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In this article we analyze the implicitization problem of the im-
age of a rational map φ : X ��� P

n , with X a toric variety of
dimension n − 1 defined by its Cox ring R . Let I := ( f0, . . . , fn)

be n + 1 homogeneous elements of R . We blow-up the base lo-
cus of φ, V (I), and we approximate the Rees algebra ReesR (I) of
this blow-up by the symmetric algebra SymR (I). We provide under
suitable assumptions, resolutions Z• for SymR(I) graded by the di-
visor group of X , Cl(X ), such that the determinant of a graded
strand, det((Z•)μ), gives a multiple of the implicit equation, for
suitable μ ∈ Cl(X ). Indeed, we compute a region in Cl(X ) which
depends on the regularity of SymR (I) where to choose μ. We also
give a geometrical interpretation of the possible other factors ap-
pearing in det((Z•)μ). A very detailed description is given when
X is a multiprojective space.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The interest in computing explicit formulas for resultants and discriminants goes back to Bézout,
Cayley, Sylvester and many others in the eighteenth and nineteenth centuries. The last few decades
have yielded a rise of interest in the implicitization of geometric objects motivated by applications in
computer aided geometric design and geometric modeling as can be seen in for example in [Kal91,
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MC92b,MC92a,AGR95,SC95]. This phenomena has been emphasized in the latest years due to the
increase of computing power (cf. [AS01,CoX01,BCD03,BJ03,BC05,BCJ09,BD07,Bot09,BDD09,Bot10b]).

Under suitable hypotheses, resultants give the answer to many problems in elimination theory,
including the implicitization of rational maps. In turn, both resultants and discriminants can be seen
as the implicit equation of the image of a suitable map (cf. [DFS07]). Lately, rational maps appeared
in computer-engineering contexts, mostly applied to shape modeling using computer-aided design
methods for curves and surfaces. A very common approach is to write the implicit equation as the
determinant of a matrix whose entries are easy to compute.

Rational algebraic curves and surfaces can be described in several different ways, the most com-
mon being parametric and implicit representations. Parametric representations describe such curve or
surface as the image of a rational map, whereas implicit representations describe it as the zero locus
of a certain algebraic equation, e.g. as the zeros of a polynomial. Both representations have a wide
range of applications in Computer Aided Geometric Design (CAGD), and depending on the problem
one needs to solve, one or the other might be better suited. It is thus interesting to be able to pass
from parametric representations to implicit equations. This is a classical problem and there are nu-
merous approaches to its solution. For a good historical overview on this subject we refer the reader
to [SC95] and [CoX01].

Assume x(s, t, u), y(s, t, u), z(s, t, u) and w(s, t, u) are homogeneous polynomials of the same de-
gree d such that the parametrization

(s : t : u) �→
(

x(s, t, u)

w(s, t, u)
: y(s, t, u)

w(s, t, u)
: z(s, t, u)

w(s, t, u)
: 1

)
(1)

defines a surface in P3. The implicitization problem consists in the computation of a homogeneous
polynomial H(X, Y , Z , W ) whose zero locus defines the scheme-theoretic closure of the surface given
as the image of the parametrization.

However, it turns out that the implicitization problem is computationally difficult. The implicit
equation can always be found using Gröbner bases. However, complexity issues mean that in practice,
this method is rarely used in geometric modeling, especially in situations where real-time modeling is
involved. A more common method for finding the implicit equation is to eliminate s, t, u by computing
the resultant of the three polynomials

x(s, t, u) − X w(s, t, u), y(s, t, u) − Y w(s, t, u), z(s, t, u) − Z w(s, t, u).

But in many applications, the resultant vanishes identically due to the presence of base points, which
are common zeros in P2 of all polynomials x, y, z and w .

In consequence, the search of formulas for implicitization rational surfaces with base points is
a very active area of research due to the fact that, in practical industrial design, base points show
up quite frequently. In [MC92a], a perturbation is applied to resultants in order to obtain a nonzero
multiple of the implicit equation. Many other approaches have been done in this direction. Lately,
in [BJ03,BC05,BCJ09,BD07,BDD09,Bot10b] it is shown how to compute the implicit equation as the
determinant of the approximation complexes.

In [KD06,BD07,BDD09,Bot10b] different compactifications of the domain have been considered in
order to erase base points, emphasizing the choice of the toric compactifications that better suits the
monomial structure of the defining polynomials.

In this article, we present a method for computing the implicit equation of a hypersurface given
as the image of a finite rational map φ : X ��� Pn , where X is a normal toric variety of dimension
n − 1. In [BDD09] and [Bot10b], the approach consisted in embedding X into a projective space,
via a toric embedding. The need of the embedding comes from the necessity of a Z-grading in the
coordinate ring of X , in order to study its regularity.

Our contribution is to exploit the natural structure of the homogeneous coordinate ring of the toric
variety where the map is defined. Thus, we present a novel approach to the method in [BD07,BDD09]
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and [Bot10b] avoiding embedding the toric variety, and dealing with the homogeneous structure in a
more natural way.

Indeed, we deal with the multihomogeneous structure of the coordinate ring R of X , whose
grading is given by the divisor class group of X , Cl(X ). The main motivations for our change of
perspective are that it is more natural to deal with the original grading on X , and that the embed-
ding leads to an artificial homogenization process that makes the effective computation slower, as the
number of variables to eliminate increases.

In Definition 4.6 we introduce the “good” region in Cl(X ) where the approximation complex Z•
is acyclic and the symmetric algebra SymR(I) has no B-torsion. Indeed, we define for γ ∈ Cl(X ),

RB(γ ) :=
⋃

0<k<min{m,cdB (R)}

(
SB(γ ) − k · γ ) ⊂ Cl(X ).

This goes in the direction of proving the main theorem of this article, Theorem 5.5. Precisely it asserts
that, if X is an (n − 1)-dimensional non-degenerate toric variety over a field k, and R its Cox ring
(cf. Section 2), given a finite rational map φ : X ��� Pn defined by n + 1 homogeneous elements of
degree γ ∈ Cl(X ) with dim(V (I)) � 0 in X and V (I) is almost a local complete intersection off
V (B), we prove in Theorem 5.5 that,

det
(
(Z•)μ

) = Hdeg(φ) · G ∈ k[T],
for all μ /∈ RB(γ ), where H stands for the irreducible implicit equation of the image of φ, and G
is relatively prime polynomial in k[T]. This result generalizes to the setting of abstract toric varieties
theorems [BJ03, Thm. 5.7] and [Bot10b, Thm. 10 and Cor. 12].

2. The Cox ring of a toric variety

Our main motivation for considering regularity in general G-gradings comes from toric geometry.
Among G-graded rings, homogeneous coordinate rings of a toric varieties are of particular interest
in geometry. In this section, we will overview some basic facts about Cox rings (cf. [Cox95]). When
X is a toric variety, G := Cl(X ) is the divisor class group of X , also called the Chow group of
codimension one cycles of X . The grading can be related geometrically with the action of this group
on the toric variety, and hence, the graded structure on the ring can be interpreted in terms of global
sections of the structural sheaf of X and in terms of character and valuations (cf. [CLS11]).

Henceforward, let � be a non-degenerate fan in the lattice N ∼= Zn−1, and let X be a toric variety
associated to �. Write �(i) for the set of i-dimensional cones in �. There is a bijection between
the set �(i) and the set of closed i-dimensional subvarieties of X . In particular, each ρ ∈ �(1)

corresponds to the Weil divisor Dρ ∈ Z�(1) ∼= Zn−1.
Suppose that ρ1, . . . , ρs ∈ �(1) are the one-dimensional cones of � and assume �(1) spans

Rn−1. As before, ηρi denotes the primitive generator of ρi ∩ N . There is a map M
ρ−→ Z�(1) : m �→∑s

i=1〈m, ηρi 〉Dρi . We will identify [Dρi ] with a variable xi .
The divisor classes correspond to the elements of the cokernel Cl(X ) of this map ρ , getting an

exact sequence

0 → Zn−1 ∼= M
ρ−→ Zs π−→ Cl(X ) → 0.

Set R := k[x1, . . . , xs]. From the sequence above we introduce in R a Cl(X )-grading, which is
coarser than the standard Zn−1-grading.

To any non-degenerate toric variety X , is associated an homogeneous coordinate ring, called the
Cox ring of X (cf. [Cox95]). D.A. Cox defines [Cox95] the homogeneous coordinate ring of X to be
the polynomial ring R together with the given Cl(X )-grading. We next discuss briefly this grading.
A monomial

∏
xai

i determines a divisor D = ∑
i ai Dρi , this monomial will be denoted by xD . For a

monomial xD ∈ R we define its degree as deg(xD) = [D] in Cl(X ).
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Cox remarks [Cox95] that the set �(1) is enough for defining the graded structure of R , but the
ring R and its graded structure does not suffice for reconstructing the fan. In order not to lose the fan
information, we need to consider the irrelevant ideal

B :=
( ∏

ηρi /∈σ

xi : σ ∈ �

)
,

where the product is taken over all the ηρi such that the ray ρi is not contained as an edge in
any cone σ ∈ �. Finally, the Cox ring of X will be the Cl(X )-graded polynomial ring R , with the
irrelevant ideal B .

Given a Cl(X )-graded R-module M , Cox constructs a quasi-coherent sheaf M∼ on X by localiz-
ing just as in the case of projective space, and he shows that finitely generated modules give rise to
coherent sheaves. It was shown by Cox (cf. [Cox95]) for simplicial toric varieties, and by Mustaţa in
general (cf. [Mus02]), that every coherent OX -module may be written as M∼ , for a finitely generated
Cl(X )-graded R-module M .

For any Cl(X )-graded R-module M and any δ ∈ Cl(X ) we may define M[δ] to be the graded
module with components M[δ]ε = Mδ+ε and we set

Hi∗
(
X , M∼) :=

⊕
δ∈Cl(X )

Hi(X , M[δ]∼)
.

We have H0(X , OX (δ)) = Rδ , the homogeneous piece of R of degree δ, for each δ ∈ Cl(X ). In fact
each Hi∗(X , OX ) is a Zn−1-graded R-module. For i > 0, by (cf. [Mus02, Prop. 1.3]),

Hi∗
(
X , M∼) ∼= Hi+1

B (M) := lim−→
j

Exti
R

(
R/B j, R

)
(2)

and there is an exact sequence 0 → H0
B(M) → M → H0∗(X , M∼) → H1

B(M) → 0.
We will use these results in the following sections for computing the vanishing regions of local

cohomology of Koszul cycles.

3. Regularity for G-graded Koszul cycles and homologies

Throughout this article let G be a finitely generated abelian group, and let R be a commutative
Noetherian G-graded ring with unity. Let B be an homogeneous ideal of R . Take m a positive integer
and let f := ( f0, . . . , fm) be a tuple of homogeneous elements of R , with deg( f i) = γi , and set γ :=
(γ0, . . . , γm). Write I = ( f0, . . . , fm) for the homogeneous R-ideal generated by the f i .

As we mentioned, our main motivation for considering regularity in general G-gradings comes
from toric geometry. When X is a toric variety, G := Cl(X ) is the divisor class group of X . In this
case, the grading can be related geometrically with the action of this group on the toric variety. Thus,
it is of particular interest the case where R is a polynomial ring in n variables and G = Zn/K , is a
quotient of Zn by some subgroup K and quotient map π . Note that, if M is a Zn-graded module over
a Zn-graded ring, and G = Zn/K , we can give to M a G-grading coarser than its Zn-grading. For this,
define the G-grading on M by setting, for each μ ∈ G, Mμ := ⊕

d∈π−1(μ) Md .
Next, we present several results concerning vanishing of graded parts of certain modules. In our

applications we will mainly focus on vanishing of Koszul cycles and homologies. We recall here what
the support of a graded modules M is.

In order to fix the notation, we state the following definitions concerning local cohomology of
graded modules, and support of a graded modules M on G. Recall that the cohomological dimension
cdB(M) of a module M is defined as cdB(M) := inf{i ∈ Z: H j

B(M) = 0 ∀ j > i} and that depthB(M) :=
inf{i ∈ Z: Hi

B(M) �= 0}. We will write grade(B) := depthB(R).
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Definition 3.1. Let M be a G-graded R-module, the support of the module M in G is SuppG(M) :=
{μ ∈ G: Mμ �= 0}.

Theorem 3.2. For a complex C• of graded R-modules, assume that one of the following conditions holds:

1. For some q ∈ Z, H j(C•) = 0 for all j < q and, cdB(H j(C•)) � 1 for all j > q.
2. cdB(H j(C•)) � 1 for all j ∈ Z.

Then for any i,

SuppG
(

Hi
B

(
H j(C•)

)) ⊂
⋃
k∈Z

SuppG
(

Hi+k
B (C j+k)

)
.

Proof. Consider the two spectral sequences that arise from the double complex Č•
B C• . The first spec-

tral sequence has as second screen ′
2 Ei

j = Hi
B(H j(C•)). From (1) or (2), we deduce that ′

2 Ei
j = 0

for j �= 0 and i �= 0,1, and for either j < 0 or for j = 0 and i �= 0,1. It follows that ′∞Ei
j = ′

2 Ei
j =

Hi
B(H j(C•)).

The second spectral sequence has as first screen ′′
1 Ei

j = Hi
B(C j).

By comparing both spectral sequences, we deduce that, for fixed μ ∈ G, the vanishing of
Hi+k

B (C j+k)μ for all k implies the vanishing of Hi
B(H j(C•))μ . �

We see from Theorem 3.2 that much of the information on the supports of the local cohomologies
of the homologies of a complex C• is obtained from the supports of the local cohomologies of the
complex. For instance, if C• is a free resolution of a graded R-module M , the supports of the local
cohomologies of M can be controlled in terms of the supports of the local cohomologies of the base
ring R , and the shifts appearing in the Ci ’s.

In order to lighten the reading of this article, we extend the definition as follows:

Definition 3.3. Let M be a graded R-module. For every γ ∈ G, we define

SB(γ ; M) :=
⋃
k�0

(
SuppG

(
Hk

B(M)
) + k · γ )

. (3)

We will write SB(γ ) := SB(γ ; R).

For an R-module M , we denote by M[μ] the shifted module by μ ∈ G, with M[μ]γ := Mμ+γ ,
hence, SB(γ ; M[μ]) = SB(γ ; M) − μ.

We apply Theorem 3.2 in the particular case where C• is a Koszul complex and we bound the
support of the local cohomologies of its homologies in terms of the sets SB(γ ; M). Indeed, let M be
a G-graded R-module. Denote by K M• the Koszul complex K•(f; R) ⊗R M . If f = { f0, . . . , fm} and f i

are G-homogeneous elements of R of the same degree γ for all i, the Koszul complex K M• is G-graded
with Ki := ⊕

l0<···<li
R(−i ·γ ). Let Z M

i and BM
i be the Koszul i-th cycles and boundaries modules, with

the grading that makes the inclusions Z M
i , BM

i ⊂ K M
i a map of degree 0 ∈ G, and set H M

i = Z M
i /BM

i .

Corollary 3.4. If cdB(H M
i ) � 1 for all i > 0. Then, for all j � 0

SuppG
(

Hi
B

(
H M

j

)) ⊂
⋃
k�0

(
SuppG

(
Hk

B(M)
) + k · γ ) + ( j − i) · γ .
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Proof. This follows by a change of variables in the index k in Theorem 3.2. Since C• is K M• and
K M

i := ⊕
l0<···<li

M(−i · γ ), we get that

SuppG
(

Hi
B

(
H M

j

)) ⊂
⋃
k�0

SuppG
(

Hk
B

(
K M

k+ j−i

)) =
⋃
k�0

SuppG
(

Hk
B(M)

[
(i − k − j) · γ ])

.

The conclusion follows by shifting degrees. �
Remark 3.5. In the special case where M = R , we deduce that if cdB(Hi) � 1 for all i > 0, then

SuppG
(

Hi
B(H j)

) ⊂
⋃
k�0

(
SuppG

(
Hk

B(R)
) + k · γ ) + ( j − i) · γ , for all i, j.

Thus, if cdB(H M
i ) � 1 for all i > 0, then, for all j � 0

SuppG
(

Hi
B

(
H M

j

)) ⊂ SB(γ ; M) + ( j − i) · γ .

Remark 3.6. Write I := ( f1, . . . , fm). The case j = 0 in Remark 3.5 gives

SuppG
(

Hi
B(R/I)

) ⊂
⋃
k�0

(
SuppG

(
Hk

B(R)
) + (k − i) · γ )

, for all i.

The next result determines the supports of Koszul cycles in terms of the sets SB(γ ). This will
be essential in our applications, since the acyclicity region of the Z -complex and the torsion of the
symmetric algebra SymR(I) will be computed directly from these regions.

Lemma 3.7. Assume f0, . . . , fm ∈ R are homogeneous elements of same degree γ . Write I = ( f0, . . . , fm). Fix
a positive integer c. If cdB(R/I) � c, then the following hold:

1. SuppG(Hi
B(Zq)) ⊂ (SB(γ ) + (q + 1 − i) · γ ) ∪ (

⋃
k�0 SuppG(Hi+k

B (Hk+q)) · γ ), for i � c and all q � 0.

2. SuppG(Hi
B(Zq)) ⊂ SB(γ ) + (q + 1 − i) · γ , for i > c and all q � 0.

Proof. Consider K�q• : 0 → Km+1 → Km → ·· · → Kq+1 → Zq → 0 the truncated Koszul complex. The

double complex Č•
B(K�q• ) gives rise to two spectral sequences. The first one has second screen ′

2 Ei
j =

Hi
B(H j). This module is 0 if i > c or if j > m + 1 − grade(I). The other one has as first screen

′′
1 Ei

j =

⎧⎪⎨
⎪⎩

Hi
B(K j) for all i > r, and j < q,

Hi
B(Zq) for q = j,

0 for all i � r, and j < q.

From the second spectral sequence we deduce that, if μ ∈ G is taken in such a way that
Hi+k

B (Kq+k+1)μ vanishes for all k � 0, then (′′∞Ei
q)μ = Hi

B(Zq)μ . Hence, if

μ /∈
⋃
k�0

SuppG
(

Hi+k
B (Kk+q+1)

) =
⋃
k�0

SuppG
(

Hk+i
B (R)

[−(k + q + 1) · γ ])
, (4)

then (′′∞Ei
q)μ = Hi

B(Zq)μ .

Comparing both spectral sequences, we have μ /∈ ⋃
k�0 SuppG(Hi+k

B (Hk+q)), we get (′′∞Ei
q)μ = 0.

This last condition is automatic for i > c since Hi+k
B (Hk+q) = 0 for all k � 0. �
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Corollary 3.8. Assume f0, . . . , fm ∈ R are homogeneous elements of degree γ . Write I = ( f0, . . . , fm). Fix an
integer q. If cdB(R/I) � 1, then the following hold:

1. For i = 0,1, SuppG(Hi
B(Zq)) ⊂ (SB(γ ) + (q − i) · γ ) ∪ (SB(γ ) + (q + 1 − i) · γ ).

2. For i > 1, SuppG(Hi
B(Zq)) ⊂ SB(γ ) + (q + 1 − i) · γ .

Proof. Since SuppG(Hi+k
B (Hk+q)) ⊂ SB(γ ) + (q − i) · γ for all k � 0 by Remark 3.5, gathering together

this with Eq. (4) and Lemma 3.7, the result follows. �
Remark 3.9. We also have empty support for Koszul cycles in the following cases:

1. If grade(B) �= 0, H0
B(Z p) = 0 for all p > 0.

2. If grade(B) � 2, H1
B(Z p) = 0 for all p > 0.

Proof. The first claim follows from the inclusion Z p ⊂ K p and the second from the exact sequence
0 → Z p → K p → B p−1 → 0 that gives 0 → H0

B(B p−1) → H1
B(Z p) → H1

B(K p), with H0
B(B p−1) as

B p−1 ⊂ K p−1. �
4. G-graded approximation complexes

We treat in this part the case of a finitely generated abelian group G acting on a polynomial ring R .
Write R := k[X1, . . . , Xn]. Take H a subgroup of Zn and assume G = Zn/H .

Take m + 1 homogeneous elements f := f0, . . . , fm ∈ R of fixed degree γ ∈ G. Set I = ( f0, . . . , fm)

the homogeneous ideal of R defined by f. Recall that ReesR(I) := ⊕
l�0(It)l ⊂ R[t]. It is important to

observe that the grading in ReesR(I) is taken in such a way that the natural map α : R[T0, . . . , Tm] →
ReesR(I) ⊂ R[t] : Ti �→ f it is of degree zero, and hence, (It)l ⊂ Rlγ ⊗k k[t]l .

Let T := T0, . . . , Tm be m + 1 indeterminates. There is a surjective map of rings α : R[T] � ReesR(I)
with kernel p := ker(α).

Remark 4.1. Observe that p ⊂ R[T] is (G × Z)-graded. Set p(μ;b) ⊂ Rμ ⊗k k[T]b , and p(∗,0) = 0. Denote
b := (p(∗,1)) = ({∑ gi Ti : gi ∈ R,

∑
gi f i = 0}). In other words, b is R[T]-ideal generated by Syz(f).

The natural inclusion b ⊂ p gives a surjection β : SymR(I) ∼= R[T]/b � R[T]/p ∼= ReesR(I) that
makes the following diagram commute

0 b R[T] SymR(I)

β

0

0 p R[T] α
ReesR(I) 0

(5)

Set K• = K R• (f) for the Koszul complex of f over the ring R . Write Ki := ∧i R[−iγ ]m+1, and Zi
and Bi for the i-th module of cycles and boundaries respectively. We write Hi = Hi(f; R) for the i-th
Koszul homology module.

We write Z• , B• and M• for the approximation complexes of cycles, boundaries and homologies
(cf. [HSV82,HSV83] and [Vas94]). Define Z = Z[γ ] ⊗R R[T], where (Z[γ ])μ = (Z)γ +μ . Similarly
we define B = B[γ ] ⊗R R[T] and M = H[γ ] ⊗R R[T]. Note that since R[T] is (G × Z)-graded,
then also the complexes Z• , B• and M• are (G × Z)-graded.

Let us recall some basic facts about approximation complexes that will be useful in the sequel. In
particular, recall that the ideal J ⊂ R is said to be of linear type if SymR(I) � ReesR(I) (cf. [Vas94]).

Definition 4.2. The sequence a1, . . . ,a in R is said to be a proper sequence if ai+1 H j(a1, . . . ,ai; R)= 0,
for all 0 � i � , 0 < j � i.
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Notice that an almost complete intersection ideal is generated by a proper sequence.
Henceforward, we will denote Hi := Hi(Z•) for all i.

Lemma 4.3. With the notation above, the following statements hold:

1. H0 = SymR(I).
2. Hi is a SymR(I)-module for all i.
3. If the ideal I can be generated by a proper sequence then Hi = 0 for i > 0.
4. If I is generated by a d-sequence, then it can be generated by a proper sequence, and moreover, I is of

linear type.

Proof. For a proof of these facts we refer the reader to [Vas94] or [HSV83]. �
Assume the ideal V (I) = V (f) is of linear type off V (B), that is, for every prime q �⊃ B ,

(SymR(I))q = (ReesR(I))q . The key point of study is the torsion of both algebras as k[T]-modules.
Precisely, by the same arguments as in the homogeneous setting, we have the following result.

Lemma 4.4. With the notation above, we have

1. annk[T]((ReesR(I))(ν,∗)) = p ∩ k[T] = ker(φ∗), if Rν �= 0;
2. if V (I) is of linear type off V (B) in Spec(R), then

SymR(I)/H0
B

(
SymR(I)

) = ReesR(I).

Proof. The first part follows from the fact that p is G × Z-homogeneous and as ReesR(I) is a domain,
there are no zero-divisors in R . By localizing at each point of Spec(R) \ V (B) we have the equality of
the second item. �

This result suggest that we can approximate one algebra by the other, when they coincide outside
V (B).

Lemma 4.5. Assume B ⊂ rad(I), then Hi is B-torsion for all i > 0.

Proof. Let p ∈ Spec(R) \ V (B). In particular p ∈ Spec(R) \ V (I), hence, (Hi)p = 0. This implies that the
complex M• (cf. [HSV83]) is zero, hence acyclic, after localization at p. It follows that (Z•)p is also
acyclic [BJ03, Prop. 4.3]. �

We now generalize Lemma 4.5 for the case when V (I) � V (B). The condition B ⊂ rad(I) can be
carried to a cohomological one, by saying cdB(R/I) = 0. Note that V (I) is empty in X , if V (I) ⊂ V (B)

in Spec(R), which is equivalent to Hi
B(R/I) = 0 for i > 0. This hypothesis can be relaxed by bounding

cdB(R/I).
We will consider cdB(R/I) � 1 for the sequel in order to have convergence of the horizontal spec-

tral sequence ′E at step 2.
Before getting into the next result, recall that Zq := Zq[q · γ ] ⊗k k[T]. Furthermore, if grade(B) � 2,

it follows that

SuppG
(

Hk
B(Zq+k)

) = SuppG
(

Hk
B(Zq+k)

) − q · γ ⊂ SB(γ ) + (1 − k) · γ . (6)

Observe, that none of this sets on the right depend on q, thus, we define:
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Definition 4.6. For γ ∈ G, set

RB(γ ) :=
⋃

0<k<min{m,cdB (R)}

(
SB(γ ) − k · γ ) ⊂ G.

Theorem 4.7. Assume that grade(B) � 2 and cdB(R/I) � 1. Then, if μ /∈ RB(γ ),

Hi
B(H j)μ = 0, for all i, j.

Proof. Consider the two spectral sequences that arise from the double complex Č•
B Z• . Since

supp(H p) ⊂ I , the first spectral sequence has at second screen ′
2 Ei

j = Hi
B(H j). The condition

cdB(R/I) � 1 gives that this spectral sequence stabilizes as ′
2 Ei

j = 0 unless j = 0 or, i = 0,1 and
j > 0.

The second spectral sequence has at first screen ′′
1 Ei

j = Hi
B(Z j). Since R[T] is R-flat, Hi

B(Z j) =
Hi

B(Z j[ jγ ]) ⊗k k[T]. From and Remark 3.9 the Hi(Z j) = 0 for i = 0,1 and j > 0. Comparing both
spectral sequences, we deduce that the vanishing of Hk

B(Z p+k)μ for all k, implies the vanishing of
Hk

B(H p+k)μ for all k > 1. Finally, from Eq. (6) we have that if μ /∈ RB(γ ) (which do not depend
on p), then we obtain Hi

B(H j)μ = 0. �
Lemma 4.8. Assume grade(B) � 2, cdB(R/I) � 1 and Ip is almost a local complete intersection for every
p /∈ V (B). Then, for all μ /∈ RB(γ ), the complex (Z•)μ is acyclic and H0

B(SymR(I))μ = 0.

Proof. Since Ip is almost a local complete intersection for every p /∈ V (B), Z• is acyclic off V (B).
Hence, Hq is B-torsion for all positive q. Since Hq is B-torsion, Hk

B(Hq) = 0 for k > 0 and H0
B(Hq) =

Hq . From Theorem 4.7 we have that (Hq)μ = 0, and H0
B(H0)μ = 0. �

Remark 4.9. Observe that Theorem 4.7 and Lemma 4.8 provide acyclicity statements of some graded
strands of the Z -complex, equivalently, acyclicity as a complex of sheaves over X . In the multigraded
case, acyclicity in “good” degree does not imply acyclicity of the complex, differently to the situation
in the Z-graded case (cf. [BJ03]).

5. Implicitization of toric hypersurfaces in PPPn

In this section, we present and discuss the formal structure of the closed image of rational maps
defined over a toric variety and how to compute an implicit equation of it. This subject has been
investigated in several articles with many different approaches. The problem of computing the im-
plicit equations defining the closed image of a rational map is an open research area with several
applications.

Let X be a non-degenerate toric variety over a field k, � be its fan in the lattice N ∼= Zd corre-
sponding to X , and write �(i) for the set of i-dimensional cones in � as before. Denote by R the
Cox ring of X (cf. Section 2).

Henceforward, we will focus on the study of the elimination theory à la Jouanolou–Busé–Chardin
(see for example [BJ03,BC05,BCJ09]). This aim brings us to review some basic definitions and proper-
ties.

Assume we have a rational map φ : X ��� Pm , defined by m + 1 homogeneous elements f :=
f0, . . . , fm ∈ R of fixed degree γ ∈ Cl(X ). Precisely, any cone σ ∈ � defines an open affine set Uσ

(cf. [Cox95]), and two elements f i, f j define a rational function f i/ f j on some affine open set Uσ , and
this σ can be determine from the monomials appearing in f j . In particular, if X is a multiprojective
space, then f i stands for a multihomogeneous polynomial of multidegree γ ∈ Z�0 × · · · × Z�0.

We recall that for any Cl(X )-homogeneous ideal J , ProjX (R/ J ) simply stands for the gluing of
the affine scheme Spec((R/ J )σ ) on every affine chart Spec(Rσ ), to X . It can be similarly done to
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define from Cl(X ) × Z-homogeneous ideals of R ⊗k k[T], subschemes of X ×k Pm , and this projec-
tivization functor will be denoted ProjX ×Pm (−). The graded-ungraded scheme construction will be
denoted by ProjX ×Am+1(−). For a deep examination on this subject, we refer the reader to [Ful93],
and [Cox95].

Definition 5.1. Set I := ( f0, . . . , fn) ideal of R . Define S := ProjX (R/I) and S red := ProjX (R/

rad(I)), the base locus of φ. denote by Ω := X \ S , the domain of definition of φ.
Let Γ0 denote the graph of φ over Ω , and Γ := Γ0 its closure in X × Pm . Scheme-theoretically

we have Γ = ProjX ×Pm (ReesR(I)), where ReesR(I) := ⊕
l�0(It)l ⊂ R[t].

Recall that the two surjections, R[T] � SymR(I) and β : SymR(I) � ReesR(I), established on dia-
gram (5), correspond to a chain of embedding Γ ⊂ Υ ⊂ X × Pm , where Υ = ProjX ×Pm (SymR(I)).

Assume the ideal I is of linear type off V (B), that is, for every prime q �⊃ B , (SymR(I))q =
(ReesR(I))q . Since the functors Sym and Rees commute with localization, ProjX ×Pm (SymR(I)) =
ProjX ×Pm (ReesR(I)), that is Υ = Γ in X × Pm . Moreover, ProjX ×Am+1(SymR(I)) and
ProjX ×Am+1(ReesR(I)) coincide in X ×Am+1. Recall that this in general does not imply that SymR(I)
and ReesR(I) coincide, in fact this is almost never true: as ReesR(I) is the closure of the graph of φ

which is irreducible, it is an integral domain, hence, torsion free; on the other hand, SymR(I) is
almost never torsion free.

Remark 5.2. By definition of B , it can be assumed without loss of generality that grade(B) � 2.

Hereafter, we will assume that grade(B) � 2.

Lemma 5.3. If dim(V (I)) � 0 in X , then cdB(R/I) � 1.

Proof. For any finitely generated R-module M and all i > 0, from Eq. (2) Hi∗(X , M∼) ∼= Hi+1
B (M).

Applying this to M = R/I , for all γ ∈ Cl(X ) we get that

Hi(X , (R/I)∼(γ )
) = Hi(V (I), OV (I)(γ )

)
,

that vanishes for i > 0, since dim V (I) � 0. �
Lemma 5.4. Let X be a toric variety with Cox ring R, graded by the group G, with irrelevant ideal B. Let J ⊂ R
be an homogeneous ideal of R. Write Z = ProjX (R/ J ), and assume that dim Z = 0 in X , then, if μ ∈ G is
such that H0

B(R/ J )μ = H1
B(R/ J )μ = 0 then dim(R/ J )μ = deg(Z).

Proof. Consider the exact sequence (2) for M = R/ J in degree μ ∈ G

0 → H0
B(R/ J )μ → (R/ J )μ → H0∗

(
X , (R/ J )∼(μ)

) → H1
B(R/ J )μ → 0.

Since Z is zero-dimensional, and X compact, assume Z = Z1 � · · · � Z . We have that H0∗(X ,

(R/ J )∼(μ)) ∼= H0∗(Z , O Z (μ)) = ⊕
1�i�H0∗(Zi, O Zi (μ)). Thus, since H0∗(Zi, O Zi (μ)) = kmultX (Zi) , we

conclude that

dim
(
(R/ J )μ

) =
∑

1�i�

multX (Zi) = deg(Z). �

Theorem 5.5. Let X be an (n − 1)-dimensional non-degenerate toric variety over a field k, and R its Cox ring.
Let φ : X ��� Pn be a rational map, defined by d + 1 homogeneous elements f0, . . . , fd ∈ R of fixed degree
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γ ∈ Cl(X ). Denote I = ( f0, . . . , fn). If dim(V (I)) � 0 in X and V (I) is almost a local complete intersection
off V (B), then

det
(
(Z•)μ

) = Hdeg(φ) · G ∈ k[T],

for all μ /∈ RB(γ ), where H stands for the irreducible implicit equation of the image of φ , and G is relatively
prime polynomial in k[T].

Proof. This result follows in the standard way, similar to the cases of implicitization problems in
other contexts.

Recall that Γ is the closure of the graph of φ, hence, defined over Ω . The bihomogeneous structure

in R ⊗k k[T] gives rise to two natural scheme morphisms π1 and π2: X
π1← X ×k Pn π2−→ Pn . It follows

directly that π2 = π1 ◦ φ over the graph of φ, π−1
1 (Ω).

From Theorem 5.5, the complex of OPn -modules (Z•)∼ is acyclic over X ×k Pn . We can easily
verify that this complex has support in Υ , hence, H0(X ×k Pn, (Z•)∼) = H0(Υ, (Z•)∼) = SymR(I).
Naturally, the factor G defines a divisor in Pn with support on π2(Υ \ Γ ), and Υ and Γ coincide
outside S × Pn .

Following [KM76], due to the choice of μ /∈ RB(γ ), one has:

[
det

(
(Z•)ν

)] = divk[X]
(

H0(Z•)μ
) = divk[X]

(
SymR(I)μ

)
=

∑
q prime,

codimk[X](q)=1

lengthk[X]q
((

SymR(I)μ
)
q

)[q].

Thus, for all μ /∈ RB(γ ), we obtain

[
det

(
(Z•)μ

)] = lengthk[X](H)

((
SymR(I)μ

)
(H)

)[
(H)

]

+
∑

q prime,
V (q) �⊂V (H),

codimk[X](q)=1

lengthk[X]q
((

SymR(I)μ
)
q

)[q].

It follows that the first summand is the divisor associated to the irreducible implicit equation H ,
and the second one, the divisor associated to G . We write p := (H) and κ(p) := R[X](p)/(p)R[X]p .
We will show that lengthk[X]p ((SymR(I)μ)p) = deg(φ). Observe that for every μ ∈ G we have

(SymR(I)/H0
B(SymR(I))μ)p = (ReesR(I)μ)p . For every μ ∈ G we have

lengthk[X]p
((

ReesR(I)μ
)
p

) = dimκ(p)

((
ReesR(I) ⊗R[X]p κ(p)

)
μ

)
.

Since deg(π1) = 1, we have that dimκ(p)((ReesR(I) ⊗R[X]p κ(p))μ) = dimk((R/(π1)∗(pR[X]p))μ).
The results follow from Lemma 5.4 taking J = (π1)∗(pR[X]p) and μ /∈ RB(γ ). �

We next give a detailed description of the extra factor G , as given in [BCJ09, Prop. 5].

Lemma 5.6. Let X , R, φ : X ��� Pn, H and G be as in Theorem 5.5. If k is algebraically closed, then G can
be written as

G =
∏

q prime, V (q) �⊂V (H),
codim (q)=1

L
eq−lq
q

k[X]



392 N. Botbol / Journal of Algebra 348 (2011) 381–401
in k[T], where eq stands for the Hilbert–Samuel multiplicity of SymR(I) at q, and the number lq denotes
lengthk[X]q ((SymR(I)μ)q).

Proof. The proof follows the same lines of that of [BCJ09, Prop. 5]. Since R is a Cohen–Macaulay ring
and for every x ∈ S , the local ring OX ,x = Rx is Cohen–Macaulay, [BCJ09, Lemma 6] can be applied
verbatim. �

The main idea behind Lemma 5.6 is that only non-complete intersections points in S yield the
existence of extra factors as in [BCJ09,BDD09] and [Bot10b]. Indeed, if I is locally a complete inter-
section at q ∈ S , then Iq is of linear type, hence, (SymR(I))q and (ReesR(I))q coincide. Thus, the
schemes ProjX ×Pm (SymR(I)) and ProjX ×Pm (ReesR(I)) coincide over q.

6. Multiprojective spaces and multigraded polynomial rings

In this section we focus on a better understanding of the multiprojective case. This is probably the
most important family of varieties in the applications among toric varieties. Here we take advantage
of the particular structure of the ring. This will permit us to make precise the acyclicity regions RB(γ )

as subregions of Zs .
The problem of computing the implicit equation of a rational multiprojective hypersurface is one

the most important among toric cases of implicitization. The theory follows as a particular case of
the one developed in the section before, but many results can be better understood. In this case, the
grading group is Zs , which permits a deeper insight in the search for a “good zone” RB for γ .

For the rest of this section, we will keep the following convention. Let s and m be fixed positive
integers, r1 � · · · � rs non-negative integers, and write xi = (xi,0, . . . , xi,ri ) for 1 � i � s. Write Ri :=
k[xi] for 1 � i � s, R = ⊗

k Ri , and R(a1,...,as) := ⊗
k(Ri)ai stands for its bigraded part of multidegree

(a1, . . . ,as). Hence, dim(Ri) = ri + 1, and dim(R) = r + s, and
∏

1�i�s Pri = Multiproj(R). Set ai :=
(xi) an ideal of Ri , and the irrelevant ideal B := ⋂

1�i�s ai = a1 · · ·as defining the empty locus of
Multiproj(R). Let f0, . . . , fn ∈ ⊗

k k[xi] be multihomogeneous polynomials of multidegree di on xi .
Assume we are given a rational map

φ :
∏

1�i�s

Pri ��� Pn : x �→ ( f0 : · · · : fn)(x). (7)

Take n and ri such that n = 1 + ∑
1�i�s ri . Set I := ( f0, . . . , fm) for the multihomogeneous ideal of R ,

and X = Multiproj(R/I) the base locus of φ.
Set-theoretically, write V (I) for the base locus of φ, and Ω := ∏

1�i�s Pri \ V (I) the domain of

definition of φ. Let Γ0 denote the graph of φ over Ω , and Γ := Γ0 its closure in (
∏

1�i�s Pri ) × Pm .

Scheme-theoretically we have Γ = Multiproj(ReesR(I)), where ReesR(I) := ⊕
l�0(It)l ⊂ R[t].

The grading in ReesR(I) is taken in such a way that the natural map

α : R[T0, . . . , Tm] → ReesR(I) ⊂ R[t] : Ti �→ f it

is of degree zero, and hence (It)l ⊂ R(ld1,...,lds) ⊗k k[t]l .

Remark 6.1. From Lemma 5.3 we have that if dim(V (I)) � 0 in Pr1 × · · · × Prs , then cdB(R/I) � 1.

We give here a more detailed description of the local cohomology modules H
B(R) that is needed

for the better understanding of the region RB(γ ).

6.1. The local cohomology modules H
B(R)

Let k be a commutative Noetherian ring, s and m be fixed positive integers, r1 � · · · � rs non-
negative integers, and write xi , Ri and R as before.
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Definition 6.2. We define Ř i := 1
xi,0···xi,ri

k[x−1
i,0 , . . . , x−1

i,ri
]. Given integers 1 � i1 < · · · < it � s, take α =

{i1, . . . , it} ⊂ {1, . . . , s}, and set Řα := (
⊗

j∈α Ř j) ⊗k (
⊗

j /∈α R j).

Observe that Ř{i} ∼= Ř i ⊗k
⊗

j �=i R j .

Definition 6.3. Let α be a subset of {1, . . . , s}. We define Q ∅ := ∅. For α �= ∅, write α = {i1, . . . , it}
with 1 � i1 < · · · < it � s. For any integer j write sg( j) := 1 if j ∈ α and sg( j) := 0 if j /∈ α. We define

Q α :=
∏

1� j�s

(−1)sg( j)N − sg( j)r je j ⊂ Zs,

the shift of the orthant whose coordinates {i1, . . . , it} are negative and the rest are all positive. We
set ai for the R-ideal generated by the elements in xi , B := a1 · · ·as , aα := ai1 + · · · + ait and |α| =
ri1 + · · · + rit .

Lemma 6.4. For every α ⊂ {1, . . . , s}, we have SuppZs (Řα) = Q α .

Remark 6.5. For α,β ⊂ {1, . . . , s}, if α �= β , then Q α ∩ Q β = ∅.

Lemma 6.6. Given integers 1 � i1 < · · · < it � s, let α = {i1, . . . , it}. There are graded isomorphisms of R-
modules

H |α|+#α
aα (R) ∼= Řα. (8)

Proof. Recall that for any Noetherian ring R and any R-module M , if x0, . . . , xr are variables, then

Hi
(x0,...,xr)

(
M[x0, . . . , xr]

) =
{

0 if i �= r + 1,
1

x0···xr
M[x−1

0 , . . . , x−1
r ] for i = r + 1.

(9)

We induct on |α|. The result is obvious for |α| = 1. Assume that |α| � 2 and (8) holds for |α|−1. Take
I = ai1 · · ·ait−1 and J = ait . There is a spectral sequence H p

J (Hq
I (R)) ⇒ H p+q

I+ J (R). By (9), H p
J (R) = 0 for

p �= rit + 1. Hence, the spectral sequence stabilizes in degree 2, and gives H
rit +1
J (H

|α|−rit −1
I (R)) ∼=

H |α|
I+ J (R). The result follows by applying (9) with M = H

|α|−rit −1
I (R), and the inductive hypothesis. �

Lemma 6.7. With the above notation,

H
B(R) ∼=

⊕
1�i1<···<it�s

ri1 +···+rit +1=

H
ri1 +···+rit +t
ai1 +···+ait

(R) ∼=
⊕

α⊂{1,...,s}
|α|+1=

Řα. (10)

Proof. The second isomorphism follows from 6.6. For proving the first isomorphism, we induct on s.
The result is obvious for s = 1. Assume that s � 2 and (10) holds for s − 1. Take I = a1 · · ·as−1 and
J = as . The Mayer–Vietoris long exact sequence of local cohomology for I and J is

· · · → H
I+ J (R)

ψ→ H
I (R) ⊕ H

J (R) → H
I J (R) → H+1

I+ J (R)
ψ+1−→ H+1

I (R) ⊕ H+1
J (R) → ·· · .

(11)



394 N. Botbol / Journal of Algebra 348 (2011) 381–401
Remark that if  � rs , then H
J (R) = H

I+ J (R) = H+1
I+ J (R) = 0. Hence, H

B(R) ∼= H
I (R). Write R̃ := R1 ⊗k

· · · ⊗k Rs−1. Since the variables xs does not appear on I , by flatness of Rs and the last isomorphism,
we have that H

B(R) ∼= H
B(R̃) ⊗k Rs . In this case, the result follows by induction.

Thus, assume  > rs . We next show that the map ψ in the sequence (11) is the zero map for
all . Indeed, there is an spectral sequence H p

J (Hq
I (R)) ⇒ H p+q

I+ J (R). Since H p
J (R) = 0 for p �= rs + 1, it

stabilizes in degree 2, and gives Hrs+1
J (H−rs−1

I (R)) ∼= H
I+ J (R). We have graded isomorphisms

Hrs+1
J

(
H−rs−1

I (R)
) ∼= Hrs+1

J

(
H−rs−1

I (R̃) ⊗k Rs
) ∼= (

H−rs−1
I (R̃)

)[
x−1

s

]
∼= H−rs−1

I (R̃) ⊗k Řs, (12)

where the first isomorphism comes from flatness of Rs over k, the second isomorphism follows from
Eq. (9) taking M = H−rs−1

I (R̃). By (12) and the inductive hypothesis we have that

Hrs
J

(
H−rs−1

I (R)
) ∼=

⊕
1�i1<···<it−1�s−1

ri1 +···+rit−1 +1=−rs

H
ri1 +···+rit−1
ai1 +···+ait−1+t−1

(R̃) ⊗k Řs. (13)

Now, observe that the map (H−rs−1
I (R̃))[x−1

s ] → H
I (R) ⊕ H

J (R) is graded of degree 0. Recall

from Lemma 6.4 and 6.6, and Remark 6.5 we deduce SuppZs ((H−rs−1
I (R̃))[x−1

s ]) ∩ SuppZs (H
I (R) ⊕

H
J (R)) = ∅. Thus, every homogeneous element on (H−rs−1

I (R̃))[x−1
s ] is necessary mapped to 0.

Hence, for each , we have a short exact sequence

0 → H
I (R) ⊕ H

J (R) → H
I J (R) → Hrs+1

J

(
H+1−rs−1

I (R)
) → 0. (14)

Observe that this sequence has maps of degree 0, and for each degree a ∈ Zs the homogeneous strand
of degree a splits. Moreover,

SuppZs
((

H−rs
I (R̃)

)[
x−1

s

]) � SuppZs
(

H
I (R) ⊕ H

J (R)
) = SuppZs

(
H

I J (R)
)
.

Namely, every monomial in H
I J (R) comes from the module (H−rs

I (R̃))[x−1
s ] or it is mapped to

H
I (R) ⊕ H

J (R) injectively, splitting the sequence (14) of R-modules. Hence,

H
B(R) ∼= H

I (R) ⊕ H
J (R) ⊕ Hrs+1

J

(
H−rs

I (R)
)
.

Now, H
I (R) ∼= H

B(R̃)⊗k Rs , H
J (R) = 0 if  �= rs +1 and Hrs+1

J (R) = Řs . The result follows by induction
and Eq. (13). �

It follows from Section 4 that the “good” region in Zs where the approximation complex Z• and
the symmetric algebra SymR(I) have no B-torsion is, for μ ∈ Zs ,

RB(γ ) :=
⋃

0<k<min{m,cdB (R)}

(
SB(γ ) − k · γ ) ⊂ Zs, (15)

where SB(γ ) := ⋃
k�0(SuppZs (Hk

B(R)) + k · γ ).
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Remark 6.8. It is clear that for γ ∈ Ns , then, (SB(γ ) − k · γ ) ⊃ (SB(γ ) − (k + 1) · γ ) for all k � 0.
Thus, from Definition 4.6, we see that for all γ ∈ Ns ,

RB(γ ) = SB(γ ) − γ .

Corollary 6.9. For γ ∈ Zs , we have that

RB(γ ) =
⋃

α⊂{1,...,s}

(
Q α + |α|γ )

. (16)

Proof. Combining Lemma 6.7 and Lemma 6.4 we have

SuppZs
(

Hk
B(R)

) =
⋃

α⊂{1,...,s}
|α|+1=k

Q α.

From Remark 6.8 and the definition of SB(γ ) we have RB(γ ) = ⋃
k�1(SuppZs (Hk

B(R)) + (k − 1)γ ).
Combining both results, we get that

RB(γ ) =
⋃
k�1

( ⋃
α⊂{1,...,s}
|α|=k−1

Q α + |α|γ
)

=
⋃

α⊂{1,...,s}

(
Q α + |α|γ )

. �

7. Examples

In this part we give an example where we determine the “good zone” of acyclicity of the Z -
complex, and later we take an specific rational map. We start by summarizing our results for bipro-
jective spaces.

Let k be a field. Take r � s two positive integers, and consider X to be the biprojective space
Pr

k × Ps
k . Take R1 := k[x0, . . . , xr], R2 := k[y0, . . . , ys], and G := Z2. Write R := R1 ⊗k R2 and set

deg(xi) = (1,0) and deg(yi) = (0,1) for all i. Set a1 := (x0, . . . , xr), a2 := (y0, . . . , ys) and define
B := a1 · a2 ⊂ R the irrelevant ideal of R , and m := a1 + a2 ⊂ R , the ideal corresponding to the origin
in Spec(R) = Ar+s+2

k .
From Lemma 6.7 one has:

1. Hr+1
B (R) ∼= Hr+1

a1
(R) = Ř1 ⊗k R2,

2. Hs+1
B (R) ∼= Hs+1

a2
(R) = R1 ⊗k Ř2,

3. Hr+s+1
B (R) ∼= Hr+s+2

m (R) = Ř{1,2} ,
4. H

B(R) = 0 for all  �= r + 1, s + 1 and r + s + 1,

if r > s and (1) and (2) are replaced by Hr+1
B (R) ∼= Hr+1

a1
(R)⊕ Hs+1

a2
(R) = Ř1 ⊗k R2 ⊕ R1 ⊗k Ř2 if r = s.

Let N denote Z�0. From Corollary 6.9, the subregion of Z2 of supports of the modules H
B(R) can

be described as follows that if r > s:

1. SuppZ2 (Hr+1
B (R)) = Q {1} = −N × N − (r + 1,0),

2. SuppZ2 (Hs+1
B (R)) = Q {2} = N × −N − (0, s + 1),

3. SuppZ2 (Hr+s+1
B (R)) = Q {1,2} = −N × −N − (r + 1, s + 1),

and (1) and (2) are replaced by SuppZ2 (Hr+1
B (R)) = Q {1} ∪ Q {2} = (−N × N − (r + 1,0)) ∪ (N × −N −

(0, s + 1)) if r = s.
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Assume we are given r + s + 2 bihomogeneous polynomials f0, . . . , fr+s+1 of bidegree γ :=
(a,b) ∈ Z2, denote n = r + s + 1 and define I := ( f0, . . . , fn) ideal of R . Assume cdB(R/I) � 1, hence
cdB(Hi) � 1 for all i. We have that

SB(a,b) = (−N × N − (r + 1,0) + (r + 1)(a,b)
)

∪ (
N × −N − (0, s + 1) + (s + 1)(a,b)

)
∪ (−N × −N − (r + 1, s + 1) + (r + s + 1)(a,b)

)
,

from (15) and Corollary 6.9 we have that RB(a,b) = SB(a,b) − (a,b), as is shown in the picture
below, we obtain the formula

RB(a,b) = (
Q {1} + r(a,b)

) ∪ (
Q {2} + s(a,b)

) ∪ (
Q {1,2} + (r + s)(a,b)

)
= (−N × N + (ra − r − 1, rb)

) ∪ (
N × −N + (sa, sb − s − 1)

)
∪ (−N × −N + (ra + sa − r − 1, rb + sb − s − 1)

)
.

Since s � r, we have that the region A of vanishing is:

A := �RB(a,b) = N2 + (ra − r, rb + sb − s) ∪ N2 + (ra + sa − r, sb − s).

Taking μ ∈ A, the Z -complex associated to f0, . . . , fn in degree ν is acyclic and Sym( f0, . . . , f5)

has no B-torsion. We conclude that we can compute the implicit equation of φ as a factor of
det((Z•)(μ,∗)) for μ ∈ A.

7.1. Bigraded surfaces

As it is probably the most interesting case from a practical point of view, and has been widely
studied (see e.g. [Cox03]), we restrict our computations to parametrizations of a bigraded surface
given as the image of a rational map φ : P1 ×P1 ��� P3 given by 4 homogeneous polynomials of bide-
gree (a,b) ∈ Z2. Thus, in this case, the Z -complex can be easily computed, and the region RB(a,b)

where are supported the local cohomology modules

RB(a,b) = (
SuppZ2

(
H2

B(R)
) + (a,b)

) ∪ (
SuppZ2

(
H3

B(R)
) + 2 · (a,b)

)
. (17)

Let k be a field. Assume X is the biprojective space P1
k × P3

k . Take R1 := k[x1, x2], R2 :=
k[y1, y2, y3, y4]. Write R := R1 ⊗k R2 and set deg(xi) = (1,0) and deg(yi) = (0,1) for all i. Set



N. Botbol / Journal of Algebra 348 (2011) 381–401 397
a1 := (x1, x2), a2 := (y1, y2, y3, y4) and define B := a1 · a2 ⊂ R the irrelevant ideal of R , and
m := a1 + a2 ⊂ R , the ideal corresponding to the origin in Spec(R).

By means of the Mayer–Vietoris long exact sequence in local cohomology, we have that:

1. H2
B(R) ∼= (Ř1 ⊗k R2) ⊗ (R1 ⊗k Ř2),

2. H3
B(R) ∼= H4

m(R) = Ř{1,2} ,
3. H

B(R) = 0 for all  �= 2 and 3.

Thus, we get that:

1. SuppZ2 (H2
B(R)) = −N × N + (−2,0) ∪ N × −N + (0,−2).

2. SuppZ2 (H3
B(R)) = −N × −N + (−2,−2),

RB(a,b) = (−N × N + (a − 2,b)
) ∪ (

N × −N + (a,b − 2)
)

∪ (−N × −N + (2a − 2,2b − 2)
)
. (18)

If ν /∈ RB(a,b), then the complex

0 → (Z3)(ν,∗)(−3) → (Z2)(ν,∗)(−2) → (Z1)(ν,∗)(−1)
Mν−→ (Z0)(ν,∗) → 0

is acyclic and H0
B(H0(Z•)ν) = H0

B(SymR(I))ν = 0.

7.2. Implicitization with and without embedding

The following example illustrates how the method of computing the implicit equation by means
of approximation complexes works in one example.

Example 7.1. Assume that we take the Newton polytope N ( f ) = conv({(0,0), (a,0), (0,b), (a,b)}) and
consider X = XN ( f ) the toric variety associated to N ( f ) (for a wider reference see [BD07,BDD09,
Bot10b]). We easily see that X ∼= P1 × P1 embedded in P(a+1)(b+1)−1 via a Segre–Veronese embed-
ding.

We define the ring with bihomogeneous coordinates (s : u) and (t : v) and the polynomials
f0, f1, f2, f3 defining the rational map. And we copy the code in the algebra software Macaulay2 [GS]

i1 : QQ[s,t]
i2 : f0 = 3*s^2*t-2*s*t^2-s^2+s*t-3*s-t+4-t^2;
i3 : f1 = 3*s^2*t-s^2-3*s*t-s+t+t^2+t^2+s^2*t^2;
i4 : f2 = 2*s^2*t^2-3*s^2*t-s^2+s*t+3*s-3*t+2-t^2;
i5 : f3 = 2*s^2*t^2-3*s^2*t-2*s*t^2+s^2+5*s*t-3*s-3*t+4-t^2;

The good bound ν0 that follows from [BD07,BDD09,Bot10b] is ν0 = 2. We compute with the algo-
rithm developed in [BD10] the matrix Mν for ν = 2:
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i7 : nu=2;
i8 : L={f0,f1,f2,f3};
i9 : rM=representationMatrix (teToricRationalMap L,nu);

25 51
o9 : Matrix (QQ[X , X , X , X ]) <--- (QQ[X , X , X , X ])

0 1 2 3 0 1 2 3

It can be easily checked that it is a matrix that represents the surface (with perhaps some other extra
factor), since it ranks drops over the surface:

i10 : R=QQ[s,t,X_0..X_3];
i11 : Eq=sub(sub(rM,R), {X_0=>(sub(f0,R)), X_1=>(sub(f1,R)),

X_2=>(sub(f2,R)), X_3=>(sub(f3,R))});
25 51

o11 : Matrix R <--- R
i12 : rank rM
o12 = 25
i13 : rank Eq
o13 = 24

Example 7.2. Without a toric embedding. Let us consider the bigraded ring S as follows (we put three
coordinates since we also keep the total degree):

i1 : S=QQ[s,u,t,v,Degrees=>{{1,1,0},{1,1,0},{1,0,1},{1,0,1}}];
i2 : f0 = 3*s^2*t*v-2*s*u*t^2-s^2*v^2+s*u*t*v-3*s*u*v^2-u^2*t*v

+4*u^2*v^2-u^2*t^2;
i3 : f1 = 3*s^2*t*v-s^2*v^2-3*s*u*t*v-s*u*v^2+u^2*t*v+u^2*t^2

+u^2*t^2+s^2*t^2;
i4 : f2 = 2*s^2*t^2-3*s^2*t*v-s^2*v^2+s*u*t*v+3*s*u*v^2-3*u^2*t*v

+2*u^2*v^2-u^2*t^2;
i5 : f3 = 2*s^2*t^2-3*s^2*t*v-2*s*u*t^2+s^2*v^2+5*s*u*t*v-3*s*u*v^2

-3*u^2*t*v+4*u^2*v^2-u^2*t^2;

As we have seen in Eq. (17)

RB(a,b) = (−N × N + (a − 2,b)
) ∪ (

N × −N + (a,b − 2)
) ∪ (−N × −N + (2a − 2,2b − 2)

)
.

Hence, since (a,b) = (2,2),

A := �RB(a,b) = N2 + (a − 1,2b − 1) ∪ N2 + (2a − 1,b − 1) = N2 + (1,3) ∪ N2 + (3,1).

Thus, the good bounds here are ν0 = (1,3) or ν0 = (3,1). We compute with the algorithm devel-
oped in [Bot10a] the matrix Mν for ν = (3,1):

i6 : L = {f0,f1,f2,f3};
i7 : nuu1 = {4,3,1};
i8 : rM = representationMatrix (L,nuu1);

8 8
o8 : Matrix (QQ[X , X , X , X ]) <--- (QQ[X , X , X , X ])

0 1 2 3 0 1 2 3

And we verify that it is a matrix that represents the surface (with perhaps some other extra factor)
by substituting on the parametrization of the surface:
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i9 : R = QQ[s,u,t,v,X_0..X_3];
i10: Eq = sub(sub(rM,R), {X_0=>(sub(f0,R)), X_1=>(sub(f1,R)),

X_2=>(sub(f2,R)), X_3=>(sub(f3,R))});
8 8

o10 : Matrix R <--- R
i11 : rank rM
o11 = 8
i12 : rank Eq
o12 = 7

We can compute the implicit equation by taking gcd of the maximal minors of Mν or just taking one
minor and factorizing. We can compute one determinant and obtaining the implicit equation by doing

i13 : eq = implicitEq ({f0,f1,f2,f3},{5,3,2})}
8 7 6 2 5 3

o13 = 63569053X - 159051916X X + 175350068X X - 82733240X X
0 0 1 0 1 0 1
4 4 3 5 2 6

+ 2363584X X + 14285376X X + 139968X X ...
0 1 0 1 0 1

7.3. On the size of the matrices

Consider the polytope N ( f ) = conv({(0,0), (a,0), (0,b), (a,b)}) as is the case in the example
above, and consider X = XN ( f ) the toric variety associated to N ( f ) (for a wider reference see
[BD07,BDD09,Bot10b]). We will compare the matrices obtained by means of a toric embedding in
[BD07,BDD09,Bot10b] with respect to the matrix Mν we get without an embedding, in the bipro-
jective case. Thus X is a bidimensional surface embedded in P(a+1)(b+1)−1. We obtain a map
g : X ��� P3 given by homogeneous polynomials of degree 1. Hence, for ν0 = 2 we have that

M2 ∈ MathR (2),hZ1 (3)

(
k[X0, X1, X2, X3]

)
,

and hR(2) = (2a + 1)(2b + 1). This is the case above: a = 2, b = 2 then hR(2) = (2a + 1)(2b + 1) =
5 · 5 = 25.

In the bigraded setting (assume a � b),

M2 ∈ MathR (2a−1,b−1),hZ1 (3a−1,2b−1)

(
k[X0, X1, X2, X3]

)

and hR(2a − 1,b − 1) = dim(k[s, u]2a−1)dim(k[t, v]b−1) = 2ab. This is the case above: a = 2, b = 2
then hR(2) = 2 · 2 · 2 = 8.

Next result gives a more detailed analysis of the size of the matrix Mν .

Lemma 7.3. Given a finite rational map φ : P1 × P1 ��� P3 with finitely many laci base points (or none),
given by 4 homogeneous polynomials f0, f1, f2, f3 where fi ∈ R(a,b) . Take ν = (2a − 1,b − 1) (equiv. with
ν = (a − 1,2b − 1)). Write �ν = det((Z•)ν) for the determinant of the ν-strand, then

deg(�ν) = 2ab − dim
(
(H2)(4a−1,3b−1)

)

and the matrix Mν is square of size 2ab × 2ab iff (H2)(4a−1,3b−1) = 0.

Proof. Let Z• : 0 → Z3 → Z2 → Z1 → Z0 → 0 be the Z -complex, with Zi = Zi(ia, ib) ⊗k k[X]. Take
ν = (2a − 1,b − 1). As b − 1 < degt,v( f i) for all i, (Bi(ia, ib))ν = 0 for all i, hence (Zi)i(a,b)+ν =



400 N. Botbol / Journal of Algebra 348 (2011) 381–401
(Hi)i(a,b)+ν for all i. This is, (Z•)ν = (M•)ν . Since depth(I) � 2, Hi = 0 for i > 2, thus (Z3)3(a,b)+ν = 0.
Since the complex

(Z•)(2a−1,b−1) : 0 → (H2)(4a−1,3b−1)[X] Nν−→ (H1)(3a−1,2b−1)[X] Mν−→ R(2a−1,b−1)[X] → 0

is acyclic and the entries of Mν and Nν are linear on Xi ’s, deg(�ν) = dim(Rν) − dim((H2)(4a−1,3b−1))

and Mν is square of size 2ab × 2ab iff (H2)(4a−1,3b−1) = 0. �
We can compute the degree of the image as follows.

Lemma 7.4. Given a finite rational map φ : P1 × P1 ��� P3 , given by 4 homogeneous polynomials
f0, f1, f2, f3 defining an ideal I , where fi ∈ R(a,b) . Assume that P := Proj(R/I) is finite and laci. Then,

deg(φ)deg(H ) = 2ab −
∑
x∈P

ex,

where ex = e(I∼x , OP1×P1,x) is the multiplicity at x.

Proof. Set L := OP1×P1 (a,b), Γ for the blow-up of P1 × P1 along I and π : Γ → P1 × P1 the natural
projection. Since deg(π∗[Γ ]) = deg(φ)deg(H ), by [Ful98, Prop. 4.4], one has

deg(φ)deg(H ) =
∫

P1×P1

c1(L)2 −
∫
P

(
1 + c1(L)

)2 ∩ s
(
P,P1 × P1),

where c1(L) is the first Chern class of L, and s(P,P1 × P1) the Segre class of P on P1 × P1. Since
P has dimension zero, C1(L) = 0 on P . It is well known that

∫
P1×P1 c1(L)2 = 2ab. From [Ful98,

Sec. 4.3], s(P,P1 × P1) = ∑
x∈P ex . �

Remark 7.5. Combining Theorem 5.5 and Lemma 5.6 we have that if P is lci, then �μ = Hdeg(φ) for
all μ /∈ RB(γ ). From Lemmas 7.3 and 7.4 we have that deg(�ν) = deg(Hdeg(φ)) = deg(φ)deg(H ) =
2ab − ∑

x∈P ex . In particular dim((H2)(4a−1,3b−1)) = ∑
x∈P ex .
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