∫
t

∥∥L(τ )
∥∥dτ � κ

(
1 + |t|) (3)

for any t ∈ R. Then for each (s, φ) ∈ R × C there is a unique solution vt(·, s, φ), t � s of Eq. (1) with vs(·, s, φ) = φ (see for
example [11]). We define the evolution operator T (t, s) : C → C for t � s by

T (t, s)φ = vt(·, s, φ).

It is sometimes necessary to extend the domain of T (t, s) to a space that contains some discontinuous functions. For this
we write L(t) in the form

L(t)φ =
0∫

−r

dθ

[
η(t, θ)

]
φ(θ) (4)

for some n × n matrices η(t, θ) that are measurable in (t, θ) ∈ R × R and continuous from the left in θ . Now we set

mη(t) = Varη(t, ·),
where Var denotes the total variation in [−r,0]. We note that ‖L(t)‖ = mη(t). Now let Ĉ be the space of functions
φ : [−r,0] → R

n such that for each s ∈ [−r,0] there exist the limits

lim
θ→s−

φ(θ) and lim
θ→s+

φ(θ),

and φ is right-continuous at s, i.e., limθ→s+ φ(θ) = φ(s). We also consider the supremum norm in C . Each linear op-
erator L(t) can be extended to Ĉ using the integral in (4), provided that the Riemann–Stieltjes sums take the value
[η(t,b) − η(t,a)]φ(b−) for each subinterval [a,b] ⊂ [−r,0] (so that points at which both φ and η(t, ·) have disconti-
nuities cause no problem). Moreover, for each (s, φ) ∈ R × Ĉ there is a unique solution vt(·, s, φ) ∈ Ĉ for t � s with
vs(·, s, φ) = φ of the integral equation obtained from (1) (see [11] for a related discussion). The corresponding evolution
operator T̂ (t, s) : Ĉ → Ĉ is defined for t � s by

T̂ (t, s)φ = vt(·, s, φ).

We note that T̂ (t, s)|C = T (t, s) and T̂ (t, s)Ĉ ⊂ C for t � s + r.

3. Lyapunov functions and exponential contractions

We consider in this section the special case of exponential contractions. We recall that Eq. (1) is said to admit a nonuni-
form exponential contraction (in C ) if there exist constants a < 0, D > 0 and ε � 0 satisfying (2). It is shown in [2] that if
Eq. (1) admits a nonuniform exponential contraction in C , then there exists D̂ > 0 such that

∥∥T̂ (t, s)
∥∥ � D̂ea(t−s)+(ε+κ)|s|, t � s,

with κ as in (3). This shows that Eq. (1) admits a nonuniform exponential contraction in C if and only if it admits a
nonuniform exponential contraction in Ĉ . Thus, in the case of (linear) contractions, it is sufficient to consider the space C .

We give several examples of nonuniform exponential contractions, starting with the simpler case of ordinary differential
equations.
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Example 1. We first recall that any linear ordinary differential equation v ′ = A(t)v in R
n , where the n × n matrix A(t)

varies continuously with t ∈ R, can be seen as a linear delay equation. Namely, defining linear operators L(t) : C → R
n by

L(t)φ = A(t)φ(0), Eq. (2) becomes

v ′ = L(t)vt = A(t)vt(0) = A(t)v.

Now we consider the scalar equation

v ′ = (−ω − at sin t)v, (5)

where ω > a > 0 are real parameters. It is easy to verify that each solution v(t) of (5) satisfies

v(t) = e−ωt+ωs+at cos t−as cos s−a sin t+a sin s v(s) (6)

for any t, s ∈ R. Writing (6) in the form

v(t) = e(−ω+a)(t−s)+at(cos t−1)−as(cos s−1)+a(sin s−sin t)v(s) (7)

for t, s � 0 we obtain∣∣v(t)
∣∣ � e2ae(−ω+a)(t−s)+2as

∣∣v(s)
∣∣. (8)

For t � 0 and s � 0 it also follows from (7) that∣∣v(t)
∣∣ � e2ae(−ω+a)(t−s)

∣∣v(s)
∣∣, (9)

and finally, for s � t � 0 we obtain∣∣v(t)
∣∣ � e2ae(−ω+a)(t−s)+2a|t|∣∣v(s)

∣∣ � e2ae(−ω+a)(t−s)+2a|s|∣∣v(s)
∣∣. (10)

It follows from (8), (9), and (10) that∣∣v(t)
∣∣ � e2ae(−ω+a)(t−s)+2a|s|∣∣v(s)

∣∣
for every t � s, and thus Eq. (5) admits a nonuniform exponential contraction. Moreover, setting t = 2kπ and s = (2l − 1)π
with k, l ∈ N we obtain

v(t) = e(−ω+a)(t−s)+2as v(s).

This shows that the contraction is not uniform, in the sense that the constant ε in (2) cannot be taken equal to zero.
It is also easy to show that the nonuniform exponential contraction for Eq. (5) induces a nonuniform exponential con-

traction for Eq. (1), in the norm of C . Indeed,

‖T (t, s)vs‖
‖vs‖ = sup{|(T (t, s)vs)(θ)|: θ ∈ [−r,0]}

sup{|vs(θ)|: θ ∈ [−r,0]} = sup{|v(t + θ)|: θ ∈ [−r,0]}
sup{|v(s + θ)|: θ ∈ [−r,0]} ,

and since∣∣v(t + θ)
∣∣ � e2ae(−ω+a)(t−s)+2a|s+θ |∣∣v(s + θ)

∣∣,
we obtain

‖T (t, s)vs‖
‖vs‖ � e2ae(−ω+a)(t−s)+2a|s|+2ar .

Hence,∥∥T (t, s)
∥∥ � e2a(1+r)e(−ω+a)(t−s)+2a|s|, t � s.

The following is an example of nonuniform exponential contraction given by a delay equation which is not an ordinary
differential equation.

Example 2. We consider the linear delay equation

v ′ = (−ω − at sin t)v + δe−2a|t|L(t)vt (11)

with ω > a > 0 and δ > 0, for any linear operators L(t) : C → R such that supt∈R ‖L(t)‖ < ∞. One can use the variation-of-
constants formula to show that given ω and a, for any sufficiently small δ > 0 Eq. (11) admits a nonuniform exponential
contraction. More precisely, if T̃ (t, s) is the evolution operator associated to Eq. (11), then∥∥T̃ (t, s)

∥∥ � e2ae(−ω+a+δe2a)(t−s)+2a|s|

for every t � s. We refer to [3] for a related discussion.
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We also present examples of other nature.

Example 3. We consider the scalar delay equation

v ′ = av + bv(t − τ ) (12)

for some constants a,b ∈ R and τ > 0. We assume that all roots in C of the characteristic equation

λ = a + be−τλ (13)

have negative real part. Then it follows from the theory of representation of solutions of Eq. (12) by series of exponentials eλt

with λ a root of (13) (see for example [6]) that Eq. (12) admits a nonuniform exponential contraction. We note that it is a
uniform exponential contraction.

To obtain further nonuniform exponential contractions, which need not be uniform, one can use combinations of the
above constructions.

Example 4. Given constants a,b ∈ R and τ > 0, we assume that all roots in C of the characteristic equation (13) have
negative real part, and we consider the delay equation

v ′ = av + bv(t − τ ) + δe−ε|t|L(t)vt (14)

for some constants δ, ε � 0 and some linear operators L(t) : C → R such that supt∈R ‖L(t)‖ < ∞. Then, for each ε, provided
that δ is sufficiently small Eq. (14) admits a nonuniform exponential contraction.

Example 5. We also consider the equation

v ′ = (−ω − at sin t)v,

w ′ = aw + bw(t − τ ) (15)

for some constants ω > a > 0, with the same hypothesis on the roots of the characteristic equation (13) as in Example 3.
Then Eq. (15) admits a nonuniform exponential contraction that is not uniform.

Now we introduce the notion of Lyapunov function. Consider a continuous function V : R × C → R
−
0 , and assume that

there exist γ > 0 and δ � 0 such that

‖x‖ �
∣∣V (t, x)

∣∣ � eδ|t|

γ
‖x‖ (16)

for every t ∈ R and x ∈ C . We say that V is a strict Lyapunov function for Eq. (1) if there exists θ ∈ (0,1) such that
∣∣V

(
t, T (t, s)x

)∣∣ � θ t−s
∣∣V (s, x)

∣∣ (17)

for every t � s and x ∈ C .
The following result gives an optimal characterization of nonuniform exponential contractions in terms of the existence

of strict Lyapunov functions.

Theorem 1. The following properties are equivalent:

1. Eq. (1) admits a nonuniform exponential contraction;
2. there is a strict Lyapunov function for Eq. (1).

Proof. We follow the proof of Theorem 4 in [5]. We first assume that V is a strict Lyapunov function for Eq. (1). By (16)
and (17), for every t � s and x ∈ C we have

∥∥T (t, s)x
∥∥ �

∣∣V
(
t, T (t, s)x

)∣∣ � θ t−s
∣∣V (s, x)

∣∣ � eδ|s|

γ
θ t−s‖x‖.

Therefore, Eq. (1) admits a nonuniform exponential contraction with a = log θ , ε = δ and D = 1/γ . Now we assume that
Eq. (1) admits a nonuniform exponential contraction, and we construct explicitly a strict Lyapunov function. For each t ∈ R

and x ∈ C set

V (t, x) = − sup
{∥∥T (τ , t)x

∥∥e−a(τ−t): τ � t
}
. (18)
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It follows from (2) that∣∣V (t, x)
∣∣ = sup

{∥∥T (τ , t)x
∥∥e−a(τ−t): τ � t

}
� Deε|t|‖x‖,

and setting t = τ we obtain |V (t, x)| � ‖x‖. This establishes (16) with δ = ε and γ = 1/D . Moreover, for each t � s we have∣∣V
(
t, T (t, s)x

)∣∣ = sup
{∥∥T (τ , t)T (t, s)x

∥∥e−a(τ−t): τ � t
}

= ea(t−s) sup
{∥∥T (τ , s)x

∥∥e−a(τ−s): τ � t
}

� ea(t−s) sup
{∥∥T (τ , s)x

∥∥e−a(τ−s): τ � s
}

= ea(t−s)
∣∣V (s, x)

∣∣
and (17) holds with θ = ea < 1. This completes the proof. �

For each nonuniform exponential contraction, the proof of Theorem 1 can be readily used to construct explicitly a strict
Lyapunov function. Namely, a strict Lyapunov function is given by (18). We illustrate this with Example 1.

Example 6. For Eq. (5), using the explicit formula for the evolution operator in (7), a strict Lyapunov function V : R×C → R
−
0

is given by

V (t, vt) = − sup
{∥∥T (τ , t)vt

∥∥e(ω−a)(τ−t): τ � t
}

= − sup
{∣∣v(τ + θ)

∣∣e(ω−a)(τ−t): τ � t, θ ∈ [−r,0]}
= − sup

{
b(τ , t, θ)vt(θ): τ � t, θ ∈ [−r,0]},

where

b(τ , t, θ) = ea(τ+θ)[cos(τ+θ)−1]−a(t+θ)[cos(t+θ)−1]+a[sin(t+θ)−sin(τ+θ)]. (19)

We emphasize that this is not a Lyapunov function Ṽ : R × R → R
−
0 for the associated ordinary differential equation, but

instead a Lyapunov function for the delay equation in the whole space C .

In the case of differentiable Lyapunov functions we have an alternative characterization of the strictness property. Given
V : R × C → R

−
0 differentiable, let

V̇ (t, x) = d

dh
V

(
t + h, T (t + h, t)x

)
|h=0.

It is shown in [5] that if V (t, x) < 0 for every t ∈ R and x 
= 0, then V is a strict Lyapunov function for Eq. (1) if and only if

V̇ (t, x) � V (t, x) log θ, t ∈ R, x ∈ C .

4. Nonuniform exponential dichotomies

We consider in this section the case of exponential dichotomies, and we obtain a characterization of the dichotomies in
terms of Lyapunov functions. We say that Eq. (1) admits a nonuniform exponential dichotomy in Ĉ if there are projections
P (t) : Ĉ → Ĉ for t ∈ R and constants a < 0 < b, ε � 0 and D > 0 such that for every t, s ∈ R with t � s:

1. T (t, s)P (s) = P (t)T (t, s); (20)

2. setting Q (t) = Id−P (t), the map T (t, s)Q (s) : Q (s)Ĉ → Q (t)Ĉ is invertible;

3.
∥∥T (t, s)P (s)

∥∥ � Dea(t−s)+ε|s| (21)

and ∥∥T (t, s)−1 Q (t)
∥∥ � De−b(t−s)+ε|t|. (22)

The following are examples of nonuniform exponential dichotomies.

Example 7. Repeating arguments in Example 1 we can easily show that the equation

v ′ = (−ω − at sin t)v,

w ′ = (ω + at sin t)w (23)
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admits a nonuniform exponential dichotomy provided that ω > a > 0. Moreover, the dichotomy is not uniform, in the sense
that the constant ε in (21) and (22) cannot be taken equal to zero.

We also present a dichotomy version of Example 3.

Example 8. We consider the delay equation (12) for some constants a,b ∈ R and τ > 0. We assume that no root of the
characteristic equation (13) has real part equal to zero. Then Eq. (12) admits a nonuniform exponential dichotomy. We note
that it is a uniform exponential dichotomy.

In a similar manner to that for contractions one can also consider sufficiently small linear perturbations of nonuniform
exponential dichotomies (we refer to [3,4] for related discussions).

Given a function V : Ĉ → R we consider the cones

C u(V ) = {0} ∪ V −1(0,+∞) and C s(V ) = {0} ∪ V −1(−∞,0).

We say that a continuous function V : R × Ĉ → R is a strict Lyapunov function for Eq. (1) if:

1. setting Vτ = V (τ , ·), for each τ ∈ R there exist subspaces Eu
τ ⊂ C u(Vτ ) and Es

τ ⊂ C s(Vτ ) such that Ĉ = Eu
τ ⊕ Es

τ , and

T (t, τ )Eu
τ = Eu

t and T (t, τ )Es
τ = Es

t , t � τ ;
2. there exist γ > 0 and δ � 0 such that for every t ∈ R we have∣∣V (t, x)

∣∣ � γ eδ|t|‖x‖, x ∈ Ĉ , (24)

and
∣∣V (t, x)

∣∣ � 1

γ
e−δ|t|‖x‖, x ∈ Eu

t ∪ Es
t ; (25)

3. there exist θ ∈ (0,1) and μ > 1 with log θ + δ < 0 and logμ − δ > 0 such that for each τ ∈ R and x ∈ Ĉ we have

V
(
t, T (t, τ )x

)
� μt−τ V (τ , x), t � τ , x ∈ Eu

τ , (26)

and ∣∣V
(
t, T (t, τ )x

)∣∣ � θ t−τ
∣∣V (τ , x)

∣∣, t � τ , x ∈ Es
τ . (27)

We detail the consequences of the existence of a strict Lyapunov function.

Theorem 2. Assume that:

1. Eq. (1) has a strict Lyapunov function;
2. for each t � τ the operator T (t, τ )|Eu

τ is invertible from Eu
τ to Eu

t .

Then for every t, τ ∈ R with t � τ we have∥∥T (t, τ )
∣∣Es

τ

∥∥ � γ 2e(log θ+δ)(t−τ )+2δ|τ |,
and ∥∥T (t, τ )−1

∣∣Eu
t

∥∥ � γ 2e−(logμ−δ)(t−τ )+2δ|t|.

Proof. By (24), (25) and (27), for every x ∈ Es
τ and t � τ we have∥∥T (t, τ )x

∥∥ � γ eδ|t|θ t−τ
∣∣V (τ , x)

∣∣ � γ 2eδ|t|θ t−τ eδ|τ |‖x‖ � γ 2e(δ+log θ)(t−τ )e2δ|τ |‖x‖.
Similarly, it follows from (24), (25) and (26) that

∥∥T (t, τ )x
∥∥ � e−δ|t|

γ
μt−τ V (τ , x) � e−δ|t|

γ 2
μt−τ e−δ|τ |‖x‖ � 1

γ 2
e(logμ−δ)(t−τ )e−2δ|t|‖x‖

for every t � τ and x ∈ Eu
τ . Hence,∥∥T (t, τ )−1x

∥∥ � γ 2e−(logμ−δ)(t−τ )e2δ|t|‖x‖
for every t � τ and x ∈ Es

t . This completes the proof of the theorem. �
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We also give a criterion for the existence of nonuniform exponential dichotomies. We note that by the definition of strict
Lyapunov function, for each t ∈ R there exist projections

P (t) : Ĉ → Es
t and Q (t) : Ĉ → Eu

t

satisfying (20).

Theorem 3. If Eq. (1) has a strict Lyapunov function and there exist constants c,α > 0 such that

∥∥P (t)
∥∥,

∥∥Q (t)
∥∥ � ceα|t| for t ∈ R, (28)

then Eq. (1) admits a nonuniform exponential dichotomy.

Proof. Since

∥∥T (t, τ )P (τ )
∥∥ �

∥∥T (t, τ )
∣∣Es

τ

∥∥ · ∥∥P (τ )
∥∥,

and

∥∥T (t, τ )−1 Q (t)
∥∥ �

∥∥T (t, τ )−1
∣∣Eu

t

∥∥ · ∥∥Q (t)
∥∥,

it follows from Theorem 2 and (28) that Eq. (1) admits a nonuniform exponential dichotomy. �
The following example shows that condition (28) is unavoidable.

Example 9. We modify Eq. (23) in R
2 as follows. Given a C1 function β : R → (0,π/2) we consider the matrix

R(t) =
(

1 cosβ(t)

0 sinβ(t)

)
.

Since the entries of R(t) are bounded we have

sup
t∈R

∥∥R(t)
∥∥ < ∞. (29)

One can easily verify that if T̃ (t, τ ) is the evolution operator of Eq. (23) in R
2, then

U (t, τ ) = R(t)T̃ (t, τ )R(τ )−1 (30)

is the evolution operator of the equation x′ = B(t)x, where

B(t) = [
R ′(t) + R(t)A(t)

]
R(t)−1.

Now we set

Eu
t = R(t)

({0} × R
)

and Es
t = R(t)

({0} × R
)

for each t ∈ R. Since Eq. (23) admits a nonuniform exponential dichotomy, it follows from (29) and (30) that

∥∥U (t, τ )
∣∣Es

τ

∥∥ = ∥∥R(t)T̃ (t, τ )
∣∣(R × {0})∥∥ � D ′ea(t−τ )+ε|τ |,

and

∥∥U (t, τ )−1
∣∣Eu

t

∥∥ = ∥∥R(t)T̃ (t, τ )
∣∣(R × {0})∥∥ � D ′e−b(t−τ )+ε|t|

for every t � τ and some constant D ′ > 0. On the other hand, since the subspaces Eu
t and Es

t are generated respectively by
the vectors (cosβ(t), sin β(t)) and (1,0), we have β(t) = 
 (Es

t , Eu
t ), and hence,

∥∥P (t)
∥∥ = ∥∥Q (t)

∥∥ = 1

2 sin(β(t)/2)
.

Therefore, the norms of the projections P (t) and Q (t) can be made arbitrarily large by making β(t) arbitrarily small, and
in particular there exists a function β such that condition (28) fails. We note that even though the above construction was
carried out for an ordinary differential equation, a similar construction can be done in the space C .

Finally, we construct a strict Lyapunov function for each nonuniform exponential dichotomy.
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Theorem 4. If Eq. (1) admits a nonuniform exponential dichotomy with a + δ > 0 and b − δ > 0, then it has a strict Lyapunov function.

Proof. We follow arguments in the proof of Theorem 3 in [5]. For completeness we include the full details. For each t ∈ R

and x ∈ Ĉ , set

V (t, x) = −V s(t, y) + V u(t, z), (31)

with x = y + z, y ∈ F s
t = P (t)Ĉ , and z ∈ F u

t = Q (t)Ĉ , where

V s(t, y) = sup
{∥∥T (r, t)y

∥∥e−a(r−t): r � t
}
,

and

V u(t, z) = sup
{∥∥T (r, t)z

∥∥eb(t−r): r � t
}
.

By (21) with t = τ we have

∣∣V (t, x)
∣∣ � V s(t, y) + V u(t, z) � Deε|t|(‖y‖ + ‖z‖) � 2D2e2ε|t|‖x‖.

Moreover, if xτ ∈ F s
τ and t � τ , then since b > a, we obtain

∣∣V
(
t, T (t, τ )x

)∣∣ = V s(t, T (t, τ )y
) − V u(

t, T (t, τ )z
)

= sup
{∥∥T (r, t)T (t, τ )y

∥∥e−a(r−t): r � t
} − sup

{∥∥T (r, t)T (t, τ )z
∥∥eb(t−r): r � t

}
= ea(t−τ ) sup

{∥∥T (r, τ )y
∥∥e−a(r−τ ): r � t

} − eb(t−τ ) sup
{∥∥T (r, τ )z

∥∥eb(τ−r): r � t
}

� ea(t−τ )
(
sup

{∥∥T (r, τ )y
∥∥e−a(r−τ ): r � τ

} − sup
{∥∥T (r, τ )z

∥∥eb(τ−r): r � τ
})

= ea(t−τ )
∣∣V (τ , x)

∣∣,
and (27) holds with θ = ea . Similarly, if x ∈ F u

τ and t � τ , then

V
(
t, T (t, τ )x

) = −V s(t, T (t, τ )y
) + V u(

t, T (t, τ )z
)

= −ea(t−τ ) sup
{∥∥T (r, τ )y

∥∥e−a(r−τ ): r � t
} + eb(t−τ ) sup

{∥∥T (r, τ )z
∥∥eb(τ−r): r � t

}
� −ea(t−τ ) sup

{∥∥T (r, τ )y
∥∥e−a(r−τ ): r � τ

} + eb(t−τ ) sup
{∥∥T (r, τ )z

∥∥eb(τ−r): r � τ
}

� eb(t−τ )
(− sup

{∥∥T (r, τ )y
∥∥e−a(r−τ ): r � τ

} + sup
{∥∥T (r, τ )z

∥∥eb(τ−r): r � τ
})

= eb(t−τ )V (τ , x),

and (26) holds with μ = eb .
Now we establish (25) with δ = 0. If x ∈ F s

τ , then

∣∣V (τ , x)
∣∣ �

∣∣V (τ , x)
∣∣ − ∣∣V

(
τ + 1, T (τ + 1, τ )x

)∣∣
= V s(τ , y) − V s(τ + 1, T (τ + 1, τ )y

) − V u(τ , z) + V u(
τ + 1, T (τ + 1, τ )z

)
. (32)

Moreover,

V s(τ , y) − V s(τ + 1, T (τ + 1, τ )y
) = sup

{∥∥T (r, τ )y
∥∥e−a(r−τ ): r � τ

} − ea sup
{∥∥T (r, τ )y

∥∥e−a(r−τ ): r � τ + 1
}

�
(
1 − ea) sup

{∥∥T (r, τ )y
∥∥e−a(r−τ ): r � τ

}
�

(
1 − ea)‖y‖,

and

−V u(τ , z) + V u(
τ + 1, T (τ + 1, τ )z

) = eb sup
{∥∥T (r, τ )z

∥∥eb(τ−r): r � τ + 1
} − sup

{∥∥T (r, τ )z
∥∥eb(τ−r): r � τ

}
�

(
eb − 1

)
sup

{∥∥T (r, τ )z
∥∥eb(τ−r): r � τ

}
�

(
eb − 1

)‖z‖.
Setting η = min{1 − ea, eb − 1}, it follows from (32) that

∣∣V (τ , x)
∣∣ � η

(‖y‖ + ‖z‖) � η‖x‖.
Similarly, if x ∈ F u

τ , then
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V (τ , x) � V (τ , x) − V
(
τ − 1, T (τ − 1, τ )x

)
= −V s(τ , y) + V s(τ − 1, T (τ − 1, τ )y

) + V u(τ , z) − V u(
τ − 1, T (τ − 1, τ )z

)
. (33)

Also,

−V s(τ , y) + V s(τ − 1, T (τ − 1, τ )y
)

= − sup
{∥∥T (r, τ )y

∥∥e−a(r−τ ): r � τ
} + e−a sup

{∥∥T (r, τ )y
∥∥e−a(r−τ ): r � τ − 1

}
�

(
e−a − 1

)
sup

{∥∥T (r, τ )y
∥∥e−a(r−τ ): r � τ

}
�

(
e−a − 1

)‖y‖,
and

V u(τ , z) − V u(
τ − 1, T (τ − 1, τ )z

)
= sup

{∥∥T (r, τ )z
∥∥eb(τ−r): r � τ

} + e−b sup
{∥∥T (r, τ )z

∥∥eb(τ−r): r � τ − 1
}

�
(
1 − e−b) sup

{∥∥T (r, τ )z
∥∥eb(τ−r): r � τ

}
�

(
1 − e−eb)‖z‖.

Setting η′ = min{e−a − 1,1 − e−b}, it follows from (33) that

V (τ , x) � η′(‖y‖ + ‖z‖) � η′‖x‖.
This completes the proof of the theorem. �

We can use the construction in the proof of Theorem 4 to provide an explicit strict Lyapunov function for any nonuniform
exponential dichotomy. We illustrate this with Example 7.

Example 10. We use the formula in (31) to construct explicitly a strict Lyapunov function for Eq. (23). Namely, writing
x = (v, w) we take

V (t, x) = −V s(t, v) + V u(t, w),

where

V s(t, v) = sup
{

b(τ , t, θ)v(θ): τ � t, θ ∈ [−r,0]},
and

V u(t, w) = sup
{

w(θ)/b(τ , t, θ): τ � t, θ ∈ [−r,0]},
with b(τ , t, θ) as in (19).
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