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a b s t r a c t

Mitochondrial dysfunction is often associated with aging and neurodegeneration. c-Jun-N-terminal
kinase (JNK) phosphorylation and its translocation to mitochondria increased as a function of age in
rat brain. This was associated with a decrease of pyruvate dehydrogenase (PDH) activity upon phos-
phorylation of the E1a subunit of PDH. Phosphorylation of PDH is likely mediated by PDH kinase, the
protein levels and activity of which increased with age. ATP levels were diminished, whereas lactic
acid levels increased, thus indicating a shift toward anaerobic glycolysis. The energy transduction
deficit due to impairment of PDH activity during aging may be associated with JNK signaling.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Aging is marked by a general decline of physiological functions,
including a pronounced effect on brain activities, such as neuro-
muscular coordination, cognitive performance, and environmental
awareness [1]. The decrease in these neurological activities during
normal brain aging has been found to be related to oxidative stress
[2], mitochondrial dysfunction [1] (mitochondria have become a
focal point of the free radical theory of aging [3]), and dysregula-
tion of cell redox signaling [4–6].

Within these notions, c-Jun-N-terminal kinase (JNK) – a stress-
activated protein kinase (SAPK) [7–10] and a member of the mito-
gen-activated protein kinase (MAPK) subfamily – is considered to
be a central signal transducer in neuronal death in the mammalian
brain [11] and, among others, functions as a signal transducer that
conveys cytosolic oxidative stress signals to mitochondria [12].
Oxidative stress-induced JNK activation entails the phosphoryla-
tion of its threonine and tyrosine residues at specific positions by
upstream JNK kinases (MAP kinase kinases, MKK). Three major iso-
forms of JNK have been identified: JNK1 and JNK2 are expressed
ubiquitously, whereas the expression of JNK3 appears to be limited
chemical Societies. Published by E
to the brain, heart, and testis [13,14]. These three JNK isoforms ex-
hibit differences in specificity toward substrates and binding pro-
teins and in their regulation by upstream kinases and scaffold
proteins [13,15]. The activation (phosphorylation) of JNK leads to
its translocation to the outer mitochondrial membrane, from
where it triggers a phosphorylation cascade affecting different
mitochondrial targets [12,16]. Activation of JNK pathways was also
shown to enhance neuronal cell death in cultured primary neurons
and, conversely, JNK knockout mouse models show protection
against excitotoxicity, MPTP, and hypoxia [17–20]. The activity of
JNK is significantly increased in the brains of patients with Parkin-
son’s or Alzheimer’s disease [21,22].

Mitochondria play a key role in brain aging, as these organelles
are (a) the sites of energy transduction, (b) major cellular sources
of oxidants, (c) targets for radical damaging effects, and (d) sources
of ‘redox’ signaling molecules and pro-apoptotic factors [23]. Pyru-
vate dehydrogenase plays a fundamental role in mitochondrial bio-
energetics, for this enzyme complex bridges the anaerobic and
aerobic brain energy metabolism, and it is the entry point of carbo-
hydrates into the tricarboxylic acid cycle in the form of acetyl-CoA
units. The activity of the pyruvate dehydrogenase complex is reg-
ulated at different levels, one of them being phosphorylation/
dephosphorylation: phosphorylation by specific pyruvate dehydro-
genase kinases (PDK) leads to inactivation of the complex, where
lsevier B.V. All rights reserved.
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dephosphorylation (catalyzed by a specific phosphatase) to its
reactivation. Previous work from this laboratory showed that
activation of JNK by H2O2 or anisomycin in primary cortical neu-
rons led to its translocation to mitochondria [12] and that the
mitochondrion-associated active JNK induced phosphorylation of
the pyruvate dehydrogenase and, thereby, its inhibition.

The goals of this study work are to assess (i) JNK activation in
brain as a function of age, (ii) the ensuing translocation to mito-
chondria, (iii) JNK-mediated modulation of mitochondrial bioener-
getics, and (iv) the physiological consequences inherent in these
processes.
2. Materials and methods

2.1. Materials

Antibodies against JNK1, JNK2, PDK-2 and COX were purchased
from Santa Cruz Biotech (Santa Cruz, CA). Antibodies against JNK3
and pJNK were from Upstate Biotechnology (Waltham, MA). Anti-
body against the PDH-E1a was from Mitoscience (Eugene, OR). All
other chemicals or reagents were obtained from Sigma–Aldrich
(St. Louis, MO).

2.2. Animals

Male Fisher 344 rats of different ages (6, 14, and 24 months)
were from the National Institute on Aging (Baltimore, MD). Each
rat was individually caged in the animal facility under standard
conditions (12 h light/12 h dark cycle, humidity at 50 ± 15%,
22 ± 2 �C, and 12 air changes/h) for 3 days to recover from the ship-
ment stress.

2.3. Isolation of rat brain mitochondria

Whole brain mitochondria were isolated from adult male Fisher
rats by differential centrifugation followed by discontinuous Per-
coll density-gradient centrifugation [24]. Brains were excised,
rinsed, and homogenized using a Dounce homogenizer in isolation
buffer (250 mM sucrose, 20 mM HEPES, 1 mM EDTA, 1 mM EGTA,
1 mM dithiothreitol, protease inhibitor (100 ll per brain), 0.5% bo-
vine serum albumin (BSA), pH 7.4). The homogenate was centri-
fuged at 1330�g (5 min) to remove nuclei and cell debris and the
resulting supernatant was centrifuged at 21200�g (10 min). The
pellet was resuspended in 15% Percoll and was centrifuged
21000�g for 10 min. The resulting loose pellet was layered onto
a preformed discontinuous Percoll gradient and centrifuged at
31000�g for 10 min. Mitochondrial fractions were collected and
washed twice with isolation buffer followed by washing in BSA-
free isolation buffer.

The purity of the mitochondrial fraction was assessed as previ-
ously described [12] by measuring markers of microsomal
(NADPH-cytochrome P450 reductase) and cytosolic (lactic dehy-
drogenase, b-actin) contamination. Activities of NADPH-cyto-
chrome P450 reductase and lactic dehydrogenase were negligible
when compared to those in the crude homogenate. b-Actin was ab-
sent in the mitochondrial fraction when assessed by immunoblot
analysis (shown in Fig. 2).

2.4. SDS–PAGE gel and immunoblot analysis

Mitochondria or total brain homogenate were lysed in RIPA buf-
fer containing Tris–HCl (50 mM), NP-40 (1%), sodium deoxycholate
(0.25%), NaCl (150 mM), EDTA (1 mM), pH 7.4. Samples (50 lg/well)
were denatured at 95 �C for 5 min; separated on 12% SDS–PAGE gels
and electro-transferred to a PVDF membrane (Millipore, Billerica,
MA). Membranes were blocked with casein (Pierce, Rockford, IL)
and then incubated with specific antibodies at concentrations
indicated by the manufacturers. Chemiluminescence detection
was used to visualize protein bands. The bands of interest were
quantified by Scion Image beta 4.0.2.

2.5. Pyruvate dehydrogenase (PDH) activity assay

For PDH activity measurements, mitochondria were sonicated
(30 s, setting of 3.0, 100% pulse rate) in a buffer containing 35
mM KH2PO4, 5.0 mM MgCl2, 2.0 mM NaCN, 0.5 mM EDTA, 0.25%
Triton X-100, and phosphatase inhibitor at pH 7.25. PDH activity
was assayed at 37 �C by measuring the reduction of NAD+ at
340 nm upon supplementation of 50 lg mitochondrial protein/ml
with 0.5 mM NAD+ in the presence of 200 lM TPP, 40 lM coen-
zyme A, and 4.0 mM pyruvate. The assay was carried out in the
presence of 2.5 lM rotenone to prevent NADH consumption by
complex I.

2.6. Pyruvate dehydrogenase kinase (PDK) activity assay

PDK activity was measured by a two-step immunocapture plus
spectrophotometric assay.

2.6.1. Immnuocapture of PDK-2
a-PDK-2 (5 lg) was attached onto each well of Protein-G coated

96-well immunoprecipitation plate (Pierce, Rockford, IL) by 1 h at
room temperature. Brain mitochondrial lysate (50 lg) from rats of
different ages (6, 14, and 24 months) was then incubated in the
well for 2 h at room temperature to facilitate PDK-2 immunocap-
ture onto the well.

2.6.2. In-well PDK-induced PDH phosphorylation
Mitochondrial lysate (100 lg) from brain of 6-months old rats

was diluted into phosphorylation buffer (100 ll) containing
30 mM HEPES, 1.5 mM MgCl2, 0.05% Triton X-100, 0.1 mM EDTA,
5 mM DTT, 0.5 mM ATP, proteases inhibitor and phosphatases
inhibitor. The lysate was then incubated in the a-PDK-coated well
for 5 min at 30 �C. Aliquots (25 ll) were removed from the plate
and PDH activity was measured as mentioned above. PDK activity
was expressed as percentage of inhibition of PDH activity.

2.7. 2D gel and LC/MS/MS

2.7.1. 2D gel
Mitochondrial protein was separated by isoelectric point (pI)

on precast gel strips (17 cm) with a pH gradient of 3–10 (Bio-
Rad, Hercules, CA) by using the Bio-Rad Protean IEF System [12].
The gels were fixed overnight and stained with Pro-Q� Diamond
phosphoprotein gel stain (Molecular Probes, Eugene, OR) then im-
aged using a VersaDocTM imaging system (Bio-Rad). The same gels
were then stained with SYPROTM Ruby protein gel stain (Molecular
Probes) and imaged again using a VersaDocTM imaging system.
Density of protein spots were quantified by Scion Image beta
4.0.2. Proteins of interest (candidate spots of E1a-PDH: based on
the molecular weight, pi value, and phosphorylation signals) were
excised from the 2D gel using biopsy punches (Acuderm, Fort Lau-
derdale, FL) and subjected to LC/MS/MS (USC Proteomics Core
Facility).

2.7.2. LC/MS/MS
Samples were reduced with DTT and then alkylated with

iodoacetamide prior to in-gel tryptic digestion using trypsin that
was reductively methylated to reduce autolysis (Promega,
Madison, WI). The digestion product were extracted twice from
the gel with 5% formic acid/5% acetonitrile solution and once with
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acetonitrile followed by evaporation using an ADP SpeedVac
(Thermo Savant, Watham, MA). Tryptic peptides were analyzed
by tandem mass spectrometry. Protein identification was carried
out with the MS/MS search software Mascot 1.9 (Matrix
Science).

2.8. Lactic acid and ATP concentration measurements

Total brain homogenates were lysed in an equal volume of per-
chloric acid (2 M) and centrifuged for 10 min at 12000�g. Superna-
tants were neutralized with KHCO3 (3 M) and recentrifuged at
12000�g. Extracts (50 ll) were added to 500 ll of reaction buffer
and the concentration of lactic acid was measured using a lactic
acid assay kit (r-Biopharm, Germany). Samples for ATP measure-
ments were prepared as described above; ATP levels were deter-
mined using an ATP determination kit (Molecular Probes).

2.9. Statistical analysis

Data are expressed as the means ± S.E. of at least three indepen-
dent experiments. Statistical comparisons were performed by one
way ANOVA. Differences were considered significant when
P < 0.05.
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Fig. 1. JNK protein levels and activation (pJNK) in rat brain during aging. (A) JNK1, (B
antibodies in brain homogenates from rats of different ages (6, 14, and 24 months). (D) Ac
levels shown as a control of equal loading (*P < 0.05).
3. Results

3.1. Increased pJNK association with mitochondria as a function of age

The basal levels of JNK1, JNK2, JNK3, and phosphorylated JNK
(pJNK, reflecting activation) in brain homogenate from rats of dif-
ferent ages (6, 14, and 24 months) are shown in Fig. 1 (n P 5).
The expression level of JNK1, JNK2, and JNK3 in the brain homog-
enates did not change significantly with age (Fig. 1A–C). JNK acti-
vation, determined by antibodies against pJNK (dual
phosphorylation of JNK is essential for kinase activity), increased
with age (Fig. 1D). The increased pJNK level reflects an increase
in the activation of all three JNK isoforms and is an effect consistent
with previous findings showing that JNK activity was constitu-
tively high and significantly increased in older rats [25].

Activation (phosphorylation) of JNK under defined stress condi-
tions results in its partial translocation to mitochondria [12].
Immunoblot analyses showed that protein levels of JNK2 and
JNK3 associated with rat brain mitochondria did not change signif-
icantly as a function of age (6-, 14-, and 24-months old rats)
(Fig. 2B and C; (n P 5)), whereas those of JNK1 and phosphorylated
JNK (pJNK) associated with mitochondria increased as a function of
age (Fig. 2A and D; (P < 0.05, n P 5)).
0

0.8

1.6

1 2 3

0

2

4

1 2 3

p46
p54

p46

p54

JNK2

-actin

-actin

pJNK

1.6

0.8

0

4.0

2.0

0

6 14 24

6 14 24

onths)

In
te

ns
it

y
(a

rb
it

ra
ry

 u
ni

ts
)

In
te

ns
it

y
(a

rb
it

ra
ry

 u
ni

ts
)

B

D

*

) JNK2, and (C) JNK3 protein levels were detected by immunoblot using different
tivity (dual phosphorylation) was assessed with an antibodies against pJNK. b-Actin



0

0.5

1

1.5

2

2.5

3

0

0.7

1.4

0

1

2

0

0.7

1.4

–

–

–

3.0

1.5

0

–

–

–

1.4

0.7

0

–

–

–

1.4

0.7

0

–

–

–

2.0

1.0

0

6 14 24 6 14 24

6 14 24 6 14 24

JNK1

cytochrome
oxidase

A
p46 JNK2

B
p54

JNK3
C

p46 pJNK
D

p46

p54

In
te

ns
it

y
(a

rb
it

ra
ry

 u
ni

ts
)

In
te

ns
it

y
(a

rb
it

ra
ry

 u
ni

ts
)

Age (months)

*

*

-actin -actin

-actin -actin

cytochrome
oxidase

cytochrome
oxidase

cytochrome
oxidase

Fig. 2. Association of JNK with mitochondria and its activity in rat brain during aging. Brain mitochondria (50 lg) isolated from rats of different ages (6, 14, and 24 months)
were subjected to immunoblotting. Levels of (A) JNK1, (B) JNK2, (C) JNK3, and (D) pJNK were detected in mitochondrial proteins by immunoblot using different antibodies.
COX levels are shown as a control for equal loading. Experimental conditions as described in Section 2 (*P < 0.05).
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3.2. Increased pJNK association with mitochondria and inhibition of
pyruvate dehydrogenase (PDH) activity: role of pyruvate
dehydrogenase kinase-2 (PDK-2)

As previously reported [12], pJNK associated with the outer
mitochondrial membrane and triggered a phosphorylation cascade
that resulted in the inhibition (phosphorylation) of mitochondrial
matrix pyruvate dehydrogenase (PDH) activity. Accordingly, PDH
activity in brain mitochondria decreased significantly as a function
of age: decreases in activity of �25% and �45% were found in mito-
chondria from 14- and 24-months old rats, respectively (Fig. 3A,
(P < 0.01, n P 5)).

PDH activity is, in part, controlled by phosphorylation/dephos-
phorylation, where a specific pyruvate dehydrogenase kinase
(PDK) phosphorylates three serine residues of PDH-E1a, thereby
decreasing the oxidative decarboxylation of pyruvate to acetyl-
CoA. Because pJNK associates with the outer mitochondrial mem-
brane (without crossing into the mitochondrial matrix), it may
be surmised that PDK is the effector that ultimately conveys the
inhibitory signal from pJNK to PDH. Protein levels of PDK-2, the
most abundant PDK isoenzyme in brain, increased during aging
with significantly higher levels at 14- and 26-months as compared
to 6 months (Fig. 3B). Furthermore, PDK activity (Fig. 3C) correlated
with its protein levels: the PDK-2-dependent inhibition of PDH
activity amounting to �20%, 43%, and 49% at 6-, 14-, and 24-
months of age, respectively. Taken together, it may be inferred that
increased phosphorylated JNK association to mitochondria may
up-regulate PDK activity, thus causing increased phosphorylation
(and inhibition) of PDH.

3.3. 2D gel – LC/MS/MS analyses of pyruvate dehydrogenase subunit
E1a

Inhibition of PDH activity upon translocation of pJNK to mito-
chondria was reported to be a consequence of phosphorylation of
the E1a subunit of the pyruvate dehydrogenase complex [12]. The
decrease of PDH activity as a function of age is likely to involve a
similar inactivation by phosphorylation; to validate this notion,
phosphorylated and non-phosphorylated forms of PDH-E1a were
identified on 2D gels by staining mitochondrial proteins with Sy-
pro-ruby stain (Fig. 4A) and Pro-Q� Diamond stain (Fig. 4B),
respectively. Spots a, b, and c (Fig. 4A and B) were subjected to
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LC/MS/MS analyses in order to identify the proteins present. In
each case the major species identified was pyruvate dehydroge-
nase subunit E1a. In the three analyses, 8-, 5-, and 6-peptides were
identified with high confidence (Mascot score with P < 0.5) and
corresponded to 25%, 18%, and 12% coverage of the protein, respec-
tively. A representative tryptic peptide that was observed in each
LC/MS/MS analysis was LPCIFICENNR, corresponding to amino
acids 218–228 (Fig. 4C). The theoretical mass for the double
charged peptide with two carbamidomethyl cysteine modifica-
tions (i.e., alkylation by iodoacetamide) was 718.3. Masses of
718.2, 718.0, and 718.9 were observed in the three runs for pep-
tides identified as LPCIFICENNR. The collision induced dissociation
(m/z) spectrum is presented for the mass of 718.9 in Fig. 4D. This
result was consistent with our previous report [12] in which we
found that proteins spots b and c were the two major phosphory-
lated mitochondrial proteins and were identified as PDH-E1a.

3.4. Phosphorylation of pyruvate dehydrogenase subunit E1a as a
function of age

The percentage of phosphorylated PDH-E1a was quantified
based on the protein amount on 2D gels and was increased signif-
icantly during aging from 14- to 24-months; the percentage of the
non phosphorylated form -the actual functional form- decreased
during aging (Fig. 5, (n P 3, P < 0.05)). The total amount of
PDH-E1a did not change during aging (data not shown). Therefore,
it can be concluded that the amount of the non-phosphorylated
form of PDH-E1a (the active form) decreases during aging (Fig. 5),
thus accounting for the decrease in PDH activity as a function of
age (Fig. 3A).

3.5. Decreased PDH activity and levels of ATP and lactic acid

PDH activity links glycolysis to the tricarboxylic acid cycle
where reducing equivalents in the form of NADH and FADH2

are generated. Accordingly, an adequate PDH activity is particu-
larly important for tissues to maintain a reducing environment
and high ATP production. Inhibition or a decrease activity of
PDH may lead to an increase in the anaerobic reduction of pyru-
vate to lactate via lactic dehydrogenase. To assess these metabolic
effects related to PDH inhibition, levels of ATP and lactic acid
were measured in brain homogenates from rats of different ages.
A decrease in ATP levels along with a significant increase of lactic
acid concentration was observed in rat brain homogenates as a
function of age (Fig. 6; n P 4, P < 0.05). These metabolic patterns
may be ascribed to the aforementioned inhibition of the PDH
complex during aging.
4. Discussion

The age-dependent decrease and increase in ATP production
and lactate accumulation, respectively, in brain tissue (Fig. 6) ap-
pear to represent a shift from aerobic glycolysis (mitochondrial
pyruvate dehydrogenase-dependent) to anaerobic glycolysis
(cytosolic lactate dehydrogenase dependent). The mechanistic
implications of this shift are primarily based on the inactivation
by phosphorylation of the E1a subunit of mitochondrial matrix
pyruvate dehydrogenase with the consequent diminished metab-
olism of acetyl-CoA. Within the context of this study, the impair-
ment of pyruvate dehydrogenase activity may be associated with
JNK signaling: endogenous JNK activation, especially at a low le-
vel, may reflect a chronic and cumulative stress process that con-
tributes to mitochondrial dysfunction during brain aging. These
data showed that JNK1 activation and its translocation to and
association with mitochondria were significantly enhanced during
aging, thus suggesting that the regulation of mitochondrial func-
tion by JNK is more potent in the aging brain. Of note, the ex vivo
approach in this study (mitochondria isolated from brains of rats
of different ages) shows a clear correlation – but not causality –
between increase active JNK and PDK activities and decrease
PDH activity over age; other experimental approaches, such as
specific radioactive signals (c-32[P]ATP) in the mitochondrial pro-
teome (2D IEF/SDS–PAGE) upon incubation of brain mitochondria



Fig. 4. Identification and localization of phosphorylated or non-phosphorylated forms of PDH-E1a subunit. Mitochondrial proteins were separated on a 2D gel and subjected
to (A) Sypro-ruby stain and (B) Pro-Q Diamond stain. Spots a, b and c were all identified as PDH-E1a subunit by LC/MS/MS. Spots b and c showed the highest levels of
phosphorylation. (C) Representative CID for pyruvate dehydrogenase peptide 218–228, LPCIFICENNR, which was observed in each of three analyses and contributed to the
identification of the enzyme. (D) Peptides observed in three analyses, each of which identified pyruvate dehydrogenase based on multiple observations of tryptic peptides via
LC/MS/MS. NO stands for not observed. Note that NFYGGNGIVGA QVPLGAGIALACK (161–184) was observed and identified as a double charged and triple charged peptide in
analyses 1 and 2, respectively. Cysteines are all modified with iodoacetamide and mass values reflect an increased mass of 57 Daltons. Methionines are oxidized and have an
increased mass of 16 Daltons.
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with active recombinant JNK [16] strengthen the notion that JNK
mediates PDH phosphorylation [12] as well as mitochondrial Bcl-
2 and Bc1-xL [16].
Mitochondrial oxidative stress, JNK activation, and alterations
of mitochondrial bioenergetics seem to be intimately linked: (a)
mitochondrial H2O2 production increases with aging [26,27], (b)
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mitochondrially-released H2O2 leads to the activation of JNK [28]
(by mechanisms likely entailing dissociation of JNK from glutathi-
one transferase [15] or suppression of phosphatases involved in
JNK inhibition [29,30]), (c) activation (phosphorylation) of JNK re-
sults in its translocation to the outer mitochondrial membrane
[12], and (d) association of JNK with the outer mitochondrial
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Fig. 6. Levels of ATP and lactic acid in rat brain as a function of age. Levels of (A) ATP and
from rats of different ages (6, 14, and 24 months). Assay conditions as described in Sect
membrane triggers phosphorylation cascades that affect mito-
chondrial bioenergetics and mitochondrion-driven apoptotic path-
ways [12,16] as shown by specific radioactive signals (c-32[P]ATP)
on the mitochondrial proteome upon incubation of brain mito-
chondria with active recombinant JNK [16] and identification of
Bcl-xL and Bcl-2 [16] and pyruvate dehydrogenase [12] as phos-
phorylation targets.

The above-mentioned effects represent a feedback loop that en-
tails coordination of cytosolic and mitochondrial responses and a
delicate balance that may be impaired during brain aging. It could
be argued that JNK activation, especially at a low level, may reflect
a chronic and cumulative stress that contributes to mitochondrial
dysfunction during brain aging. Of note, the decline in pyruvate
dehydrogenase activity in brain during aging is expected to be
linked to decreased mitochondrial NADH levels and – via nucleo-
tide transhydrogenase – to decreased NADPH reducing power,
thereby diminishing H2O2 removal by the glutathione system.

The precise mechanism by which JNK leads to inactivation of
PDH is not known: the pyruvate dehydrogenase complex is regu-
lated by reversible phosphorylation of the E1a subunit; pyruvate
dehydrogenase kinase (PDK consists of four isozymes PDK1,
PDK2, PDK3, and PDK4; among the four isoenzymes, PDK2 is the
predominant form in brain [31]) is responsible for the phosphory-
lation (inactivation) [32], whereas a Ca2+-sensitive phosphatase is
responsible for the dephosphorylation (activation) [33,34]. Thus,
at least two mechanism by which JNK may be involved in en-
hanced PDH phosphorylation can be envisaged: first, JNK upregu-
lates PDK protein and enzymic activity and, second, JNK interacts
with the Ca2+ channels on mitochondria causing a reduction of
Ca2+ influx and deactivation of the Ca2+-sensitive phosphatase.
Although the former mechanism is somewhat suggested by the
data in the present study, the underlying mechanism on how JNK
may be modulating PDK remains unclear. Other signaling
pathways may also contribute to increase PDK2 expression as a
function of age.

Alterations of mitochondrial bioenergetics by MAPKs has been
reported: in renal cells, the oxidant-induced activation of ERK1/2
decreases complex I activity, thereby diminishing mitochondrial
respiration and energy transduction (ATP synthesis); pyruvate
dehydrogenase activity was not affected [35]. Of note, ERK1/2 is
present in mitochondria and exposure of renal cells to a tertiary
hydroperoxide leads to activation (phosphorylation) of ERK1/2,
which was not due to translocation of active ERK1/2 from cytosol
to mitochondria [35]. ERK1/2, JNK, and p38 are present in mito-
chondria from different cell types: activation of mitochondrial
ERK1/2 during rat brain development is apparently under the
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control of mitochondrial H2O2 levels [36]; mitochondrial protein
kinase C e (PKCe) forms signaling modules with ERK1/2, JNK, and
p38 in murine heart with implications for cardioprotection [37];
studies of Lewy body disease neurons provided evidence for active
ERK1/2 in mitochondria (colocalizing with Mn-superoxide dismu-
tase) [38]. MAPKs are also involved in the regulation of the mito-
chondrion-driven apoptotic pathway by mechanisms entailing
phosphorylation of Bcl-2 family members either cytosolic (and fur-
ther translocation to mitochondria) or constitutive of the outer
mitochondrial membrane (Bcl-xL and Bcl-2) [39,40].

The shift from aerobic glycolysis (mitochondrial pyruvate dehy-
drogenase-dependent) to anaerobic glycolysis (cytosolic lactic
dehydrogenase-dependent) in brain during aging acquires further
significance on two accounts: first, glucose is a primary energy
source for mammalian brain and anaerobic glycolysis is an ineffi-
cient energy source and, second, pyruvate dehydrogenase was re-
ported to be deficient in the brain of Alzheimer’s disease patients
[41–44]. This deficiency occurs not only in regions of brain that
are neuropathologically damaged in Alzheimer’s disease, but also
in regions that are histopathologically normal, which suggests that
the decreased PDH activity occurs in early stages of the disease
[41–44]. Therefore, rescue of PDH activity in an early stage of
Alzheimer’s disease can be a therapeutic strategy: in this context,
supplementation with lipoic acid – a naturally-occurring disulfide
compound – may rescue the decreased PDH activity caused by the
phosphorylation of E1a � PDH. Acetyl-L-carnitine has also been
purported as an agent for the treatment of early stages of Alzhei-
mer’s disease [45–47]: the presence of an acetylcarnitine-CoA
transferase in the brain allows the entry of acetyl units from acet-
yl-L-carnitine into the TCA cycle [48]. This strategy should be
viewed as an energy source other than that from the oxidative
decarboxylation of pyruvate.

Acknowledgement

This work was supported by NIH Grant 2RO1 AG016718.

References

[1] Navarro, A., Sanchez Del Pino, M.J., Gómez, C., Peralta, J.L. and Boveris, A.
(2002) Behavioral dysfunction, brain oxidative stress, and impaired
mitochondrial electron transfer in aging mice. Am. J. Physiol. Regul. Integr.
Comp. Physiol. 282, R985–R992.

[2] Blass, J.P., Sheu, R.K. and Gibson, G.E. (2000) Inherent abnormalities in energy
metabolism in Alzheimer disease. Interaction with cerebrovascular
compromise. Ann. NY Acad. Sci. 903, 204–221.

[3] Humphries, K.M., Szweda, P.A. and Szweda, L.I. (2006) Aging: a shift from
redox regulation to oxidative damage. Free Radic. Res. 40, 1239–1243.

[4] Jones, D.P. (2006) Extracellular redox state: refining the definition of oxidative
stress in aging. Rejuvenation Res. 9, 169–181.

[5] Jones, D.P. (2006) Redefining oxidative stress. Antioxid. Redox Signal. 8, 1865–
1879.

[6] Mattson, M.P. (2006) Neuronal life-and-death signaling, apoptosis, and
neurodegenerative disorders. Antioxid. Redox Signal. 8, 1997–2006.

[7] Davis, R.J. (2000) Signal transduction by the JNK group of MAP kinases. Cell
109, 239252.

[8] Li, C. and Jackson, R.M. (2002) Reactive species mechanisms of cellular
hypoxia-reoxygenation injury. Am. J. Physiol. Cell Physiol. 282, C227–
C241.

[9] Bendinelli, P., Piccoletti, R., Maroni, P. and Bernelli-Zazzera, A. (1996) The MAP
kinase cascades are activated during post-ischemic liver reperfusion. FEBS
Lett. 398, 193–197.

[10] Stadheim, T.A. and Kucera, G.L. (2002) c-Jun N-terminal kinase/stress-
activated protein kinase (JNK/SAPK) is required for mitoxantrone- and
anisomycin-induced apoptosis in HL-60 cells. Leuk. Res. 26, 55–65.

[11] Herdegen, T. and Waetzig, V. (2001) The JNK and p38 signal transduction
following axotomy. Restor. Neurol. Neurosci. 19, 29–39.

[12] Zhou, Q., Lam, P.Y., Han, D. and Cadenas, E. (2008) c-Jun N-terminal kinase
regulates mitochondrial bioenergetics by modulating pyruvate
dehydrogenase activity in primary cortical neurons. J. Neurochem. 104, 325–
335.

[13] Gupta, S., Barrett, T., Whitmarsh, A.J., Cavanagh, J., Sluss, H.K., Derijard, B. and
Davis, R.J. (1996) Selective interaction of JNK protein kinase isoforms with
transcription factors. EMBO J. 15, 2760–2770.
[14] Mohit, A.A., Martin, J.H. and Miller, C.A. (1995) p493F12 kinase: a novel MAP
kinase expressed in a subset of neurons in the human nervous system. Neuron
14, 67–78.

[15] Adler, V., Funchs, S.Y., Benezra, M., Rosario, L., Tew, K.D., Pincus, M.R., Sardana,
M., Henderson, C.J., Wolf, C.R., Davis, R.J. and Ronai, Z. (1999) Regulation of JNK
signaling by GSTp. EMBO J. 18, 1321–1324.

[16] Schroeter, H., Boyd, C.S., Ahmed, R., Spencer, J.P., Duncan, R.F., Rice-Evans, C.
and Cadenas, E. (2003) c-Jun N-terminal kinase (JNK)-mediated modulation of
brain mitochondria function: new target proteins for JNK signalling in
mitochondrion-dependent apoptosis. Biochem. J. 372, 359–369.

[17] Hunot, S., Vila, M., Teismann, P., Davis, R.J., Hirsch, E.C., Przedborski, S., Rakic,
P. and Flavell, R.A. (2004) JNK-mediated induction of cyclooxygenase 2 is
required for neurodegeneration in a mouse model of Parkinson’s disease. Proc.
Natl. Acad. Sci. USA 101, 665–670.

[18] Kuan, C.Y., Yang, D.D., Samanta Roy, D.R., Davis, R.J., Rakic, P. and Flavell, R.A.
(1999) The JNK1 and JNK2 protein kinases are required for regional specific
apoptosis during early brain development. Neuron 22, 667–676.

[19] Mielke, K. and Herdegen, T. (2000) JNK and p38 stresskinases–degenerative
effectors of signal-transduction-cascades in the nervous system. Prog.
Neurobiol. 61, 45–60.

[20] Yang, D.D., Kuan, C.Y., Whitmarsh, A.J., Rincon, M., Zheng, T.S., Davis, R.J., Rakic,
P. and Flavell, R.A. (1997) Absence of excitotoxicity-induced apoptosis in
the hippocampus of mice lacking the JNK3 gene. Nature 389, 865–
870.

[21] Zhu, X., Raina, A.K., Rottkamp, C.A., Aliev, G., Perry, G., Boux, H. and Smith, M.A.
(2001) Activation and redistribution of c-jun N-terminal kinase/stress
activated protein kinase in degenerating neurons in Alzheimer’s disease. J.
Neurochem. 76, 435–441.

[22] Peng, J. and Andersen, J.K. (2003) The role of c-Jun N-terminal kinase (JNK) in
Parkinson’s disease. IUBMB Life 55, 267–271.

[23] Cadenas, E. and Davies, K.J. (2000) Mitochondrial free radical generation,
oxidative stress, and aging. Free Radic. Biol. Med. 29, 222–230.

[24] Anderson, M.F. and Sims, N.R. (2000) Improved recovery of highly enriched
mitochondrial fractions from small brain tissue samples. Brain Res. Protoc. 5,
95–101.

[25] Suh, Y. (2001) Age-specific changes in expression, activity, and activation of
the c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinases
by methyl methanesulfonate in rats. Mech. Ageing Dev. 122, 1797–1811.

[26] Lambert, A.J. and Brand, M.D. (2007) Research on mitochondria and aging,
2006–2007. Aging Cell 6, 417–420.

[27] Sohal, R.S. (1991) Hydrogen peroxide production by mitochondria may be a
biomarker of aging. Mech. Ageing Dev. 60, 189–198.

[28] Nemoto, S., Takeda, K., Yu, Z.X., Ferrans, V.J. and Finkel, T. (2000) Role for
mitochondrial oxidants as regulators of cellular metabolism. Mol. Cell Biol. 20,
7311–7318.

[29] Chen, Y.R., Shrivastava, A. and Tan, T.H. (2001) Down-regulation of the c-Jun
N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen
peroxide and pyrrolidine dithiocarbamate. Oncogene 20, 367–374.

[30] Foley, T.D., Armstrong, J.J. and Kupchak, B.R. (2004) Identification and H2O2

sensitivity of the major constitutive MAPK phosphatase from rat brain.
Biochem. Biophys. Res. Commun. 315, 568–574.

[31] Nakai, N., Obayashi, M., Nagasaki, M., Sato, Y., Fujitsuka, N., Yoshimura, A.,
Miya-zaki, Y., Sugiyama, S. and Shimomura, Y. (2000) The abundance of
mRNAs for pyruvate dehydrogenase kinase isoenzymes in brain regions of
young and aged rats. Life Sci. 68, 497–503.

[32] Kolobova, E., Tuganova, A., Boulatnikov, I. and Popov, K.M. (2001) Regulation
of pyruvate dehydrogenase activity through phosphorylation at multiple sites.
Biochem. J. 358, 69–77.

[33] Cooper, R.H., Randle, P.J. and Denton, R.M. (1974) Regulation of heart muscle
pyruvate dehydrogenase kinase. Biochem. J. 143, 625–641.

[34] McCormack, J.G., Halestrap, A.P. and Denton, R.M. (1990) Role of calcium ions
in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70,
391–425.

[35] Nowak, G., Clifton, G.L., Godwin, M.L. and Bakajsova, D. (2006) Activation of
ERK1/2 pathway mediates oxidant-induced decreases in mitochondrial
function in renal cells. Am. J. Physiol. Renal Physiol. 291, F840–F855.

[36] Alonso, M., Melani, M., Converso, D., Jaitovich, A., Paz, C., Carreras, M.C.,
Medina, J.H. and Poderoso, J.J. (2004) Mitochondrial extracellular signal-
regulated kinases 1/2 (ERK1/2) are modulated during brain development. J.
Neurochem. 89, 248–256.

[37] Baines, C.P., Zhang, J., Wang, G.-W., Zhen, Y.-T., Xiu, J.X., Cardwell, E.M., Bolli, R.
and Ping, P. (2002) Mitochondrial PKCs and MAPK form signaling modulates in
the murine heart. Enhanced mitochondrial PKCe-MAPK interactions and
differential MAPK activation in PKCs-induced cardioprotection. Circ. Res. 90,
390–397.

[38] Zhu, J.-H., Guo, F., Shelburne, J., Watkins, S. and Chu, C.T. (2003) Localization of
phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in
Lewy body diseases. Brain Pathol. 13, 473–481.

[39] Kim, B.J., Ryu, S.W. and Song, B.J. (2006) JNK- and p38 kinase-mediated
phosphorylation of Bax leads to its activation and mitochondrial translocation
and to apoptosis of human hepatoma HepG2 cells. J. Biol. Chem. 281, 21256–
21265.

[40] Weston, C.R. and Davis, R.J. (2002) The JNK signal transduction pathway. Curr.
Opin. Genet. Dev. 12, 14–21.

[41] Perry, E.K., Perry, R.H., Tomlinson, B.E., Blessed, G. and Gibson, P.H. (1980)
Coenzyme A-acetylating enzymes in Alzheimer’s disease: possible



1140 Q. Zhou et al. / FEBS Letters 583 (2009) 1132–1140
cholinergic’compartment’ of pyruvate dehydrogenase. Neurosci. Lett. 18, 105–
110.

[42] Sheu, K.F., Kim, Y.T., Blass, J.P. and Weksler, M.E. (1985) An immunochemical
study of the pyruvate dehydrogenase deficit in Alzheimer’s disease brain. Ann.
Neurol. 17, 444–449.

[43] Yates, C.M., Butterworth, J., Tennant, M.C. and Gordon, A. (1990) Enzyme
activities in relation to pH and lactate in postmortem brain in Alzheimer-type
and other dementias. J. Neurochem. 55, 1624–1630.

[44] Butterworth, R.F. and Besnard, A.M. (1990) Thiamine-dependent enzyme
changes in temporal cortex of patients with Alzheimer’s disease. Metab. Brain
Dis. 5, 179–184.

[45] Martin, E., Rosenthal, R.E. and Fiskum, G. (2005) Pyruvate dehydrogenase
complex: metabolic link to ischemic brain injury and target of oxidative stress.
J. Neurosci. Res. 79, 240–247.
[46] Calabrese, V., Scapagnini, G., Latteri, S., Colombrita, C., Ravagna, A., Catalano,
C., Pennisi, G., Calvani, M. and Butterfield, D.A. (2002) Long-term ethanol
administration enhances age-dependent modulation of redox state in
different brain regions in the rat: protection by acetyl carnitine. Int. J. Tissue
React. 24, 97–104.

[47] Calabrese, V., Scapagnini, G., Ravagna, A., Bella, R., Butterfield, D.A., Calvani, M.,
Pennisi, G. and Giuffrida Stella, A.M. (2003) Disruption of thiol homeostasis
and nitrosative stress in the cerebrospinal fluid of patients with active
multiple sclerosis: evidence for a protective role of acetylcarnitine.
Neurochem. Res. 28, 1321–1328.

[48] Bresolin, N., Freddo, L., Vergani, L. and Angelini, C. (1982) Carnitine,
carnitine acyl-transferases, and rat brain function. Exp. Neurol. 78, 285–
292.


	Activation of c-Jun-N-terminal kinase and decline of mitochondrial pyruvate dehydrogenase activity during brain aging
	Introduction
	Materials and methods
	Materials
	Animals
	Isolation of rat brain mitochondria
	SDS–PAGE gel and immunoblot analysis
	Pyruvate dehydrogenase (PDH) activity assay
	Pyruvate dehydrogenase kinase (PDK) activity assay
	Immnuocapture of PDK-2
	In-well PDK-induced PDH phosphorylation

	2D gel and LC/MS/MS
	2D gel
	LC/MS/MS

	Lactic acid and ATP concentration measurements
	Statistical analysis

	Results
	Increased pJNK association with mitochondria as a function of age
	Increased pJNK association with mitochondria and inhibition of pyruvate dehydrogenase (PDH) activity: role of pyruvate dehydrogenase kinase-2 (PDK-2)
	2D gel – LC/MS/MS analyses of pyruvate dehydrogenase subunit {{ E}}_{{1}_{\alpha}}
	Phosphorylation of pyruvate dehydrogenase subunit {{E}}_{1 \alpha} as a function of age
	Decreased PDH activity and levels of ATP and lactic acid

	Discussion
	Acknowledgement
	References


