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Abstract
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379] introduced the notion of quasi-projection onto the range of a linear transformation from one inner
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product space. As an application, we design a new family of iso-spectral flows on the space of symmetric
matrices that preserves zero patterns. We discuss the equilibrium points of these flows. We conjecture that
these flows generically converge to diagonal matrices. We perform some numerical experiments with these
flows which support this conjecture. We also compare our zero-preserving flows with the Toda flow.
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1. Introduction

Let � be a set of pairs (i, j) of integers between 1 and n which satisfies the following conditions:
(1) for i = 1, 2, . . . , n, the diagonal pair (i, i) is in �, and (2) if the pair (i, j) is in � then so is
the symmetric pair (j, i). We regard � as a (symmetric) sparsity pattern of interest of nonzero
entries for matrices. In particular, let Sym(n) denote the vector space of symmetric, n × n, real
matrices and let Sym(�) denote the subspace of Sym(n) consisting of the symmetric matrices
which are zero outside the pattern �; in symbols,

Sym(�) :={X ∈ Sym(n) : X(i, j) /= 0 implies (i, j) ∈ �}.
In this paper we consider the following task: Find flows in the space Sym(�) which preserve

eigenvalues and converge to diagonal matrices. We can describe this task more precisely as
follows: With an n × n symmetric matrix A, we associate the iso-spectral surface, Iso(A), of all
symmetric matrices which have the same eigenvalues as A. By the spectral theorem, we have

Iso(A) :={QAQT : Q ∈ O(n)},
where O(n) denotes the group of orthogonal matrices.

We shall use the Frobenius inner product on matrices; recall that it is defined by 〈X, Y 〉 :=
Trace(XYT). With a symmetric matrix D, we associate a real-valued ‘objective’ function

f :=Sym(n) → R : X �→ (1/2)〈X − D, X − D〉.
Note that f is a measure of the distance from X to D. We shall consider the following constrained
optimization problem:

Problem 1. Given A ∈ Sym(�), minimize f (X) subject to the constraints X ∈ Iso(A) and X ∈
Sym(�).

In particular, we shall describe a flow on the surface Iso(A) ∩ Sym(�) which solves this
problem in the sense that it usually converges to a local minimum.

Here is a summary of the contents of this paper.
In the next section, we present some theoretical background material. Driessel [7] introduced

the notion of quasi-projection onto the range of a linear transformation from one inner product
space to another. In this section we introduce the notion of quasi-projection onto the intersection
of the ranges of two linear transformations A and B from two inner product spaces into a third
inner product space. We use the notation !(A, B) to denote our quasi-projection operator. We
show that !(A, B) = 2A(A + B)+B where the superscript + denotes the Moore–Penrose pseudo
inverse operation.

Remark. If A and B are invertible then

!(A, B) = 2A(A + B)−1B = 2(A−1 + B−1)−1.

This operator is called the “harmonic mean” of the operators A and B. See, for example, Kubo
and Ando [11]. (Chandler Davis pointed out this reference to us.) They use the infix notation
A!B to denote the harmonic mean of A and B where A and B are positive operators on a Hilbert
space. Anderson and Duffin [1] define the “parallel sum” of semi-definite matrices A and B by the
formula A(A + B)+B and denote it by A : B. Most of the results in Section 2 appear in Anderson
and Duffin [1], Anderson [2], Anderson and Schreiber [3], Anderson and Trapp [4]; we included
our proofs in the interest of keeping the paper self-contained.
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In Section 3, we describe an application of the quasi-projection method. In particular, we
describe how we used this method to design a new flow corresponding to the optimization problem
described above. We conjecture that this flow generically converges to a symmetric matrix E that
commutes with D. Note that if we choose D to be a diagonal matrix with distinct diagonal entries
then E commutes with D iff E is a diagonal matrix. (For background material on differential
equations see, for example, Hirsch et al. [10].)

In Section 4, which is entitled “Numerical results”, we describe our implementation of our
iso-spectral zero-preserving flow in Matlab. We also describe several numerical experiments that
we performed using this computer program.

In all our experiments this flow converges (sometimes slowly) to a diagonal matrix. Conse-
quently these experiments provide evidence for the conjecture described above. We do not claim
our program to be competitive with standard methods used to compute eigenvalues. But we hope
our ideas will lead eventually to practical, competitive methods for finding eigenvalues of some
classes of structured matrices.

This paper is a shortened version of Driessel and Gerisch [8]. In that paper, we show how
quasi-projections arise by simplifying standard projections, and we indicate our geometric view
of the Toda flow.

We want to sketch here the way we arrived at the quasi-projection equations. (For more detail
see the first appendix of the long version of this paper mentioned above.) Let U , V and W be
inner product spaces and let L : U → W and M : V → W be linear maps. Consider the following
least squares problem: Given c ∈ W , find u ∈ U and v ∈ V such that Lu = Mv and ĉ :=Lu is the
vector in Range.L ∩ Range.M which is closest to c. Using the method of Lagrange multipliers
leads to the following set of equations for u, v and λ (the Lagrange multiplier):

L∗Lu − L∗λ = L∗c, M∗Mv + M∗λ = M∗c, Lu = Mv.

If L and M are injective then we can rewrite these equations as follows:

w − Pλ = Pc, (P + Q)λ = (−P + Q)c,

where w :=Lu = Mv, P :=L(L∗L)−1L∗ and Q :=M(M∗M)−1M∗. Note that P and Q are
projections. If we replace P and Q by A :=LL∗ and B :=MM∗ we get the quasi-projection
equations:

w − Aλ = Ac, (A + B)λ = (−A + B)c,

which appear at the beginning of the next section. Driessel [7] introduced the idea of simply
dropping inverse maps like (L∗L)−1 and (M∗M)−1.

For another example of a structured iso-spectral flow see Fasino [9].

2. Quasi-projection onto the intersection of two subspaces

In this section we shall present some theoretical background material concerning quasi-pro-
jections. We shall apply this material in the next section. Let V be a finite-dimensional, real inner
product space. We use 〈x, y〉 to denote the inner product of two elements of V . Let A : V → V

and B : V → V be (self-adjoint) positive semi-definite linear operators on V . For any vector c

in V , consider the following system of linear equations for u and λ in V :

u − Aλ = Ac, (q1)

(A + B)λ = (B − A)c. (q2)

We call these equations the quasi-projection equations determined by A, B and c.
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Remark. In this section we usually assume that A and B are two positive semi-definite operators
on a finite-dimensional space. These assumptions simplify the analysis considerably. They will
be obviously satisfied in the application considered below. However, many of the results in this
section are true in more general settings.

Note that (q1) is equivalent to the following condition:

u = A(λ + c). (eq1)

Hence u is in the range of A. Also note that (q2) is equivalent to the following condition:

A(λ + c) = B(−λ + c). (eq2)

Hence u is also in the range of B. Thus we see that u is in the intersection of the range of A and
the range of B.

Remark. We sometimes use f.x or f x in place of f (x) to indicate function application. We also
use association to the left. For example, D(ω.A).I.K means evaluate ω at A to get a function,
differentiate this function, evaluate the result at I to get a linear function, and finally evaluate at
K . This notation is also used in Range.L and Kernel.L to denote range and kernel of an operator
L.

We shall use the following lemma repeatedly.

Lemma 1. If A and B are positive semi-definite operators then

Kernel(A + B) = Kernel.A ∩ Kernel.B,

Range(A + B) = Range.A + Range.B.

Proof. If Az = Bz = 0 then (A + B)z = 0. Now assume (A + B)z = 0. Then 0 = 〈z, (A +
B)z〉 = 〈z, Az〉 + 〈z, Bz〉. Since A and B are positive semi-definite, we get 0 = 〈z, Az〉 = 〈z, Bz〉
and hence 0 = Az = Bz. The second equation of this lemma is obtained from the first one by
taking orthogonal complements. �

The following proposition shows that the vector u is uniquely determined by the quasi-projec-
tion equations.

Proposition 1 (Uniqueness). Let A and B be positive semi-definite operators. For any c ∈ V,

if (u1, λ1) and (u2, λ2) are solutions of the quasi-projection equations (q1) and (q2) then u1 =
u2, Aλ1 = Aλ2 and Bλ1 = Bλ2.

Proof. Let u :=u1 − u2 and λ :=λ1 − λ2. Then we have u − Aλ = 0 and (A + B)λ = 0. By
Lemma 1 we get Aλ = Bλ = 0. Then u = Aλ = 0. �

The following proposition shows that solutions of the quasi-projection equations always exist.

Proposition 2 (Existence). Let A and B be positive semi-definite operators. For all c ∈ V, there
exist u and λ in V satisfying the quasi-projection equations (q1) and (q2).
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Proof. It clearly suffices to show that there is a λ in V such that (A + B)λ = (B − A)c. In
other words, we need to see that (B − A)c ∈ Range(A + B) = Range.A + Range.B. For this we
simply note (B − A)c = A(−c) + Bc ∈ Range.A + Range.B. �

Let !(A, B) : V → V denote the linear operator on V which maps a vector c to the
unique vector u which satisfies the following condition: There exists λ ∈ V , such that the
pair (u, λ) satisfies the quasi-projection equations (q1) and (q2). We call the vector u =
!(A, B).c the quasi-projection of c onto the intersection of Range.A and Range.B. Following
[1] we call !(A, B) the parallel sum of A and B (even though there is a difference of a factor
of 2).

For any linear map M between inner product spaces let M∗ denote the adjoint map which is
defined by the following condition: for all x in the domain of M and all y in the codomain of
M , 〈Mx, y〉 = 〈x, M∗y〉. The following proposition shows how quasi-projection behaves with
respect to congruence.

Proposition 3 (Congruence). LetM : V →V be any invertible linear map.ThenM(!(A, B))M∗ =
!(MAM∗, MBM∗).

Proof. The pair of equations (eq1) and (eq2) is equivalent to the following pair:

Mu = MAM∗(M∗)−1(c + λ),

MAM∗(M∗)−1(c + λ) = MBM∗(M∗)−1(c − λ).

Hence, for all c in V , we have

M(!(A, B))c = !(MAM∗, MBM∗)(M∗)−1c. �

Let U and V be inner product spaces and let L : U → V be a linear map. We use L+ to denote
the Moore–Penrose pseudo-inverse of L. (see, for example, [12]). We list the following properties
of the pseudo-inverse

L∗+ = L+∗, LL+L = L, L+LL+ = L+,

and note that LL+ is the projection of V onto Range.L and L+L is the projection of U onto
Range.L∗.

Lemma 2. Let A and B be positive semi-definite operators on an inner product space V. Then

A=A(A + B)(A + B)+ = A(A + B)+(A + B)

=(A + B)(A + B)+A = (A + B)+(A + B)A.

Proof. Note that P := (A + B)(A + B)+ = (A + B)+(A + B) is the projection of V onto the
range of A + B. In particular, by Lemma 1, for all x in the range of A, we have Px = x. Also
note that V = Range.A ⊕ Kernel.A since (Range.A)⊥ = Kernel.A∗ = Kernel.A.

Now consider any x ∈ V . Note that PAx = Ax because Ax is in the range of A which is a
subset of the range of A + B. Hence A = PA. Since A is self-adjoint we also have A = AP . �
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The following proposition is our main result concerning quasi-projections. We shall use it
below to design zero-preserving flows.

Proposition 4 (Quasi-projection formulas). Let A and B be positive semi-definite operators. Then
the quasi-projection operator is given by the following formulas:

!(A, B) = 2A(A + B)+B = 2B(A + B)+A.

Furthermore, the quasi-projection operator is positive semi-definite and

Range(!(A, B)) = Range.A ∩ Range.B,

Kernel(!(A, B)) = Kernel.A + Kernel.B.

Proof

Claim. !(A, B) = 2A(A + B)+B.

We take λ := (A + B)+(B − A)c. This λ satisfies the quasi-projection equation (q2). Substi-
tuting in equation (q1), we get u = !(A, B)c = (A(A + B)+(B − A) + A)c. Using Lemma 2,
we get A(A + B)+(B − A) + A = 2A(A + B)+B.

Claim. A(A + B)+B = A − A(A + B)+A.

Using Lemma 2 again yields A − A(A + B)+A = A(A + B)+(A + B) − A(A + B)+A =
A(A + B)+B.

Claim. The map A(A + B)+B is self-adjoint.

Use the previous claim and the fact that (A + B)+ = (A + B)∗+ = (A + B)+∗.

Claim. A(A + B)+B = B(A + B)+A.

Use the previous claim and (A(A + B)+B)∗ = B(A + B)+A.

Claim. Kernel(!(A, B)) = Kernel.A + Kernel.B.

By the formulas for the quasi-projection, we see that its kernel contains Kernel.A and Kernel.B
and hence Kernel.A + Kernel.B. We need to prove the other inclusion; in other words, we want
to see that the following statement is true:

∀z ∈ Kernel.(!(A, B)), ∃x, y ∈ V, z = x + y, Ax = 0, By = 0.

Consider any z satisfying 0 = !(A, B)z = 2A(A + B)+Bz. Take x := (A + B)+Bz. Note Ax =
0. Using Lemma 2 again we also have Bx = (A + B)x = (A + B)(A + B)+Bz = Bz. Hence
B(z − x) = 0. We can take y :=z − x.

Claim. Range(!(A, B)) = Range.A ∩ Range.B.

Take orthogonal complements of the previous claim.
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Claim. The map !(A, B) is positive semi-definite.

Note that the range of A + B is an invariant subspace of !(A, B). Clearly we only need to see
that the restriction of !(A, B) to this range is positive semi-definite. Consequently we assume
that V = Range(A + B). In this case we have !(A, B) = 2A(A + B)−1B = 2B(A + B)−1A.
We now view A and B as matrices. Since A + B is positive definite and A is self-adjoint, we
can simultaneously diagonalize these two matrices by a congruence. (See, for example, [5].)
In particular, there is an invertible matrix M and a diagonal matrix D :=diag(a2

1, . . . , a2
n) such

that M(A + B)M∗ = I and MAM∗ = D. We see from these equations that E :=MBM∗ is also
a diagonal matrix; in particular, E = diag(b2

1, . . . , b
2
n) where the b2

i are defined by a2
i + b2

i :=1.
Now we have (by the formula for the quasi-projection operator):

M(!(A, B))M∗ = 2MAM∗(M(A + B)M∗)−1MBM∗

= 2diag(a2
1b2

1, . . . , a
2
nb

2
n).

Thus M(!(A, B))M∗ is positive semi-definite and hence !(A, B) is positive semi-definite. �

3. An iso-spectral flow which preserves zeros

As above, let � ⊆ {1, 2, . . . , n} × {1, 2, . . . , n} be a set of pairs (i, j) of indices which satisfy
the following conditions for all i, j = 1, 2, . . . , n:

(i, i) ∈ �, (nz1)

(i, j) ∈ � implies (j, i) ∈ �. (nz2)

Recall that we are using Sym(n) to denote the vector space of symmetric n × n matrices and we
are using Sym(�) to denote the subspace of Sym(n) consisting of the symmetric matrices which
are zero outside of �. The set � of pairs of indices represents the nonzero pattern of interest. The
first condition on � implies that the diagonal matrices are a subspace of Sym(�). The second
condition simply says that the pattern � is symmetric. We want to consider some iso-spectral
flows on Sym(�).

We use [X, Y ] :=XY − YX to denote the commutator of two square matrices. Note that if X

is symmetric and K is skew-symmetric then [X, K] is symmetric. Furthermore, we use O(n) to
denote the orthogonal group. For a symmetric matrix X, let

ω.X :=O(n) → Sym(n) : Q �→ QXQT.

Then the image of ω.X is the iso-spectral surface, Iso(X), determined by X. We can regard ω.X

as a map from one manifold to another. In particular we can differentiate this map at the identity
I to obtain the following linear map:

D(ω.X).I = Tan.O(n).I → Tan.Sym(n).X : K �→ [K, X].
The space tangent to O(n) at the identity I may be identified with the skew-symmetric matrices;
in symbols,

Tan.O(n).I = Skew(n) :={K ∈ Rn×n : KT = −K}.
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(See, for example, Curtis [6].) Clearly we can also identify Tan.Sym(n).X with Sym(n). Hence,
we define a map l.X as a linear map from Skew(n) to Sym(n) by

l.X :=D(ω.X).I = Skew(n) → Sym(n) : K �→ [K, X].
It is not hard to prove that the space tangent to Iso(X) at X is the image of the linear map
D(ω.X).I ; in symbols,

Tan.Iso(X).X = {[K, X] : K ∈ Skew(n)}.
(For details see Warner [13, Chapter 3: Lie groups, Section: homogeneous manifolds].)

Recall that we are using the Frobenius inner product onn-by-nmatrices: 〈X, Y 〉 :=Trace(XY T).
We list a few properties of this inner product: 〈XY, Z〉 = 〈X, ZY T〉 = 〈Y, XTZ〉 and 〈[X, Y ], Z〉 =
〈X, [Z, Y T]〉 = 〈Y, [XT, Z]〉.

The adjoint (l.X)∗ of l.X is the following map:

(l.X)∗ = Sym(n) → Skew(n) : Y �→ [Y, X]
since, for every symmetric matrix Y and every skew-symmetric matrix K , 〈[K, X], Y 〉 =
〈K, [Y, X]〉. The composition of l.X with its adjoint is a “double bracket”:

(l.X)(l.X)∗ = Sym(n) → Sym(n) : Y �→ [[Y, X], X].
Note that for any Y ∈ Sym(n), we have that (l.X)(l.X)∗.Y is tangent to the iso-spectral surface
Iso(X) at X.

We shall also use the map m : Sym(n) → Sym(�) which is defined as follows: For any sym-
metric matrix Y , let m.Y denote the matrix defined by m.Y (i, j) :=Y (i, j) if (i, j) is in � and
m.Y (i, j) :=0 if (i, j) is not in �. Note that m is the orthogonal projection of Sym(n) onto
Sym(�). In particular, we have m = m∗ = m2.

We want to consider vector fields on Sym(�) which are iso-spectral. We can obtain such
vector fields by quasi-projection. Let v : Sym(n) → Sym(n) be any smooth map on Sym(n).
From v we can obtain an iso-spectral vector field on Sym(�) by quasi-projection as follows.
For any symmetric matrix X, let ρ.X :=!(A.X, B.X) be the quasi-projection map determined by
A.X := (l.X)(l.X)∗ and B.X :=m. Since these latter two linear maps are positive semi-definite,
the results of the last section apply here. We shall use those results without explicitly citing
particular propositions. In particular, note that for any symmetric matrix Y , the symmetric matrix
ρ.X.Y is in the intersection of the range of (l.X)(l.X)∗ and m; in symbols,

ρ.X.Y ∈ Tan.Iso(X).X ∩ Sym(�).

We have the following iso-spectral vector field on Sym(�):

Sym(�) → Sym(�) : X �→ ρ.X(v.X).

The corresponding differential equation is X′ = ρ.X(v.X). We can rewrite this differential equa-
tion as a differential (linear) algebraic equation as follows:

X′ = (l.X)(l.X)∗(λ + v.X),

(l.X)(l.X)∗(λ + v.X) = m(−λ + v.X).

Note that the second of these equations is a linear equation for the unknown symmetric matrix λ.
The vector field is determined by solving this second equation for λ and substituting the solution
into the first equation.
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Using the formulas for l.X and (l.X)∗, we get

(l.X)(l.X)∗(λ + v.X) = [[λ + v.X, X], X].
Substituting this simplification into the differential algebraic equation, we get

X′ = [[λ + v.X, X], X],
[[λ + v.X, X], X] = m(−λ + v.X).

We now turn our attention to a specific flow. This flow is determined by the optimization problem
(Problem 1) that we mentioned in the introduction. We shall see that we can solve this problem by
finding a vector field on Sym(�) associated with the objective function f which is iso-spectral. We
obtain X − D for the gradient of f at X, in symbols ∇f.X = X − D. We can get an iso-spectral
vector field by orthogonal projection of ∇f.X onto the intersection Tan.Iso(X).X ∩ Sym(�). We
prefer to quasi-project instead. We simply substitute the negative of the gradient into the formulas
given above. We get the following system:

X′ = [[λ + D, X], X], (de1)

[[λ + D, X], X] = −m(λ + X − D). (de2)

We call the flow generated by this system the quasi-projected gradient flow determined by the
objective function f . We summarize the properties of this flow in the following proposition.

Proposition 5. Let D be a symmetric matrix. Then the system (de1) and (de2) generating the
quasi-projected gradient flow has the following properties:

(i) The quasi-projected gradient flow preserves eigenvalues and the nonzero pattern of interest.
(ii) The function f (X) := (1/2)〈X − D, X − D〉 is non-increasing along solutions of this

system.

(iii) A point E ∈ Sym(�) is an equilibrium point of this system iff it satisfies the conditions

[λ + D, E] = 0, and (e1)

m(λ + E − D) = 0 (e2)

for some symmetric matrix λ.

(iv) If a matrix E ∈ Sym(�) commutes with D then E is an equilibrium point of this system.

Proof. (i) That this flow preserves eigenvalues and the nonzero pattern of interest is clear from the
discussion above. The vector field was chosen to have these properties. In particular, the vector
field preserves the nonzero pattern because X′ = −m(λ + X − D) has the nonzero pattern of
interest. Also the vector field preserves eigenvalues because X′ = [[λ + D, X], X] is tangent to
the iso-spectral surface Iso(X) at X.

(ii) Let X(t) be any solution of the differential equation. Then, since the quasi-projection
operator ρ.X =!((l.X)(l.X)∗, m) is positive semi-definite, we have

(f (X))′ =〈∇f.X, X′〉 = 〈∇f.X, ρ.X(−∇f.X)〉
=−〈∇f.X, ρ.X(∇f.X)〉 � 0.
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(iii) LetE ∈ Sym(�) satisfy conditions (e1) and (e2). Then clearly [[λ + D, E], E] = [0, E] =
0 and E is an equilibrium point of the system (de1), (de2). On the other hand, if E ∈ Sym(�)

is an equilibrium point then (de1) implies [[λ + D, E], E] = 0 and (de2) implies (e2). We then
also get

0 = 〈[[λ + D, E], E], λ + D〉 = 〈[λ + D, E], [λ + D, E]〉,
which implies (e1).

(iv) Take λ :=D − E. Then (e2) is trivially satisfied and for (e1) we have

[λ + D, E] = [2D − E, E] = 2[D, E] = 0. �

Remark. We should say a few words about convergence of this system. (We intend to discuss
convergence more fully in a future paper.) Note that the map ω.A is a smooth map from O(n)

onto Iso(A). Hence Iso(A) is compact since O(n) is compact. From part (i) of the proposition,
we then see that every solution starting in the iso-spectral surface Iso(A) remains in that surface
and is entire. (In particular,“blowup” is not possible.) Again using compactness, we see that every
such solution has ω-limit points. If the equilibrium points on the iso-spectral surface are isolated
(which we expect is usually true) then every solution that starts in the iso-spectral surface tends
to an equilibrium point.

Note that if D is a diagonal matrix with distinct diagonal entries and E is a symmetric matrix
then E commutes with D iff E is a diagonal matrix. It follows from part (iv) of the theorem
that diagonal E is an equilibrium point of the quasi-projected gradient flow determined by D. In
2001 we conjectured that diagonal matrices were the only equilibrium points of this flow. In 2005
Bryan Shader found a counterexample to that conjecture. Here is a counterexample.

Example. Let a and b be real non-zero parameters and consider the non-diagonal, symmetric
matrix

E :=
⎛
⎝

0 a 0
a 0 b

0 b 0

⎞
⎠ .

The matrix E has the distinct eigenvalues 0 and ±√
a2 + b2.

We set � as the non-zero pattern of E. We show, by suitably defining matrices D and λ, that E

is an equilibrium point of the quasi-projected gradient flow, i.e. satisfies conditions (e1) and (e2).
Let y and z be real parameters and take λ + D :=yE + zE2. This clearly gives [λ + D, E] = 0,

i.e. condition (e1) is satisfied. Furthermore,

m(λ + E − D)=m(λ + D + E − 2D) = m((y + 1)E + zE2) − 2D

=(y + 1)E + z · diag(E2) − 2D,

where

E2 =
⎛
⎝

a2 0 ab

0 a2 + b2 0
ab 0 b2

⎞
⎠ and diag(E2) =

⎛
⎝

a2 0 0
0 a2 + b2 0
0 0 b2

⎞
⎠ .

Now, by choosing y = −1 and defining D := 1
2z · diag(E2), we arrive at m(λ + E − D) = 0, i.e.

condition (e2) is satisfied. Furthermore, if z /= 0 and |a| /= |b| then D has the required distinct
diagonal entries.
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A numerical experiment shows that the equilibrium point E with a :=1 and b :=2 and z :=2
is not stable.

We now conjecture that if D is a diagonal matrix with distinct diagonal entries then diagonal
matrices are the only stable equilibrium points of the quasi-projected gradient flow determined
by D.

4. Numerical results

We have implemented the quasi-projected gradient flow in a Matlab program. This flow is
iso-spectral and preserves zeros as discussed in the previous section. In our implementation we
assume that Range((l.X)(l.X)∗ + m) = Sym(n). This is generic behavior for the set of symmetric
matrices with distinct eigenvalues as is shown in the following (long) remark.

Remark. A set S in a topological space T is called nowhere-dense if the interior of its closure
is empty. A set S ⊂ T is called generic if it is open and dense. Note that if S is closed then it is
nowhere-dense iff T \S is generic.

Let V be a (finite-dimensional) vector space over the reals R and f : V → R a real-valued
function on V . If f (x) is a polynomial in the components of x with respect to some basis for V

then f has this property for every choice of basis and we say that f is a polynomial function. In
the following we use the standard topology on V .

Proposition. Let f : V → R be a polynomial function. If f is not the zero polynomial then the
variety, Variety(f ) :={x ∈ V : f (x) = 0}, of f is nowhere-dense.

Proof. Note that the variety is closed. Suppose that the variety is not nowhere-dense. Then f

vanishes on an open subset of V . It follows that f is identically 0. �

Here is an application involving determinants. Consider the determinant function det : Rn×n →
R. The set {M ∈ Rn×n : det .M = 0} is nowhere-dense and closed. Hence the set of non-singular
n × n matrices is generic in the set of n × n matrices.

Let V and W be vector spaces and let f : V → W be a map. Then f is a polynomial map
if the components fi(x), i = 1, . . . , dim(W), with respect to some basis for W are polynomial
functions. Note that the composition of two polynomial maps is a polynomial map.

Above we introduced the assumption that the map (A.X + m) : Sym(n) → Sym(n) with
A.X = (l.X)(l.X)∗ = [[·, X], X] is invertible for given X ∈ Sym(n). Here we show that this
is generic behavior if X has distinct eigenvalues. Hence, consider the map A.X :=Sym(n) →
Lin(Sym(n) → Sym(n)) : X �→ (Y �→ [[Y, X], X]).

Proposition. The set {X ∈ Sym(n) : Range(A.X + m) = Sym(n)} is generic in Sym(n).

Proof. Consider the polynomial function Sym(n) → R defined by X �→ det(A.X + m). (Here
det is regarded as a real-valued function on the space of linear maps Lin(Sym(n) → Sym(n).)
Note that A and m are polynomial maps.) We show below that this function is not the zero function.
Then we have that {X ∈ Sym(n) : det(A.X + m) = 0} is nowhere-dense in Sym(n). Since this
set is also closed we have that
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{X ∈ Sym(n) : Range(A.X + m) = Sym(n)}
= Sym(n)\{X ∈ Sym(n) : det(A.X + m) = 0}

is generic. To complete the proof, we show that the function X �→ det(A.X + m) is not the
zero function. Take X = D :=diag(d1, . . . dn) where the di are distinct. Then A.D.Y (i, j) =
(di − dj )

2Y (i, j). Furthermore, the range of m includes the diagonal matrices. These properties
together show that Range(A.D + m) = Sym(n) and hence det(A.D + m) /= 0. This is the end
of our long remark concerning generic sets. �

We solve numerically for t > 0 the initial value problem for X(t) given by

X′ = g(X) :=2m((l.X)(l.X)∗ + m)−1(l.X)(l.X)∗.(D − X), X(0) = X0,

where X0 ∈ Sym(�) (� is defined by the nonzero pattern of X0 and kept constant) and D is the
diagonal matrix, D :=diag(1, 2, . . . , n). We refer to this flow as the Zero flow in the discussion
of the examples and in the figures below.

The assumption on the ranges of (l.X)(l.X)∗ and m guarantees the existence of the inverse in
the right-hand side of the differential equation. This assumption is not satisfied in general as the
following example demonstrates.

Example. Let X be the circulant matrix with −2 on the diagonal and 1 on the first sub- and
super-diagonal (and the corresponding corner entries). The pattern � is defined as the nonzero
pattern of X. Now let Y be any circulant matrix with nonzero pattern completely outside of �, i.e.
m.Y = 0. If n = 4 this is, for instance, achieved by selecting Y as the matrix with ones on second
sub- and super-diagonal. Since circulant matrices commute with each other, and by the choice of
the nonzero pattern of Y we have ((l.X)(l.X)∗ + m)Y = 0. Thus Y is a non-trivial element in the
kernel of the map and hence the inverse does not exist.

By construction of the flow, the matrix g(X(t)) ∈ Sym(�) for all t � 0 and when integrating
the differential equation we ignore all matrix elements outside the pattern � (these remain zero
for all t > 0). Therefore the dimension of our differential equation is reduced to the cardinality of
� which may be significant less than n2. (We have currently not taken into account the symmetry
of the matrices.) However, we remark that we obtain intermediate matrices, when evaluating
the expression for g(X(t)) from the right to the left, which can have nonzero entries outside of
�.

For the numerical solution of the initial value problem we employ Matlab’s explicit Runge–
Kutta method of order 4(5) (ode45) with absolute and relative tolerance requirement set to 10−13.
These very stringent accuracy requirements reflect the fact that we are currently interested in very
accurate solutions to the initial value problem and not (yet) in competitive numerical schemes for
the solution of sparse eigenvalue problems. Therefore, the cost of the numerical computations are
not considered in the following.

During the course of integration we monitor two characteristic quantities of the flow.

1. The relative departure of the matrix X(t) from the iso-spectral surface associated with the
initial matrix X0. In particular, we define

dev(t) := ‖ev(X0) − ev(X(t))‖
‖ev(X0)‖ ,
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where ev(X) is the vector of sorted eigenvalues of X. This quantity measures the quality of the
time integration and should be approximately constant in time and near the machine accuracy
(10−14).

2. The relative size of the off-diagonal elements of X(t) (with respect to X0). In particular, we
define

doff(t) := ‖X(t) − diag(X(t))‖F

‖X0 − diag(X0)‖F
,

where diag(X) is the matrix containing the diagonal part of X and ‖ · ‖F is the Frobenius
norm. This quantity measures the convergence of the flow to a diagonal steady state and
in conjunction with a constant value of dev(t) the convergence to the diagonal matrix with
elements corresponding to the eigenvalues of X0.

We compare the Zero flow with the “double-bracket (DB) flow”. That is, we also numerically
solve the initial value problem

X′ = h(X) :=[[D, X], X], X(0) = X0,

where X0 ∈ Sym(n) and D is the same diagonal matrix as above. This flow is also iso-spectral
and converges to a diagonal matrix steady state with the eigenvalues of X0 on the diagonal. (See
Driessel [7].) It does not preserve the zero pattern of the initial matrix X0 and considerable fill-in
can appear. The double-bracket flow coincides with the Toda flow if X0 is a tridiagonal matrix.

We consider three different kinds of initial data in the next three subsections.

4.1. Example 1

Here the initial value X0 is a symmetric, tridiagonal random matrix of dimension 6:

X0 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.87 1.23 0 0 0 0
1.23 1.67 0.62 0 0 0

0 0.62 0.25 1.17 0 0
0 0 1.17 0.79 1.87 0
0 0 0 1.87 1.92 1.63
0 0 0 0 1.63 1.8

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We note that the DB flow preserves the tridiagonal pattern but we do not exploit this fact in our
implementation.

We simulate the solution with this initial value until t = 60 for both flows. The maximum
value of dev(t) ≈ 7 × 10−14 for the Zero flow and ≈ 2 × 10−14 for the DB flow. This shows that
for both flows the eigenvalues of the initial matrix are preserved up to machine accuracy in the
numerical solution. In Fig. 1, we plot the monitored values of doff(t) for both flows. We observe
that both converge to zero and that this happens slightly faster for the DB flow initially but later
the Zero flow converges faster and reaches machine accuracy before the DB flow. The results of
this example show that for tridiagonal matrices the Toda flow is different than our zero flow.

4.2. Example 2

In this example the initial value X0 is a symmetric random matrix of dimension 10 with a
random zero pattern:
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Fig. 1. Convergence history of the off-diagonal elements of the solution of Example 1 for the Zero and the DB flow.
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Fig. 2. Convergence history of the off-diagonal elements of the solution of Example 2 for the Zero and the DB flow.

X0 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.7 0 0 0 0 0 1.92 0 0.48 1.25
0 1.16 1.16 0.91 1.56 0 0 1.69 0 0
0 1.16 0.48 0 0.90 0 0 0 0 0
0 0.91 0 0.66 0.88 0 0.93 1.25 0 1.39
0 1.56 0.9 0.88 0.3 0 0 0 0 0
0 0 0 0 0 0.94 1.49 0.37 0.88 0

1.92 0 0 0.93 0 1.49 1.12 0.67 0.4 0
0 1.69 0 1.25 0 0.37 0.67 1.1 0 1.54

0.48 0 0 0 0 0.88 0.4 0 0.44 1.05
1.25 0 0 1.39 0 0 0 1.54 1.05 1.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We simulate the solution with this initial value until t = 60 for both flows. The maximum value of
dev(t) ≈ 2 × 10−14 for the Zero flow and ≈ 6 × 10−15 for the DB flow. This shows that for both
flows the eigenvalues of the initial matrix are preserved up to machine accuracy in the numerical
solution. In Fig. 2, we plot the monitored values of doff(t) for both flows. We observe that both
converge to zero and that this happens slightly faster for the Zero flow.
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4.3. Example 3

In the third example we consider tridiagonal matrices which arise when one discretizes the
boundary value problem uxx = 0, u(0) = u(1) = 0 by standard second-order central differences.
Let Tn := tridiag(1, −2, 1) ∈ Sym(n) and T̃n := (n + 1)2Tn. Hence T̃n corresponds to the discreti-
zation matrix of the boundary value problem on an equidistant grid with grid width h :=1/(n + 1).
The eigenvalues of both, Tn and T̃n, are distinct and negative. We present results for the four cases
X0 = T5, T10, T̃5, and T̃10 in Fig. 3.

We run these experiments to different final times as can be seen in the plots. We note that
the values of dev(t) are in the range 10−15 to 10−13 for all values of t considered. Again this
demonstrates that the numerical solution does only insignificantly drift off the iso-spectral surface
associated with the initial matrix. Both the Zero flow and the DB flow converge to the diagonal
matrix containing the eigenvalues of the initial data. However, whereas the Zero flow does so
much faster than the DB flow for the matrices Tn, the situation is the opposite for the scaled
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Fig. 3. Convergence history of the off-diagonal elements of the solutions of Example 3 for the Zero and the DB flow for
initial conditions X0 = T5 (top left), X0 = T̃5 = 36T5 (top right), X0 = T10 (bottom left), and X0 = T̃10 = 121T10 (top
right).
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matrices T̃n. The change in the convergence speed of the DB flow for different initial matrices Tn

and T̃n is precisely explained by the following proposition.

Proposition 6. If X(t) is the solution of the double-bracket flow with initial value X0 then cX(ct)

is the solution of the double-bracket flow with initial value cX0, c > 0.

Proof. We can write h(cX) = [[D, cX], cX] = c2[[D, X], X] = c2h(X). This relation gives the
desired scaling result. �

We have not analyzed how scaling affects the Zero flow.
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