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Abstract In order to establish an adaptive turbo-shaft engine model with high accuracy, a new

modeling method based on parameter selection (PS) algorithm and multi-input multi-output recur-

sive reduced least square support vector regression (MRR-LSSVR) machine is proposed. Firstly,

the PS algorithm is designed to choose the most reasonable inputs of the adaptive module. During

this process, a wrapper criterion based on least square support vector regression (LSSVR) machine

is adopted, which can not only reduce computational complexity but also enhance generalization

performance. Secondly, with the input variables determined by the PS algorithm, a mapping model

of engine parameter estimation is trained off-line using MRR-LSSVR, which has a satisfying accu-

racy within 5&. Finally, based on a numerical simulation platform of an integrated helicopter/

turbo-shaft engine system, an adaptive turbo-shaft engine model is developed and tested in a certain

flight envelope. Under the condition of single or multiple engine components being degraded, many

simulation experiments are carried out, and the simulation results show the effectiveness and valid-

ity of the proposed adaptive modeling method.
ª 2013 CSAA & BUAA. Production and hosting by Elsevier Ltd.Open access under CC BY-NC-ND license.
1. Introduction

Unlike a fixed-wing aircraft, a helicopter has a direct mechan-

ical link with its turbo-shaft engine, so the coupling reaction
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between the helicopter and the engine is obvious, and a dy-
namic response of the engine will give a significant influence

on the helicopter’s agility and conventional performance.1,2

Usually, an engine may inhale large quantities of sand or va-
por with salt when a helicopter works in terrible conditions,

such as near the ground or a sea-level state. Over time, the
deteriorations of engine components caused by various physi-
cal faults (e.g., foreign object damage, blade erosion and cor-

rosion, worn seals, excess clearances, and so on) may be
ever-increasing so that the operation and control of the engine
are inaccurate or misleading, even having a serious influence
on the helicopter’s flight quality. Therefore, it is remarkably

attractive to build an onboard adaptive engine model, which
td.Open access under CC BY-NC-ND license.
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can detect engine components’ deteriorations and meantime
provide engine performance tracking in real time, including
turbine rotor speed, stall margin and power, etc.3,4

At home, there have been few formal studies about adap-
tive modeling methods of turbo-shaft engines. Only Ref. 4

introduces a technique using Kalman filter based on rotor/tur-

bo-shaft engine. Kalman filter is the most popular method for
engine parameter estimation abroad, which can acquire a set
of tuners that would adapt a state variable model to match ac-

tual observations (hence driving the residuals to zero, on the
average), derived by the residuals formed by the output of
an embedded piecewise simplified engine model and the actual
observed measurements.5 However, due to multi-step iterative

calculations, Kalman filter must cost much more time to
achieve an optimal estimation. In order to improve real-time
ability, some literatures have proposed another method based

on data, i.e., neural network, which can finish engine parame-
ter estimation with a short period of computing time.6 But
neural network also has obvious drawbacks: its solution is eas-

ier to trap to the local extremum, and its generalization ability
also needs to be improved. As a consequence, the applications
of Kalman filter and neural network to parameter estimation

of aero-engines is somewhat restricted.
In recent decades, another algorithm based on data, named

support vector machine (SVM), has been applied in the field of
machine learning.7 In comparison with neural network, SVM

is built on a so-called structural risk minimization principle
which holds good generalization performance, but its training
complexity burden, called the quadratic programming, is

expensive. As a variation, the least square support vector ma-
chine (LSSVM) has been proposed,8 which uses equality con-
straints instead of inequality ones and squared errors as the

loss function to mitigate the training complexity. However,
LSSVM is not sparse compared with normal SVM, which
blocks its predicted speed. On the basis of LSSVM, various de-

rived algorithms such as SMO-based pruning methods for
sparse LSSVM (SMO-LSSVM), fast sparse approximation
for LSSVM (FSA-LSSVM), reduced least squares support vec-
tor regression (R-LSSVR), recursive reduced least squares sup-

port vector regression (RR-LSSVR), etc., have been proposed
to realize the sparseness or improve real-time ability of algo-
rithms.9–11 RR-LSSVR gains advantage over common sparse

tricks,10 since it is involved in the whole constraints generated
by all training patterns after combining the iterative strategy11

with the reduced technique9 in the modeling process. Mean-

time, RR-LSSVR needs smaller scale subset, which shortens
predicting time and strengthens sparseness. Inspired by above
illustrations, a deterioration estimator design scheme based on
RR-LSSVR is taken into account. However, RR-LSSVR is

only suitable for single-output systems. For a multi-output
problem, it needs many separate RR-LSSVR modules to per-
form, which makes the algorithm more complex and increases

the number of training patterns. Additionally, it cannot con-
sider the comprehensive actions of multi-output variables to
select training patterns. In this paper, an algorithm, called mul-

ti-input multi-output recursive reduced least square support
vector regression (MRR-LSSVR), is proposed. Compared
with RR-LSSVR, MRR-LSSVR can select less and better sup-

port vectors to solve multi-output problems owing to consider-
ing the comprehensive actions of multi-output variables.

With the aid of MRR-LSSVR, online and real-time nonlin-
ear relationship between an engine’s measurable variables (i.e.,
dependent variables) and its performance deteriorations can be
created. However, it is still a key problem which dependent
variables can be selected as the inputs of the parameter estima-

tion module. The choice directly affects whether the adaptive
model can accurately track or not.

In recent years, parameter selection (PS) has become the fo-

cus of numerous research studies in areas where datasets with
tens or hundreds of variables are available. The main draw-
back in PS resides in its combinatorial nature, turning into a

non-deterministic and poly-nominal hard problem. The use
of an exhaustive search method is unpractical for large num-
bers of variables. Therefore the design of efficient methods
and reliable criteria becomes crucial in the data analysis work-

flow. Generally, PS algorithms are grouped into two main cat-
egories: (1) filter methods, which select variables independently
to the predictor, and (2) wrapper methods, in which the way of

selecting variables is related to the predictor’s performance.
Because the purpose of PS is to eliminate irrelevant variables
to enhance the generalization performance and curtail the

computational complexity, the wrapper methods outperform
the filter ones. Ref. 12 put forward a wrapper criterion which
ranks variables based on the generalization ability of LSSVR.

In this paper, based on multi-input multi-output LSSVR, a PS
algorithm with the wrapper criterion for an adaptive engine
model is proposed.

As a result, utilizing PS and MRR-LSSVR algorithms, an

adaptive turbo-shaft engine model is developed in a certain
flight envelope. Through case studies on an integrated helicop-
ter/turbo-shaft engine numerical simulation platform with a

high fidelity, it is proved that the established adaptive engine
model can track a real engine rapidly not only in a steady state
but also during a transient operation, and perform parameter

estimation for single or multiple engine performance
deteriorations.
2. Simulation platform

An integrated helicopter/turbo-shaft engine system13 is a sort
of cascade systems which have complex coupling relationships.

This system is used as the simulation platform in this paper
which mainly consists of the following four parts: open-loop
model of helicopter, flight controller, open-loop model of
turbo-shaft engine, and engine controller. The schematic dia-

gram of the integrated system is depicted in Fig. 1, and the
helicopter model and turbo-shaft engine model are introduced
as follows.

2.1. Helicopter model

In this paper, a real-time helicopter model is built based on

UH-60A Black Hawk helicopter data. This model is an unstea-
dy nonlinear aerodynamic model, which contains fuselage,
main rotor, tail rotor, horizontal tail, and vertical tail. Among

these components, there are many complex close-coupling ac-
tions (see Fig. 1). Through a series of equilibrium computa-
tions and calculations of dynamic equations, such as
balancing rotor model, fuselage model, and so on, the required

power of the helicopter can be worked out and sent to the tur-
bo-shaft engine together with some flight parameters. In Ref.
13, a great amount of tests were performed to check the accu-

racy of this helicopter model. The results prove that this model



Fig. 1 Schematic diagram of the integrated helicopter/engine system.
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has a good fidelity and is able to carry out digital flight simu-

lations of routine missions.

2.2. Turbo-shaft engine model

Fig. 2 depicts the structure of a component-level model of the
turbo-shaft engine, which is established based on T700 engine
data set. In Fig. 2, the engine station numbers represent the in-
let or outlet of engine components.

During the engine modeling procedure, every component
model of the engine is created using the engine’s thermody-
namic characteristic and typical experimental data at first.

Next, with the benefits of power balance, flow equilibrium,
pressure equilibrium, and rotor dynamics equations, the bal-
ance equations among engine components can be constructed

and calculated. Finally, the Newton–Raphson iterative meth-
od and once-pass-through algorithm are adopted in order to
solve the steady-state engine model and dynamic engine mod-

el, respectively.

3. Adaptive engine model

Fig. 3 shows the structure diagram of the adaptive engine mod-
el. This system consists of a host computer and a slave com-
Fig. 2 Structure of the turbo-shaft engine.
puter of the two-level system. The host computer is to

simulate the actual integrated helicopter/turbo-shaft engine
system. The slave computer is to replace the adaptive engine
model, which is used for tracking the engine’s state and esti-

mating its performance deterioration in real time, including a
MRR-LSSVR estimation module, an onboard nonlinear en-
gine model, and a nonlinear calculation module, where the in-
put of the estimation module is determined by a PS algorithm.

In Fig. 3, HPP represents required power of rotor and SMC
the compressor stall margin.

When the integrated helicopter/engine system is working

under non-nominal condition, the outputs of the MRR-
LSSVR module, i.e., the values of engine performance deteri-
orations, will be calculated, and the onboard engine model will

be corrected immediately. In this section, firstly, the multi-in-
put multi-output LSSVR algorithm is concisely described,
and then the PS algorithm with the wrapper criterion, the

MRR-LSSVR algorithm, and the design of the parameter esti-
mation module are introduced one by one as follows.

3.1. LSSVR algorithm

For a multi-input multi-output system, considering the train-
ing sample set fðxi; yiÞg

N
i¼1 of size N, where xi is the input

pattern, yi = [yi,1 yi,2 � � � yi,M] is the corresponding target,

and M is the number of output variables, the mathematical
model of LSSVR is obtained14,15:
min
wm ;ei;m

Jðwm; ei;mÞ ¼
1

2

XM
m¼1

wT
mwm þ

c
2

XM
m¼1

XN
i¼1

e2i;m

s:t: yi;m ¼ wT
mumðxiÞ þ bm þ ei;m

ði ¼ 1; 2; � � � ; N; m ¼ 1; 2; � � � ; MÞ ð1Þ

where wm represents the model complexity, ei,m represents the

error between actual output and predictive value, bm is the off-
set, c 2 R+ is a regularization parameter which can control the
tradeoff between the flatness of the model and the closeness to
the training data, and um(Æ) is a nonlinear mapping which can

transform the input data into a high-dimensional feature



Fig. 3 Diagram of the adaptive engine model.
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space. In order to solve the above optimization problem, the

Lagrange function without constraints can be constructed as:
Lðwm; bm; ei;m; ai;mÞ ¼ J�
XM
m¼1

XN
i¼1

ai;m wT
mumðxiÞ þ bm

�
þei;m � yi;m

�
ð2Þ
where ai,m is Lagrange multiplier. Hence, Karush–Kuhn–
Tucker (KKT) conditions of Eq. (1) can be expressed as:

oL

owm

¼ 0! wm ¼
XN
i¼1

ai;mumðxiÞ

oL

obm
¼ 0!

XN
i¼1

ai;m ¼ 0

oL

oei;m
¼ 0! ai;m ¼ cei;m

oL

oai;m

¼ 0! wT
mumðxiÞ þ bm þ ei;m � yi;m ¼ 0

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð3Þ

After eliminating wm and ei,m, the following linear function is
obtained:

0 1T

1 K

" #
b

a

� �
¼

0

Y

� �
ð4Þ

where

y1;1 y1;2 � � � y1;M
y2;1 y2;2 . . . y2;M

26 37

Y ¼ Y1 Y2 . . . YM½ � ¼

..

. ..
. ..

.

yN;1 yN;2 . . . yN;M

664 775

a ¼ a1 a2 . . . aM½ � ¼

a1;1 a1;2 . . . a1;M

a2;1 a2;2 . . . a2;M

..

. ..
. ..

.

aN;1 aN;2 . . . aN;M

266664
377775

b ¼ b1 b2 � � � bM½ �

1 ¼ 1 1 � � � 1½ �N�1

0 ¼ 0 0 � � � 0½ �M�1
K is the matrix whose element Kij ¼ kðxi; xjÞ ¼ uTðxiÞ

uðxjÞ þ dij=c with dij ¼
1; i ¼ j
0; i–j

�
. Among all the kernel

functions, Gaussian kernel k(xi,xj) = exp(�ixi �
xj i2/(2t2)) is the most popular choice, where t represents the
kernel parameter. In this paper, Gaussian kernel is used, and
after solving Eq. (4), a and b can be computed. For a new

pattern x, the predictor of multi-input multi-
output LSSVR is gotten as follows14,15 :

fmðxÞ ¼
XN
i¼1

ai;mkðxi; xÞ þ bm ðm ¼ 1; 2; . . . ; MÞ ð5Þ
3.2. PS algorithm

As for Eq. (5), a problem is still not solved, that is, which mea-
surable variables of the engine will be used as input variables

for the adaptive module. In this section, a wrapper criterion
for ranking variables is introduced.12

After combining Eqs. (2) and (3), the equation without

constraints for the Wolfe dual optimization problem can be
attained:

min Lðbm;ai;mÞ¼
XM
m¼1

1

2

XN
i;j¼1

ai;maj;mkðxi;xjÞþ
1

2c

XN
i¼1

a2
i;m

"(

�
XN
i¼1

ai;myi;mþbm
XN
i¼1

ai;m

#)
ð6Þ

And then Eq. (6) can be reformulated for convenience:

min Lðbm; amÞ ¼
XM
m¼1

1

2
bm aT

m

� � 0 1T

1 K

" #
bm

am

� �"(

� bm aT
m

� � 0

Ym

� ��	
ð7Þ

Next, let �am ¼ bm aT
m

� �T
and dL=d�am ¼ 0, where

m= 1,2, . . .,M, the following equation is obtained:

bm

am

� �
¼ 0 1T

1 K

" #�1
0

Ym

� �
ð8Þ

Finally, substituting Eq. (8) into Eq. (7), the optimal value L�

of Eq. (7) is gotten in the following:



Table 1 List of variables selection.

Symbol Definition Choice

H (m) Flight altitude
p

Vx (m Æ s�1) Forward speed
p

Ng (%) Gas turbine rotor relative speed
p

Np (%) Power turbine rotor relative speed
p

T2 (K) Compressor inlet total temperature ·
p2 (Pa) Compressor inlet total pressure ·
T3 (K) Compressor outlet total temperature ·
p3 (Pa) Compressor outlet total pressure

p

T4 (K) Combustor outlet total temperature ·
p4 (Pa) Combustor outlet total pressure ·
T41 (K) Gas turbine inlet total temperature ·
p41 (Pa) Gas turbine inlet total pressure ·
T42 (K) Gas turbine outlet total temperature ·
p42 (Pa) Gas turbine outlet total pressure ·
T43 (K) Air-entraining section total temperature

after gas turbine

·

p43 (Pa) Air-entraining section total pressure after

gas turbine

·

T44 (K) Power turbine inlet total temperature
p

p44 (Pa) Power turbine inlet total pressure
p

T45 (K) Power turbine outlet total temperature ·
p45 (Pa) Power turbine outlet total pressure

p

T46 (K) Air-entraining section total temperature

after power turbine

·

p46 (Pa) Air-entraining section total pressure after

power turbine

·

T8 (K) Nozzle outlet total temperature ·
p8 (Pa) Nozzle outlet total pressure ·
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L� ¼
XM
m¼1

� 1

2
0 YT

m

� � 0 1T

1 K

" #�1
0

Ym

� �8<:
9=;

¼
XM
m¼1

� 1

2
0 YT

m

� � bm

am

� �� 	
¼ � 1

2

XM
m¼1

YT
mam ð9Þ

If the ith variable is removed, L�ðiÞ ¼ � 1
2

PM
m¼1 YT

mamðiÞ

 �

,
where am(i) is the solution of Eq. (8) without the ith input var-

iable. Thus, a wrapper criterion for ranking variables can be
put forward12 :

DðiÞ ¼
XM
m¼1

YT
mðam � amðiÞÞ

�� �� ð10Þ

In the process of computation, if the value of D(i) is smaller

than the value of D(j)(j „ i), the ith variable is considered to
make less contribution to the optimal value L� than the jth var-
iable. As for the turbo-shaft engine in this paper, there are 20
measurable variables (i.e., input x) for the selection, and out-

put variables are y = [y1 y2 y3] = [Dcom Dgas Dpow],
where Dcom represents compressor flow deterioration, Dgas rep-
resents gas turbine efficiency deterioration, and Dpow repre-

sents power turbine flow deterioration. If L acquires the
optimal value L�, the estimation accuracy of the variable
(Dcom, Dgas, Dpow) will be the best. And then, by removing

the ith input variable, D(i) can be calculated based on Eq.
(10). According to the sequence D(i), we can rank the variables,
discard those variables with small values of D(i), and select

input variables which make more contributions to L� (see
Table 1) as input variables of the MRR-LSSVR estimation
module.

During the selecting process, it is needed to analyze the vari-

ables’ measurability at first, which shows that the variables’ val-
ues are easily acquired. In the list of Table 1, the values of T4, p4,
T41, and p41 are hardly acquired because the sensor is generally

not allowed to set in high-temperature parts. The remaining
variables are 20 measurable variables. Considering T2 and P2

are worked out with H and Vx, and T8 is equal to T46, T2, p2,

and T8 also have no use for selection. And then, based on the
above PS algorithm, we can choose the variables which have
more contributions to variable estimation from all remaining
variables. At last, utilizing the debugging method, eight input

variables are selected, which are x = [x1 x2 . . . x8] =
[H Vx Ng Np p3 p44 T44 T45].
3.3. MRR-LSSVR algorithm

From Eq. (5), it is clear that every training sample is support
vector, so LSSVR is not sparse. Using the reduction strategies

presented in Ref. 9, after letting wm ¼
P

i2Sai;mkðxi; �Þ and
substituting it into Eq. (1) where the subset
fðxi; yiÞgi2S � fðxi; yiÞg

N
i¼1, and S is the index class of the useful

subset, we get the corresponding form as follows:

min Lðbm; amÞ ¼
1

2

XM
m¼1

aT
mKam

(

þ c
2

XM
m¼1

XN
i¼1;i2S

yi;m�
X
j2S

aj;muT
mðxjÞumðxjÞ�bm

 !2
9=; ð11Þ
where Ki,j = k(xi,xj),i,j 2 S. Let oL/obm = 0 and oL/oai,m = 0,
the following linear equation is gained:

ðRþ ZZTÞ
b

a

� �
¼ ZY ð12Þ

where R ¼ 0 0T

0 K=c

� �
and Z ¼ 1TbK

� �
with bK ¼ kðxi; xjÞ;

i 2 S; j ¼ 1; 2; . . . ; N: In Eq. (13), if R+ ZZT is singular, a
small change R+ ZZT + 10�8I will find the solution.10

Therefore, for a new sample x, we can obtain R-LSSVR as
follows:

fmðxÞ ¼
X
i2S

ai;mkðxi; xÞ þ bm ðm ¼ 1; 2; . . . ; MÞ ð13Þ

Because the subset {(xi,yi)}i2S in Eq. (13) is selected ran-
domly, R-LSSVR is lack of sparseness or the generalization

ability is degraded, so it is important to select the subset. With
the iterative strategy presented in Ref. 11, we can pick up the
patterns which make more contributions to the optimization

target to form the subset.10 Reformulating Eq. (11), we have:

min L ¼
XM
m¼1

bm aT
m

� � 0 0T

0 K=c

" # "(

þ 1TbK
" #

1 bKT
� �! bm

am

� �
� 2

1TbK
" #

Ym

 !T
bm

am

� �#)
ð14Þ

And Eq. (12) can be unfolded as follows:



Fig. 4 Relative errors of a test subset.
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0 0T

0 K=c

" #
þ N 1T bKTbK1 bK bKT

" # !
b

a

� �
¼ 1TbK
" #

Y ð15Þ

Let Un ¼ 0 0T

0 K=c

� �
þ N 1T bKTbK1 bK bKT

� �
 ��1
, where n stands

for the nth iteration. If the qth training pattern xq is chosen
at the (n+ 1)th iteration, we can get Un+1 using the Sher-

man–Morrison formula:

Unþ1 ¼
Un 0

0T 0

� �
þ f

b

�1

� �
bT �1
� �

ð16Þ

where f ¼ kqq þ k̂T
q k̂q � k̂T

q 1 k̂T
q
bKT þ kT

q

h i
b

� ��1
;

b ¼ Un 1Tk̂q

kq þ bK bKq

" #
; kq ¼

kðxq; xiÞ
kðxq; xiþ1Þ

..

.

kðxq; xjÞ

26664
37775; k̂q ¼

kðxq; x1Þ
kðxq; x2Þ

..

.

kðxq; xiÞ

26664
37775

with i,i+ 1, . . ., j 2 S.

And then, with the equation
bnm
an
S;m

� �
¼ Un 0̂bYS;m

� �
, Eq. (17)

will be obtained:

bnþ1m

anþ1
S;m

anþ1
q;m

26664
37775 ¼ Unþ1

0̂bYS;m

ŷq;m

2664
3775 ¼ U

0̂bYS;m

" #
0

2664
3775

þ f bT
0̂bYS;m

" #
� ŷq;m

 !
b

�1

" #

¼

bnm

an
S;m

0

2664
3775þ c bT

0̂bYS;m

" #
� ŷq;m

 !
b

�1

" #
ð17Þ

where 0̂ ¼
PN

i¼1yi;m;
bYm ¼ bKYm;m ¼ 1; 2; . . . ;M:

In such way, U, am, and bm can be updated efficiently, and
the target function Eq. (14) becomes:

Ln ¼
XM
m¼1

bnm an
m


 �Th i 0 0T

0 KSS=c

" #
þ 1TbKS

" #
1 bKT

S

h i !"
bnm
an
m

� �
� 2

1bKS

� �
Ym


 �T bnm
an
m

� �#
If an

m and bnm are fixed, and i 2 P = {1,2, . . .,N} � S, we can

get:

Lnþ1 ¼ min
ai;m

XM
m¼1

1

2
kii=cþ k̂T

i k̂i

� �
a2
i;m þ rni;mai;m

� �( )
ð18Þ

where rni;m is used to denote the approximate error about ŷi;m
with an

m and bnm, which is expressed in the following:10

rni;m ¼
�ŷi;m; n ¼ 0

k̂T
i 1 k̂T

i
bKT þ kT

S;i=c
h i bnm

an
m

� �
� ŷi;m; n > 0

8><>: ð19Þ

So the optimal value of Eq. (18) is :

Lnþ1 ¼ �
XM
m¼1

rni;m

� �2
2 kii=cþ k̂T

i k̂i

� � ð20Þ
Finally, if training sample xi in P subset meets the demand
of mini2PL

n+1,xi will be selected as support vector. At last, ter-
minate selecting patterns from P subset while

max
PM

m¼1 r
n
P;m

��� ���� �
< e (e is a small positive constant) or until

reaching the predefined size of support vectors (define as Q).

In the above way, for a multi-input multi-output system,
after combining the iterative computation of the kernel matrix
inversion with the strategy of selecting a reduced subset, the

MRR-LSSVR algorithm is able to be realized, which takes
the multi-output comprehensive influences on selecting sup-
port vectors into consideration. Additionally, compared with

RR-LSSVR at a cost of O(2uMN), a multi-input multi-output
problem can be solved with a better real-time ability using
MRR-LSSVR at a cost of O(2uN), where O(Æ) is the computa-

tion complexity, M> 1, and u is the number of input
variables.

For the MRR-LSSVR estimation module in this
paper, output variables are y= [y1 y2 y3] = [Dcom Dgas Dpow],

and eight input variables x = [x1 x2 . . . x8] =
[H Vx Ng Np p3 p44 T44 T45] are determined by the PS
algorithm. The training dataset is picked based on the turbo-

shaft engine component-level model, where the sample size
N= 2160. Additionally, it is needed to predefine the size of fi-
nal support vectors or threshold value e. At last, via the simu-

lation debugging method, the training parameters of MRR-
LSSVR with Gaussian kernel function are fixed as follows:

The size of final support vectors Q= 300;

The threshold value e = 0;
The regulator c = 218;
The kernel parameter t = 1.2.

In order to prove the availability of the parameter estima-
tion module, the relative errors of a test subset are dis-played

in Fig. 4. From Fig. 4, it can be seen that the relative errors of
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Dcom, Dgas, and Dpow, i.e., error-Dcom are all lower than 5&,
which achieve a satisfying accuracy level.

3.4. Adaptive engine module

In this paper, the MRR-LSSVR estimation module is designed
in a flight envelope of an altitude H6 1000 m and a forward

speed Vx 6 50 m/s, and meanwhile the flight envelope is di-
vided with DH = 100 m and DVx = 5 m/s for training net-
work. In every engine steady-state operation point,

performance degenerations of the engine are set as follows:

Dcom ¼ 0;�0:01;�0:02;�0:03
Dgas ¼ 0;�0:01;�0:02;�0:03
Dpow ¼ 0; 0:01; 0:02; 0:03

Here, one thing should be pointed out: for an actual adap-
tive engine model, it is necessary to take six condition param-

eters (flow and efficiency deterioration) into consideration, and
in this paper only three condition parameters (Dcom, Dpow, and
Dgas) are considered as an example. These three condition

parameters represent the deteriorations of three main engine
components (compressor, gas turbine, and power turbine).
With the groups of single or multiple deteriorations, the dy-
namic training subset can be gained based on the integrated

helicopter/engine system. And then, through normalizing the
input x of a training sample which is added with the white
noise, the MRR-LSSVR mapping module, i.e., the nonlinear

mapping relationship between the input x and the output y,
will be constructed based on MRR-LSSVR. According to
the prominent memory and generalization ability of MRR-

LSSVR, the model of engine parameter estimation can be built
in every steady-state operation point.

During the realization of the MRR-LSSVR predictor, the

module is turned on to track the actual engine state at first.
After normalizing the above eight engine measurable parame-
ters and putting them as the inputs of the MRR-LSSVR esti-
mation module, the outputs of the predictor, i.e., Dcom, Dgas,

and Dpow, are worked out. With this MRR-LSSVR estimator
(see Fig. 5), the onboard engine model has a good adaptive
capability in this certain flight envelope.
Fig. 5 Realization of the MRR-LSSVR estimator.
4. Case studies

For the proposed adaptive engine model, the accuracy and
generalization ability are the main problems that need careful

consideration. In this paper, based on the integrated helicop-
ter/turbo-shaft engine simulation system, lots of simulation
experiments are carried out to verify the adaptive ability on

a computer with an Intel i5 M460 (2.53 + 2.53 GHz) proces-
sor and 2.0 GB memory, and the simulation step is 50 ms. In
the simulation process, the engine performance deteriorations
are imitated by changing the flow or efficiency of different en-

gine components together. The simulation results under differ-
ent operating conditions are listed as follows, where the
parameters with subscript ‘‘r’’ represent the outputs of the ac-

tual engine model and the ones with no subscript represent the
outputs of the adaptive engine model.
4.1. Simulations with single engine performance deterioration

In this section, on the ground, the simulation tests with single
engine component degenerate are implemented. Due to the

limited space, we only introduce the simulation of compressor
flow deterioration, whose results are similar to those of gas
turbine efficiency deterioration or power turbine flow
deterioration.

Fig. 6 is the response of compressor flow deterioration.
Firstly, at the moment of t= 5 s, engine component degener-
ations are set as follows: Dcom,r = �0.03, Dgas,r = 0, and

Dpow,r = 0. From Fig. 6(a), it can be seen that the estimated
error of Dcom is only 1.2%, and Dgas and Dpow are close to
zero. Subsequently, after correcting the onboard engine model

with the estimated error of engine health parameters, the state
variables in Fig. 6(b) can be obtained, where Ng and Np are gas
turbine and power turbine rotor relative speeds of the adaptive

engine model. From Fig. 6(b), we can see that the state of the
adaptive engine model can nearly keep in step with the actual
engine state, and the dynamic response time of system is about
9 s. Finally, engine performance parameters SMC and HPP

can be calculated by the nonlinear calculation module of the
adaptive engine model. From Fig. 6(c), it can be seen that
the relative steady-state errors of SMC and HPP are 0.1%

and 0.02%, respectively, which achieve a good accuracy level.
Additionally, computing time of the MRR-LSSVR module is
short, below 1 ms in a simulation step, which is enough to meet

the requirement of real-time ability.
4.2. Simulations with multiple engine performance deteriorations

Through above single deterioration simulations, it is obvious
that the adaptive engine model has a fine adaptive ability.
For multiple engine components being degraded together,
some digital simulations are performed in this section.

Firstly, at the operation point of H = 0 m and Vx = 0 m/s,
Dcom,r = �0.01, Dgas,r = �0.02, Dpow,r = 0.03 are set at the
moment of t= 5 s. The simulation results are shown in

Fig. 7. The dynamic response time of system is about 8 s. Com-
pared with the preinstall deteriorations, the estimated values of
Dcom, Dgas, and Dpow all attain a high accuracy level, whose

maximum relative steady-state error is 1.87%. This precision
achieves the simulation level in Ref. 16. Additionally, like the



Fig. 6 Simulations atH= 0 m,Vx = 0 m/s withDcom,r = �0.03,
Dgas,r = 0, Dpow,r = 0.

Fig. 7 Simulations atH= 0 m,Vx = 0 m/s withDcom,r = �0.01,
Dgas,r = �0.02, Dpow,r = 0.03.
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case of single deterioration, the computing time of the MRR-

LSSVR module is also about 1 ms. Ultimately, the state vari-
ables Ng, Np and the performance parameters SMC, HPP of
the adaptive engine model can all be in step with the state of

the actual engine.
Secondly, at another operating point of H = 800 m,

Vx = 30 m/s with Dcom,r = �0.02, Dgas,r = �0.03,
Dpow,r = 0.01, the simulation test was performed (see Fig. 8).
From Fig. 8, it can be seen that the adaptive model is con-
nected at the 5th second. The relative errors of estimated dete-

riorations are all close to zero, where the maximum error is
1.35%. In comparison with the steady-state of the actual en-
gine, the precisions of Ng,Np, SMC, and HPP of the adaptive

engine model are satisfying.
Putting the facts of Figs. 7 and 8 together, we can find that

the adaptive model has a good self-correct ability both on the
ground and in the high altitude.

Furthermore, in order to check the generalization ability of
the proposed adaptive model in a certain flight envelope, the
simulation tests at different operation points are implemented

and the test results are listed in Table 2, where the operating
points at H= 100 m, Vx = 12 m/s and H = 700 m,
Vx = 44 m/s are out of training samples. In Table 2, E1,max

presents the maximum relative steady-state error of estimated



Fig. 8 Simulations at H = 800 m, Vx = 30 m/s with

Dcom,r = �0.02, Dgas,r = �0.03, Dpow,r = 0.01.

Table 2 Simulation results of the adaptive engine model.

Parameter H = 100 m,

Vx = 12 m/s

H = 300 m,

Vx = 25 m/s

H= 700 m,

Vx = 44 m/s

H= 1000 m,

Vx = 50 m/s

Dcom,r �0.01 �0.02 �0.03 �0.03
Dgas,r �0.03 �0.01 �0.02 �0.03
Dpow,r 0.02 0.03 0.01 0.03

Dcom �0.01013 �0.01996 �0.02997 �0.03004
Dgas �0.03014 �0.00994 �0.02034 �0.03023
Dpow 0.02025 0.02981 0.00987 0.02984

E1,max (%) 1.25 0.63 1.70 0.77

SMCr 0.25987 0.29188 0.28130 0.27076

HPPr (kW) 498.34822 356.27485 334.47487 357.22745

SMC 0.25985 0.29186 0.28106 0.27070

HPP (kW) 498.22486 356.32690 334.25888 357.10163

E2,max (&) 0.3 0.2 0.9 0.4

Computing

time

About 1 ms About 1 ms About 1 ms About 1 ms

Table 3 Simulation comparisons between BP-NN and MRR-

LSSVR.

Parameter H= 0 m,Vx = 0 m/s H = 550 m,Vx = 33 m/s

BP-NN MRR-

LSSVR

BP-NN MRR-

LSSVR

Dcom,r �0.03 �0.03 �0.03 �0.03
Dgas,r �0.03 �0.03 �0.03 �0.03
Dpow,r 0.03 0.03 0.03 0.03

Dcom �0.02986 �0.02966 �0.02734 �0.02986
Dgas �0.03046 �0.02997 �0.02996 �0.03007
Dpow 0.03053 0.03041 0.03078 0.02979

E1,max (%) 1.7 1.4 8.9 0.7

SMCr 0.26028 0.26028 0.28091 0.28091

HPPr (kW) 584.77101 584.77101 328.55633 328.55633

SMC 0.26007 0.26040 0.28064 0.28104

HPP (kW) 584.63942 584.73087 328.67836 328.47652

E2,max (&) 0.8 0.5 1.0 0.5

Computing time Below 1 ms About 1 ms Below 1 ms About 1 ms
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engine degenerations values, and E2,max stands for the maxi-

mum relative steady-state error of engine performance param-
eters. From simulation results of the operating points at
H= 300 m, Vx = 25 m/s and H = 1000 m, Vx = 50 m/s, the

relative errors of estimated engine degenerations values are
about 1%, and those of engine performance parameters are al-
most zero. For the operating points out of training samples,
i.e., H = 100 m, Vx = 12 m/s and H = 700 m, Vx = 44 m/s,

E1,max is also below 2%, and E2,max is close to zero. These
prove that the adaptive model has a good robustness and
fault-tolerant capability, which can estimate the engine deteri-

orations successfully in the certain flight envelope of
H 6 1000 m and Vx 6 50 m/s. And moreover, the computing
time of the MRR-LSSVR estimation module is short, only

about 1 ms. It is obvious that the adaptive model based on
MRR-LSSVR can meet the requirement of real-time capability
in the certain flight envelope.

Finally, as is well known, conventional Kalman filter is the
estimated method depending on a state variable model, which
needs much time to finish parameter estimations because of

multi-step iterative calculations. Compared with Kalman filter,
back propagation neural network (BP-NN) and MRR-
LSSVR, as the learning method based on data, can both im-
prove the computing time of engine parameter estimation dra-

matically. In Table 3, simulation comparisons between BP-NN
and MRR-LSSVR are listed, where the working point of
H= 0 m, Vx = 0 m/s is the design operation point, and

H= 550 m, Vx = 33 m/s is out of training samples. At the de-
sign point, both BP-NN and MRR-LSSVR give high estimat-
ing precisions, E1,max about 1.5% and E2,max about zero.

However, at the working point of H= 550 m, Vx = 33 m/s,
in comparison with BP-NN, MRR-LSSVR can achieve a high-
er precision with similar computing time due to its good gen-
eralization ability. As a result, E1,max using MRR-LSSVR is
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only 0.7%, but 8.9% using BP-NN, and therefore the adaptive
engine model based on MRR-LSSVR has a stronger robust-
ness than the one based on BP-NN.

5. Conclusions

(1) In order to perform parameter estimation considering
interactions between engine performance deteriorations

while multiple engine components being degraded
together, and meantime improve real-time capability of
the adaptive module, the MRR-LSSVR algorithm is

realized depending on the RR-LSSVR algorithm.
(2) Based on multi-input multi-output LSSVR, the PS algo-

rithm with the wrapper criterion is designed to choose

reasonable inputs of the MRR-LSSVR estimation
module.

(3) Combining MRR-LSSVR and PS, an adaptive modeling

method of turbo-shaft engines is proposed based on the
simulation platform of an integrated helicopter/turbo-
shaft engine system.

(4) Through plenty of simulation experiments, it is proved

that the proposed adaptive engine model can track the
actual engine state rapidly and exactly, where the maxi-
mum relative errors of estimated engine degenerations

are below 2% and the deviations of engine performance
parameters are almost close to zero. In comparison with
BP-NN, the proposed method can achieve a higher esti-

mating precision with similar computing time about
1 ms.
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