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a b s t r a c t

An adapted orthonormal frame (f1, f2, f3) on a space curve r(t),
where f1 = r′/|r′| is the curve tangent, is rotation-minimizing if its
angular velocity satisfies ω · f1 ≡ 0, i.e., the normal-plane vectors
f2, f3 exhibit no instantaneous rotation about f1. The simplest space
curves with rational rotation-minimizing frames (RRMF curves)
form a subset of the quintic spatial Pythagorean-hodograph (PH)
curves, identified by certain non-linear constraints on the curve
coefficients. Such curves are useful in motion planning, swept
surface constructions, computer animation, robotics, and related
fields. The condition that identifies the RRMF quintics as a subset
of the spatial PH quintics requires a rational expression in four
quadratic polynomials u(t), v(t), p(t), q(t) and their derivatives to
be reducible to an analogous expression in just two polynomials
a(t), b(t). This condition has been analyzed, thus far, in the case
where a(t), b(t) are also quadratic, the corresponding solutions
being called Class I RRMF quintics. The present study extends
these prior results to provide a complete categorization of all
possible PH quintic solutions to the RRMF condition. A family of
Class II RRMF quintics is thereby newly identified, that correspond
to the case where a(t), b(t) are linear. Modulo scaling/rotation
transformations, Class II curves have five degrees of freedom, as
with the Class I curves. Although Class II curves have rational RMFs
that are only of degree 6 – as compared to degree 8 for Class I curves
– their algebraic characterization is more involved than for the
latter. Computed examples are used to illustrate the construction
and properties of this new class of RRMF quintics. A novel approach
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for generating RRMF quintics, based on the sum-of-four-squares
decomposition of positive real polynomials, is also introduced and
briefly discussed.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let (f1, f2, f3) be an adapted orthonormal frame on a space curve r(t), such that f1 coincides with
the curve tangent t = r′/|r′| while f2, f3 span the normal plane at each curve point. The variation of
such a frame may be specified by its angular velocity ω through the differential equations

f ′1 = ω × f1, f ′2 = ω × f2, f ′3 = ω × f3,
and the characteristic property of a rotation-minimizing frame (RMF) is that its angular velocity satisfies
ω · f1 ≡ 0, i.e., f2, f3 have no instantaneous rotation about f1. Such frames are of great interest in
applications concerned with controlling the orientation of a rigid body along a spatial trajectory; for
example, in swept surface constructions, computer animation, and robot path planning (Farouki and
Han, 2003; Farouki et al., in press; Jüttler and Mäurer, 1999; Klok, 1986; Sír and Jüttler, 2005; Wang
and Joe, 1997; Wang et al., 2008).

Recent studies (Farouki, 2010; Farouki et al., 2009, in press; Farouki and Sakkalis, 2010; Farouki and
Sakkalis , 2011) have established the possibility of constructing rational rotation-minimizing frames
on a special class of polynomial space curves of minimum degree 5 — the so-called RRMF curves.
Such curves are necessarily Pythagorean-hodograph (PH) curves (Farouki, 2008), since only PH curves
admit rational unit tangents. The RRMF curves can thus be characterized through the identification of
constraints on the coefficients of PH curves, that are sufficient and necessary for a rational RMF.

The focus of this paper is on classifying the lowest-degree (quintic) polynomial curveswith rational
RMFs. An approach for generating rational curves with rational RMFs has recently been proposed in
Bartoň et al. (2010), based upon the observation that Möbius transformations in R3 preserve the PH
property of (polynomial or rational) curves, and the rotation-minimizing nature of rational adapted
frames defined on them. For example, degree 6 rational PH curveswith rational RMFs can be generated
from Möbius transformations of planar PH cubics (whose Frenet frames are rational and trivially
rotation-minimizing). The polynomial RRMF curves analyzed herein are more fundamental, since the
RRMF property is intrinsic to their algebraic structure, rather than a consequence of its maintenance
when such curves are imaged by an RRMF-preserving map.

Also, the possibility that rational RMFsmay exist on space curves that are not PH curves, but never-
theless have rational unit tangents, is not addressed here. Planar curves with this property are known
to exist, the simplest example arising from a rational quadratic parameter transformation applied to
the parabola, which results in an improper (doubly-traced) parameterization (Arrondo et al., 1997;
Farouki and Sederberg, 1995; Lü, 1995). Because of the absence of a complete characterization of
space curves with this property (analogous to that presented in Lü (1995) for the planar case), and
the improper parameterizations, no further consideration of this possibility is made here.

A polynomial PH space curve r(t) = (x(t), y(t), z(t)) is characterized (Farouki, 2008) by the
property that its derivative components satisfy, for some polynomial σ(t), the Pythagorean
condition

x′2(t) + y′2(t) + z ′2(t) = σ 2(t). (1)

The quaternion and Hopf map forms (Choi et al., 2002) are two convenient models for the construction
of spatial PH curves. The former generates a Pythagorean hodograph r′(t) = (x′(t), y′(t), z ′(t)) from
a quaternion polynomial2

A(t) = u(t) + v(t) i + p(t) j + q(t) k, (2)

2 Calligraphic characters such as A denote quaternions, their scalar and vector parts being indicated by scal(A) and vect(A).
Bold symbols denote complex numbers or vectors in R3 — the meaning should be clear from the context.
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and its conjugate A∗(t) = u(t) − v(t) i − p(t) j − q(t) k through the product

r′(t) = A(t) iA∗(t) = [u2(t) + v2(t) − p2(t) − q2(t)] i
+ 2 [u(t)q(t) + v(t)p(t)] j + 2 [v(t)q(t) − u(t)p(t)] k. (3)

The latter employs two complex polynomials

α(t) = u(t) + i v(t), β(t) = q(t) + i p(t) (4)

to generate a Pythagorean hodograph through the expression

r′(t) = (|α(t)|2 − |β(t)|2, 2 Re(α(t)β(t)), 2 Im(α(t)β(t))). (5)

The equivalence of (3) and (5) is seen by setting A(t) = α(t) + kβ(t), and identifying the imaginary
unit i with the quaternion element i. See Farouki (2008) for a thorough treatment of these two
representations. The parametric speed σ(t) = |r′(t)| of the PH curve r(t) defined by integrating r′(t)
— i.e., the derivative of its arc length swith respect to the parameter t — is the polynomial

σ(t) = |A(t)|2 = |α(t)|2 + |β(t)|2 = u2(t) + v2(t) + p2(t) + q2(t). (6)

The Euler–Rodrigues frame (ERF) is a rational adapted frame, defined (Choi and Han, 2002) on any
spatial PH curve by

(e1(t), e2(t), e3(t)) =
(A(t) iA∗(t), A(t) jA∗(t), A(t) kA∗(t))

|A(t)|2
, (7)

that is a useful reference for identifying rational RMFs. Here, e1(t) is the curve tangent while
e2(t), e3(t) span the normal plane. The ERF is given explicitly in terms of the polynomials u(t),
v(t), p(t), q(t) as

e1 =
(u2

+ v2
− p2 − q2) i + 2(uq + vp) j + 2(vq − up) k

u2 + v2 + p2 + q2
,

e2 =
2(vp − uq) i + (u2

− v2
+ p2 − q2) j + 2(uv + pq) k

u2 + v2 + p2 + q2
,

e3 =
2(up + vq) i + 2(pq − uv) j + (u2

− v2
− p2 + q2) k

u2 + v2 + p2 + q2
. (8)

Now if the PH curve defined by (3) or (5) admits a rational RMF (f1(t), f2(t), f3(t)) then e1 = f1 is
the curve tangent, and the normal-plane vectors f2(t), f3(t) must be obtainable from the ERF normal-
plane vectors e2(t), e3(t) by a rational rotation — i.e., for relatively prime polynomials a(t), b(t) we
must have[

f2(t)
f3(t)

]
=

1
a2(t) + b2(t)

[
a2(t) − b2(t) − 2 a(t)b(t)
2 a(t)b(t) a2(t) − b2(t)

] [
e2(t)
e3(t)

]
. (9)

This is equivalent (Han, 2008) to the requirement that
uv′

− u′v − pq′
+ p′q

u2 + v2 + p2 + q2
=

ab′
− a′b

a2 + b2
(10)

for relatively prime polynomials a(t), b(t). The expression on the left is just the componentω1 = ω · t
of the ERF angular velocity ω in the direction of e1 = f1, while that on the right is the angular
velocity of the normal-plane rotation (9) that maps e2, e3 onto f2, f3. Thus, the condition (10) requires
the existence of a rational normal-plane rotation that exactly cancels the ω1 component of the ERF
angular velocity. In terms of the Hopf map representation, condition (10) is equivalent to requiring
the existence of a complex polynomialw(t) = a(t) + i b(t), with gcd(a(t), b(t)) = 1, such that

Im(αα′
+ ββ′)

|α|2 + |β|2
=

Im(ww′)

|w|2
. (11)

The simplest non-planar curveswith rational RMFs are quintics (Farouki, 2010; Farouki et al., 2009;
Han, 2008). To define a PH quintic through (3) or (5), the polynomials u(t), v(t), p(t), q(t) must be
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quadratic. Satisfaction of the RRMF condition (10) by PH quintics has thus far been considered only
in the case where a(t), b(t) are assumed to also be quadratic. In this case, simple constraints on the
coefficients of the quaternion polynomial (2) or the complex polynomials (4) have been identified
(Farouki, 2010) that are sufficient and necessary for a rational RMF. These were also shown (Farouki
and Sakkalis, 2010) to be equivalent to a certain polynomial divisibility condition. The simplicity of the
constraints identifying these RRMF quintics, together with (modulo scaling/rotation transformations)
their five residual degrees of freedom, facilitates development of algorithms (Farouki et al., in press)
for the design of rational rotation-minimizing rigid-body motions by the interpolation of initial/final
positions and orientations.

This study extends and completes these prior results by enumerating a complete categorization
of all solutions to (10) by PH quintics — i.e., when u(t), v(t), p(t), q(t) are quadratic but a(t), b(t)
are of unrestricted degree. The most important outcome of this classification is the identification of a
novel non-trivial family of RRMF quintics that satisfy (10) with a(t), b(t) linear rather than quadratic.
Because the rational normal-plane rotation in (9) is quadratic rather than quartic, this new class of
RRMF quintics admit rational RMFs of lower degree than those for which a(t), b(t) are quadratic, and
they also have five essential degrees of freedom. However, their algebraic characterization appears to
be inherently more complicated.

The plan for this paper is as follows. Section 2 introduces a reduction to normal form, which is
used to determine simple criteria that identify degenerate (linear or planar) RRMF curves, allowing
the subsequent analysis to focus on proper RRMF curves, i.e., true space curves. Section 3 further
exploits the normal form reduction to facilitate the enumeration of all possible proper PH quintic
solutions to the RRMF condition. In addition to the known class of RRMF quintics satisfying (10) with
deg(a2 + b2) = 4, this enumeration reveals the existence of a novel class of proper RRMF quintics
satisfying (10) with deg(a2 + b2) = 2, having the same number of freedoms as the previously-
known solutions. Finally, Section 4 considers the ‘‘inverse’’ problem of generating RRMF curves from
quadruples u(t), v(t), p(t), q(t) obtained from the (infinitely many) decompositions f (t) = u2(t) +

v2(t) + p2(t) + q2(t) of any given strictly positive real polynomial f (t), while Section 5 summarizes
the results of this paper, and identifies open problems for further investigation.

2. Degenerate PH curves

Since every straight line and every planar PH curve is trivially an RRMF curve, andwe are interested
in true space curves, instances of (3) or (5) that define straight lines or planar curves will be called
degenerate spatial PH curves. We present here new criteria to identify such degenerate curves, based
on Lemma 1 below and the fact that two real polynomials f (t), g(t) are linearly dependent if and only
if they satisfy fg ′

= f ′g . These criteria are independent of non-essential coefficients, and are easy to
test in practice.

As in earlier studies (Farouki, 2010), the analysis can be greatly simplified by invoking a
scaling/rotation transformation to eliminate non-essential freedoms that donot influence the intrinsic
nature of a spatial PH curve. We call this transformation reduction to normal form.
Lemma 1. Let α(t) = u(t) + i v(t), β(t) = q(t) + i p(t) be complex polynomials, where u(t), v(t),
p(t), q(t) are real polynomials of degree m ≥ 1. Then complex values µ, ν can be chosen such that, under
the transformation[

α(t)
β(t)

]
→

[
µ − ν
ν µ

] [
α(t)
β(t)

]
, (12)

the polynomials v(t), p(t), q(t) are of degree m − 1 at most.
Proof. If wewriteα(t) = amtm+· · ·+a1t+a0 andβ(t) = bmtm+· · ·+b1t+b0 (where ak = uk+i vk
and bk = qk + i pk for k = 0, . . . ,m) the coefficients transform according to[

ak
bk

]
→

[
µ − ν
ν µ

] [
ak
bk

]
for k = 0, . . . ,m. In particular, with the choicesµ = am/(|am|

2
+|bm|

2) and ν = − bm/(|am|
2
+|bm|

2)
we obtain (am, bm) → (1, 0). �
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When α(t), β(t) determine a PH curve r(t) with hodograph r′(t) specified by (5), the map (12)
defines (Farouki, 2010) a scaling/rotation of the hodograph in R3, that does not alter its intrinsic
nature. From Lemma 1, we may henceforth assume, without loss of generality, that u(t) = tm +

· · · + u1t + u0 while v(t), p(t), q(t) are of degree m − 1 at most. We call a quadruple of polynomials
(u(t), v(t), p(t), q(t)) of this form normal.

Now r(t) is planar if and only if x′(t), y′(t), z ′(t) are linearly dependent. Then we observe from (3)
that, in normal form, x′(t) is of degree 2m, while y′(t), z ′(t) are of degree 2m − 1 at most. Therefore,
r(t) is planar if and only if y′(t) and z ′(t) are linearly dependent, i.e., y′z ′′

= y′′z ′, which is equivalent
to

(p2 + q2)(uv′
− u′v) = (u2

+ v2)(qp′
− q′p). (13)

Furthermore, r(t) is a straight line if and only if p(t) = q(t) = 0. Indeed, when r(t) is a line x′(t), y′(t)
and x′(t), z ′(t) are linearly dependent, respectively. But since x′(t) is of degree 2m and y′(t), z ′(t) are
of degree 2m − 1 at most, we must have y′(t) = z ′(t) = 0, and this implies that p(t) = q(t) = 0,
since u2(t) + v2(t) ≠ 0. The converse is trivial. These results may be summarized as follows.

Proposition 1. Let r(t) be a PH curve with hodograph defined by the normal quadruple (u(t), v(t), p(t),
q(t)) as above. Then

1. r(t) is a plane curve, other than a straight line, if and only if (13) is satisfied with (p(t), q(t)) ≠ (0, 0).
2. On the other hand, r(t) is a straight line if and only if (p(t), q(t)) = (0, 0).

In normal form, a degenerate RRMF curve is either a straight line or planar curve that satisfies (13)
and has vanishing torsion, while a proper RRMF curve is a true space curve that does not satisfy (13)
and thus has non-vanishing torsion.

3. Classification of RRMF quintics

In previous studies (Farouki, 2010; Farouki et al., 2009; Farouki and Sakkalis, 2010) the RRMF
quintics have been studied under the assumption that (10) and (11) are satisfied with u2

+ v2
+ p2 +

q2 = a2 + b2 and |α|
2
+ |β|

2
= |w|

2, respectively. Also, it was shown in Farouki and Sakkalis (2010)
that deg(a2 + b2) ≤ deg(u2

+ v2
+ p2 + q2) is a necessary condition for the satisfaction of (10). Thus,

for RRMF quintics with deg(u, v, p, q) = 2, the possible solutions to (10) may have (i) deg(a, b) = 2,
(ii) deg(a, b) = 1, or (iii) deg(a, b) = 0. Henceforth, we refer to these solutions as follows.

Definition 1. A PH curve defined by (3) with deg(u, v, p, q) = 2 is called a Class I, II, or III RRMF
quintic according to whether it satisfies (10) with deg(a, b) = 2, 1, or 0.

It will be shown below that the Class III RRMF quintics are planar curves, while the Class I quintics
have been thoroughly analyzed before Farouki (2010), and Farouki and Sakkalis (2010). The significant
new outcome of this analysis is the existence of the novel family of Class II RRMF quintics, which
includes true space curves.

3.1. Class I RRMF quintics

The spatial PH quintic curves that belong to this class correspond to the case where a(t), b(t) are
assumed to be quadratic – i.e., case (i) above – and hence

uv′
− u′v − pq′

+ p′q = γ (ab′
− a′b) and u2

+ v2
+ p2 + q2 = γ (a2 + b2)

for somenon-zero constantγ (onemay,without loss of generality, setγ = 1). Itwas shownby Farouki
(2010) that, if the quadratic quaternion polynomial (2) or complex polynomials (4) are specified in the
Bernstein basis

bmk (t) =


m
k


(1 − t)m−ktk, k = 0, . . . ,m,

on t ∈ [0, 1] as

A(t) = A0 b20(t) + A1 b21(t) + A2 b22(t), (14)
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or

α(t) = α0 b20(t) + α1 b21(t) + α2 b22(t), β(t) = β0 b
2
0(t) + β1 b

2
1(t) + β2 b

2
2(t), (15)

then imposition of the coefficient constraints
vect(A2 iA∗

0) = A1 iA∗

1 (16)
or

Re(α0α2 − β0β2) = |α1|
2
− |β1|

2 and α0β2 + α2β0 = 2α1β1 (17)
is sufficient and necessary for a proper RRMF curve satisfying (10) with a(t), b(t) quadratic, or
equivalently (11) with w(t) quadratic. Since these Class I RRMF quintics have been thoroughly
analyzed before, Farouki (2010) and Farouki and Sakkalis (2010), we shall not dwell further on them
here. Instead, we focus henceforth on the Class II and III RRMF quintics.

3.2. Class II RRMF quintics

We begin with the observation that a scaling/rotation transformation does not influence the RRMF
nature of a spatial PH curve.
Lemma 2. If the RRMF condition (11) is satisfied by complex polynomials α(t), β(t) and w(t), it is also
satisfied upon replacing them by µ α(t) − ν β(t), ν α(t) + µ β(t) and ηw(t), for any complex numbers
(µ, ν) ≠ (0, 0) and η ≠ 0.
Proof. For complex numbers (µ, ν) ≠ (0, 0) the linear map (12) applied to the polynomials α(t),
β(t) yields

|α(t)|2 + |β(t)|2 → (|µ|
2
+ |ν|2) (|α(t)|2 + |β(t)|2),

α(t)α′(t) + β(t)β′(t) → (|µ|
2
+ |ν|2) (α(t)α′(t) + β(t)β′(t)),

and hence the left-hand side of (11) is unaltered. Similarly, we have Im(w(t)w′(t)) → |η|
2 Im(w(t)

w′(t)) and |w(t)|2 → |η|
2
|w(t)|2 whenw(t) → ηw(t), and consequently the right-hand side of (11)

is also unchanged. �

Now from Lemma 1 we may henceforth assume, without loss of generality, that
u(t) = t2 + u1t + u0, v(t) = v1t + v0, p(t) = p1t + p0, q(t) = q1t + q0. (18)

We are primarily concerned here with case (ii), but before addressing it we quickly dispense with
case (iii).

Case (iii): deg(a2 + b2) = 0. Since ab′
− a′b = 0, we deduce from (10) and (18) that uv′

− u′v −

pq′
+p′q = −v1t2 −2v0t+u0v1 −u1v0 −p0q1 +p1q0 = 0, so wemust have v1 = v0 = u0v1 −u1v0 −

p0q1 +p1q0 = 0, which imply that uv′
−u′v = 0, since v(t) = 0, and qp′

−q′p = p1q0 −p0q1 = 0. But
then condition (13) is satisfied, i.e., the curve is planar and is thus a degenerate RRMF curve. In fact,
satisfaction of (10) with deg(a2 + b2) = 0 identifies curves on which the ERF is rotation-minimizing
and, as we have just seen, all quintics with this property are planar. The simplest non-planar curves
with rotation-minimizing ERFs are (Choi and Han, 2002) of degree 7.

We focus henceforth on case (ii), which yields non-degenerate RRMF curves — i.e., true spatial
PH quintics with rational rotation-minimizing frames. It transpires that, in normal form, these Class
II RRMF quintics incorporate five free parameters — as with the Class I RRMF quintics satisfying (10)
with deg(a2+b2) = 4. In prior studies (Farouki, 2010; Farouki et al., 2009; Farouki and Sakkalis, 2010)
these latter curves were called ‘‘generic’’ RRMF quintics, in the expectation that solutions to (10) with
deg(u2

+ v2
+ p2 + q2) = 4 and deg(a2 + b2) < 4 would comprise a ‘‘lower-dimension subspace’’

of the complete set of non-degenerate RRMF quintics. Since this is not the case, the terminology of
Definition 1 is henceforth adopted. We now proceed with the analysis of the Class II RRMF quintics.

Case (ii): deg(a2 + b2) = 2. Since a(t), b(t) are linear and relatively prime, Lemma 2 indicates that
we may, without loss of generality, assume a(t) = t − r , b(t) = s for r, s ∈ R with s ≠ 0. Let
w = uv′

− u′v − pq′
+ p′q and σ = u2

+ v2
+ p2 + q2. Then (10) implies that

[(t − r)2 + s2] w(t) = − s σ(t). (19)
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Now from (18) we have

w(t) = − v1t2 − 2v0t + u0v1 − u1v0 − p0q1 + p1q0,
σ (t) = t4 + 2u1t3 + (2u0 + u2

1 + v2
1 + p21 + q21)t

2

+ 2(u0u1 + v0v1 + p0p1 + q0q1)t + u2
0 + v2

0 + p20 + q20, (20)

and comparing like powers of t on the left and right sides in (19) yields

s − v1 = 0,
2u1s + 2v1r − 2v0 = 0,
(2u0 + u2

1 + v2
1 + p21 + q21)s + u0v1 − u1v0 − p0q1 + p1q0 − v1(r2 + s2) + 4v0r = 0, (21)

2(u0u1 + v0v1 + p0p1 + q0q1)s − 2(u0v1 − u1v0 − p0q1 + p1q0)r − 2v0(r2 + s2) = 0,
(u2

0 + v2
0 + p20 + q20)s + (u0v1 − u1v0 − p0q1 + p1q0)(r2 + s2) = 0.

This is a system of five equations in ten variables, and its solutions may be characterized as follows.
Proposition 2. The (real) solutions of the system (21) can be parameterized in terms of the free variables
r, u1, v1, p1, q1 with v1 ≠ 0, as s = v1 and either

u0 = −(u1 + r)r, v0 = (u1 + r)v1, p0 = v1q1 − p1r, q0 = −(v1p1 + q1r), (22)
or

u0 = − (u1 + r)r −
4v2

1(p
2
1 + q21)

(u1 + 2r)2 + 9v2
1 + p21 + q21

,

v0 = (u1 + r)v1,

p0 = v1q1 − p1r +
4v2

1((u1 + 2r)p1 − 3v1q1)
(u1 + 2r)2 + 9v2

1 + p21 + q21
, (23)

q0 = −(v1p1 + q1r) +
4v2

1((u1 + 2r)q1 + 3v1p1)
(u1 + 2r)2 + 9v2

1 + p21 + q21
.

Proof. We first substitute s = v1 and v0 = (u1+r)v1 from the first two of Eqs. (21) into the remaining
three. From the third and fourth equations, we then obtain

(p21 + q21) p0 = f0 and (p21 + q21) q0 = g0,

where f0, g0 are polynomials in u0, u1, v1, p1, q1, r . Assume for now that p21 + q21 ≠ 0. Substituting
for p0, q0 from the above into the fifth of Eqs. (21) and solving for u0, we obtain the first expression in
either (22) or in (23).

Substituting for u0 from (22) into the third and fourth of Eqs. (21) then yields p0 = v1q1 − p1r and
q0 = −v1p1 − q1r , thus completing the solution (22). On the other hand, substituting from (23) for u0
we obtain (through a judicious re-arrangement of terms) the expressions for p0, q0 given in (23).

Suppose now that p21 + q21 = 0. In that case, the third equation gives u0 = −(u1 + r)r and on
substituting this and s = v1, v0 = (u1 + r)v1 into the fifth equation we obtain (p20 + q20)v1 = 0. Since
v1 ≠ 0, we see that p0 = q0 = 0 as required by solution (22). Finally, note that the denominator in
the expressions for u0, p0, q0 in (23) is never zero, since by assumption v1 ≠ 0. This concludes the
proof. �

For curves defined by the solution (22), we have

x′(t) = [(t − r)2 + v2
1] [(t + u1 + r)2 − p21 − q21],

y′(t) = 2q1 [(t − r)2 + v2
1] (t + u1 + r),

z ′(t) = − 2p1 [(t − r)2 + v2
1] (t + u1 + r).

Such curves are evidently planar and non-primitive, since x′(t), y′(t), z ′(t) are linearly dependent and
have a non-constant common factor. The curves defined by the solution (23), on the other hand, are
primitive and are true space curves with (r′ × r′′) · r′′′ ≠ 0.



R.T. Farouki, T. Sakkalis / Journal of Symbolic Computation 47 (2012) 214–226 221

Defining the complex numbers ak = uk + i vk and bk = qk + i pk for k = 0, 1, 2 and writing
γ = − r + v1i, ζ = a1 − 2 γ , η = b1, the solutions (23) that define proper Class II RRMF quintics can
be more compactly expressed as

a0 = (a1 − γ)γ −
4v2

1 |η|
2

|ζ|2 + |η|2
, b0 = γ η +

4v2
1ζη

|ζ|2 + |η|2
. (24)

Since they provide a means of generating Class II RRMF quintics in terms of one real and two complex
free parameters – r and a1, b1 – the relations (24) might be considered analogous to the generating
formulas for Class I RRMF quintics specified in Proposition 1 of Farouki (2010). However, they are
obviously more complicated than Eqs. (15) in Farouki (2010), and have thus far eluded a reduction to
simple sufficient-and-necessary coefficient constraints, analogous to (16) and (17) for Class I curves.
This problem deserves further attention, but at present it seems clear that Class I RRMF quintics have
a simpler algebraic structure than Class II.

Remark 1. On a PH quintic, the ERF vectors (8) are quartic rational functions of the curve parameter.
For Class I RRMF quintics, satisfying (10) with deg(a(t), b(t)) = 2, the RMF normal-plane vectors
defined by (9) are rational functions of degree 8. Since the solution (23) identifies RRMF quintics
satisfying (10) with deg(a(t), b(t)) = 1, the RMF vectors (9) on these Class II RRMF quintics are only
of degree 6.

Example 1. Choosing the values r = 1, u1 = −1, v1 = 2, p1 = 0, q1 = −2 in (23) gives

s = 2, u0 = −
64
41

, v0 = 0, p0 =
28
41

, q0 =
50
41

,

and hence we have

u(t) = t2 − t −
64
41

, v(t) = 2 t, p(t) =
28
41

, q(t) = − 2 t +
50
41

and

a(t) = t − 1, b(t) = 2,

which satisfy

uv′
− u′v − pq′

+ p′q
u2 + v2 + p2 + q2

=
ab′

− a′b
a2 + b2

=
− 2

t2 − 2 t + 5
.

The resulting hodograph components

x′(t) = u2(t) + v2(t) − p2(t) − q2(t) = t4 − 2 t3 −
87
41

t2 + 8 t +
812
1681

,

y′(t) = 2 [u(t)q(t) + v(t)p(t)] = − 4 t3 +
264
41

t2 +
268
41

t −
6400
1681

,

z ′(t) = 2 [v(t)q(t) − u(t)p(t)] = −
384
41

t2 +
256
41

t +
3584
1681

,

define a primitive curve with gcd(x′(t), y′(t), z ′(t)) = 1 and they satisfy x′2(t) + y′2(t) + z ′2(t) =

σ 2(t), where

σ(t) = (t2 − 2 t + 5)

t2 +

36
41


.

The hodograph defines a true space curve, as can be verified from the fact that condition (13) is not
satisfied, and r(t) has the non-constant torsion

τ =
(r′ × r′′) · r′′′

|r′ × r′′|2
=

− 7872
(t2 − 2 t + 5)2(1681 t2 − 738 t + 2997)

,
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Fig. 1. The RRMF quintic r(t) of Example 1 for t ∈ [1.5, 2.5], showing the variation of the principal normal and binormal vectors
of the Frenet frame (left), and the rational RMF normal-plane vectors along the curve (right). The initial RMF orientation is
chosen to agree with the Frenet frame at the left point.

Fig. 2. Comparison of angular speed for the Frenet frame and the rational RMF along the RRMF quintic of Example 1, over the
parameter interval t ∈ [1.5, 2.5] illustrated in Fig. 1.

while the curvature is given by

κ =
|r′ × r′′|
| r′ |3

=
164


(t2 − 2 t + 5)(1681 t2 − 738 t + 2997)

(t2 − 2 t + 5)2(41 t2 + 36)2
.

The rational RMF normal-plane vectors, obtained from (8) and (9), are of degree 6 in the curve
parameter t . Fig. 1 compares these vectors with the Frenet frame normal-plane vectors, over the
interval t ∈ [1.5, 2.5]. The angular speed of the Frenet frame and the rational RMF are compared
over the same interval in Fig. 2.
Example 2. Choosing the values r = 2, u1 = −2, v1 = 1, p1 = 2, q1 = 1 in (23) gives

s = 1, u0 = −
10
9

, v0 = 0, p0 = −
25
9

, q0 = −
20
9

,

and thus we obtain

u(t) = t2 − 2 t −
10
9

, v(t) = t, p(t) = 2t −
25
9

, q(t) = t −
20
9

and
a(t) = t − 2, b(t) = 1,

so that
uv′

− u′v − pq′
+ p′q

u2 + v2 + p2 + q2
=

ab′
− a′b

a2 + b2
=

− 1
t2 − 4 t + 5

.

The resulting hodograph components

x′(t) = u2(t) + v2(t) − p2(t) − q2(t) = t4 − 4 t3 −
20
9

t2 + 20 t +
925
81

,

y′(t) = 2 [u(t)q(t) + v(t)p(t)] = 2 t3 −
40
9

t2 +
10
9

t +
400
81

,

z ′(t) = 2 [v(t)q(t) − u(t)p(t)] = − 4 t3 +
140
9

t2 −
100
9

t −
500
81

,
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define a primitive curve with gcd(x′(t), y′(t), z ′(t)) = 1 and they satisfy x′2(t) + y′2(t) + z ′2(t) =

σ 2(t), where

σ(t) = (t2 − 4 t + 5)

t2 +

25
9


.

Again, this example defines a true space curve, with the curvature and torsion functions

κ =
|r′ × r′′|
| r′ |3

=
18


5 (t2 − 4 t + 5)(81 t2 − 180 t + 325)

(t2 − 4 t + 5)2(9 t2 + 25)2
,

τ =
(r′ × r′′) · r′′′

|r′ × r′′|2
=

− 108
(t2 − 4 t + 5)2(81 t2 − 180 t + 325)

.

Finally, although case (i) with deg(a2 + b2) = 4 has been thoroughly treated by Farouki (2010)
and Farouki et al. (2009), for completeness we briefly consider the special instance of this case where
gcd(w, σ ) is of degree 2, i.e., w(t) is a factor of σ(t).

Remark 2. Let r(t) be an RRMF quintic defined by the polynomials (18), such that (10) is satisfied
with deg(a2 + b2) = 4 and gcd(w, σ ) is of degree 2. Then p(t) = q(t) = 0.

Proof. In this case, we must have w = ab′
− a′b and σ = a2 + b2, so that gcd(ab′

− a′b, a2 + b2) is
also of degree 2. Since gcd(ab′

− a′b, a2 + b2) = gcd(2(aa′
+ bb′), a2 + b2) by Lemma 4.1 of Farouki

and Sakkalis (2010), a2 + b2 must have complex conjugate roots z, z = r ± i s (where r, s ∈ R and
s ≠ 0) of multiplicity 2 each. Therefore,

σ(t) = a2(t) + b2(t) = [(t − r)2 + s2]2. (25)

Also, (ab′
−a′b)/(a2 +b2)must have the form given in Eq. (12) of Farouki and Sakkalis (2010), namely

ab′
− a′b

a2 + b2
= ±

i
2

[
2

t − z
−

2
t − z

]
.

Consequently, w = ab′
− a′bmay be written as

w(t) = ± 2s [(t − r)2 + s2]. (26)

Choosing the − sign above and comparing (25)–(26) with (20) we obtain, after simplification, the
equations

v1 − 2s = 0,
v0 + 2rs = 0,
u1 + 2r = 0,
2su0 − p0q1 + p1q0 − 2r2s + 2s3 = 0,
2u0 + p21 + q21 − 2r2 + 2s2 = 0,

2ru0 − p0p1 − q0q1 − 2r3 + 2rs2 = 0,
u2
0 + p20 + q20 − r4 + 2r2s2 − s4 = 0.

We claim that p21 + q21 = 0. Assume the contrary. Then, solving the fourth and sixth equations for
p0, q0 and taking into account the fifth equation, we obtain p0 = −(sq1 + rp1), q0 = sp1 − rq1.

Substituting for p0, q0 into the seventh equation, and using the fifth equation again, gives the
quadratic

u2
0 − 2(r2 + s2)u0 + r4 + 2r2s2 − 3s4 = 0

for u0, with solutions u0 = r2−s2 and u0 = r2+3s2. However, since both solutions contradict the fifth
equation, we must have p1 = q1 = 0. In that case, the fifth and seventh equations give p0 = q0 = 0,
so that p(t) = q(t) = 0, as claimed. Clearly, r(t) is then just a straight line (the x-axis). �
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Table 1
Classification and properties of low-degree RRMF curves.

n Type deg(u, v, p, q) deg(a, b) RMF degree

1 Straight line 0 0 0
3 Planar PH cubic 1 0 2
5 Class I RRMF quintic 2 2 8
5 Class II RRMF quintic 2 1 6
5 Planar PH quintic 2 0 4

In conclusion, Table 1 summarizes all RRMF curves of degree n ≤ 5 generated by (3) or (5). Straight
lines are obtained by choosing constants for u(t), v(t), p(t), q(t) so that t = r′/|r′| is a constant
vector, and any unit vectors f, g such that f × g = t then define a rational RMF. As shown in Han
(2008), the only cubic RRMF curves – corresponding to linear polynomials u(t), v(t), p(t), q(t) – are
planar PH cubics. Finally, the case where u(t), v(t), p(t), q(t) are quadratic generates the simplest
non-planar RRMF curves, designated Class I or Class II quintics according to whether (10) is satisfied
with deg(a, b) = 2 or 1, respectively, while the case of quintics satisfying (10) with deg(a, b, ) = 0
corresponds (see Section 3.2) to planar PH quintics.

Note also that additional RRMF curves can be generated by multiplying (3) or (5) with a scalar
polynomialw(t). However, such curves have non-primitive hodographs (i.e., gcd(x′(t), y′(t), z ′(t)) ≠

1) and to obtain a regular curve satisfying |r′(t)| ≠ 0 for all t , one must ensure that w(t) has no real
roots. If deg(w) = l and deg(u, v, p, q) = m, the resulting curves are of degree l + 2m + 1. For
m = 0 this generates only non-uniformly parameterized straight lines, since multiplying by w(t)
cannot change the fixed direction of r′(t). Similarly, it generates only planar curves for m = 1, since
multiplying r′(t) by w(t) cannot alter the fact that n · r′(t) = 0, where n is the normal to the plane
in which the PH cubic r(t) resides. Hence, spatial RRMF curves generated by this approach must be of
degree n > 5.

4. Inverse problem for RRMF quintics

Thus far, we have investigated the conditions on a quaternion polynomial A(t) = u(t) + v(t) i +
p(t) j + q(t) k (assumed primitive, i.e., gcd(u(t), v(t), p(t), q(t)) = 1) that ensure satisfaction of the
RRMF condition (10). Note that, since A(t) is primitive, the polynomial |A(t)|2 = u2(t) + v2(t) +

p2(t) + q2(t) is a positive real polynomial of even degree.
Now any positive polynomial f (t) of degree 2m can be expressed as a sum of squares of four

polynomials,
f (t) = u2(t) + v2(t) + p2(t) + q2(t), (27)

in infinitely many ways. This follows from the well-known fact (No. 44, Part VI in Pólya and Szegö
(1976)) that such polynomials can always be expressed as a sum of squares of two polynomials,
f (t) = g2(t) + h2(t) with g(t)h(t) ≠ 0, since by defining the quaternion polynomial A(t) =

g(t) + (λ i + µ j + ν k) h(t) we see that f (t) = |A(t)|2 satisfies (27) with (u(t), v(t), p(t), q(t)) =

(g(t), λ h(t), µ h(t), ν h(t)) for any (λ, µ, ν) ∈ R3 when λ2
+ µ2

+ ν2
= 1.

Motivated by the above observation, we say that f (t) generates an RRMF curve r(t) if a primitive
quaternion polynomial A(t) = u(t) + v(t) i + p(t) j + q(t) k satisfying (10) exists, such that
f (t) = |A(t)|2 and r′(t) = A(t) iA∗(t). It seems natural, then, to pose the following question.
Question 1. Does a given positive real polynomial f (t) of degree 2m generate any RRMF curves? If so,
are they proper or degenerate (see Section 2)? Moreover, what are the necessary conditions (if any) on
f (t), and its root structure?

We now address this question in the particular case of Class I RRMF curves, when f (t) is square-
free and m = 2 (the complete analysis of this problem is deferred to a future study). Let f (t) =

t4 + f3t3 + f2t2 + f1t + f0. By the change of variables t → t −
1
4 f3 we may assume, without loss of

generality, that f3 = 0. Then we must have f (t) = [(t − r)2 + k2] [(t + r)2 + l2] for r, k, l ∈ R with
k l ≠ 0 and r2 + (k + l)2 > 0.
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Proposition 3. For f (t) as above, the Class I RRMF curves it generates may be categorized as follows

(a) f (t) always generates straight lines;
(b) f (t) does not generate any planar curves;
(c) f (t) generates true space curves if and only if 4r2 + k2 + l2 ± 6kl < 0.

Proof. Let A(t) = u(t) + v(t) i + p(t) j + q(t) k be a primitive quaternion polynomial (in normal
form) that defines the hodograph of an RRMF curve r(t) generated by f (t). Since f3 = 0, wemust have
u1 = 0 in (18) and thus u(t) = t2 + u0, v(t) = v1t + v0, p(t) = p1t + p0, q(t) = q1t + q0. Note also
that the polynomials on the right side of (10) must be of the form a(t) = t2 + a0, b(t) = b1t + b0.
Equating coefficients of like powers of t for the numerators and denominators in (10) then gives
(b1, b0) = (v1, v0) and

u0v1 − p0q1 + p1q0 = a0v1, 2u0 + p21 + q21 = 2a0, p0p1 + q0q1 = 0, u2
0 + p20 + q20 = a20. (28)

The second and fourth of these equations imply that, if p1 = q1 = 0, then p0 = q0 = 0 as well.
Furthermore, eliminating a0 between the first and second equations yields

p1q0 − p0q1 =
1
2 (p

2
1 + q21)v1, (29)

and solving this together with the third equation – under the assumption that p21 + q21 ≠ 0 – gives

p0 = −
1
2v1q1 and q0 =

1
2v1p1. (30)

Consider now cases (a)–(c) of the Proposition.

(a) Define u(t)+i v(t) = [(t−r)−i k] [(t+r)+i l]. Then one can easily verify that gcd(u(t), v(t)) = 1
and u2(t)+v2(t) = f (t), and (10) is satisfiedwithA(t) = u(t)+v(t) iwhen a(t) = u(t), b(t) = v(t).
Thus, Proposition 1 shows that f (t) generates straight lines.

(b) Suppose now that f (t) generates a planar PH curve, satisfying (13) with (p(t), q(t)) ≠ (0, 0). From
the above arguments we must have p21 + q21 > 0, and hence relations (30) hold. Equating coefficients
of t4 on the left and right sides of (13) and using (29) then gives −(p21 + q21)v1 =

1
2 (p

2
1 + q21)v1, and

hence v1 = 0. Therefore, p0 = q0 = 0 from (30), so qp′
− q′p = 0 and (13) implies that uv′

−

u′v − pq′
+ p′q = 0. In that case, r(t) must be a (planar) Class III curve.

(c) Finally, suppose that A(t) generates a proper RRMF space curve. Then, from expression (12) in
Farouki and Sakkalis (2010), condition (10) takes the form

uv′
− u′v − pq′

+ p′q
u2 + v2 + p2 + q2

= ±
k

(t − r)2 + k2
±

l
(t + r)2 + l2

. (31)

Now substituting a0 = u0 +
1
2 (p

2
1 + q21) from the second equation in (28) into the fourth equation,

we obtain 4u0 = v2
1 − (p21 + q21), and comparing coefficients of the t2 term in the numerators in (31)

gives v2
1 = (k ± l)2. Substituting these results into the equation

2u0 + v2
1 + p21 + q21 = k2 + l2 − r2

obtained by equating coefficients of t2 in the denominators in (31), we have p21 + q21 = − (4r2 + k2 +

l2±6kl). Therefore, f (t) generates a proper RRMF space curve if and only if 4r2+k2+ l2±6kl < 0. �

Example 3. The polynomial f (t) = t4 + 3t2 − 6t + 10, with roots 1 ± i and −1 ± 2i, generates both
straight lines and true space curves as Class I RRMF quintics. For A(t) = t2 + 1 + (t − 3) i we have
f (t) = |A(t)|2, and from (3) the components of r′(t) are x′(t) = t4+3t2−6t+10, y′(t) = 0, z ′(t) = 0.
On the other hand, for A(t) = t2 −

1
2 + (t − 3) i +

√
3t j + 1

2

√
3 kwe again have f (t) = |A(t)|2 and

(3) gives

x′(t) = t4 − 3t2 − 6t + 8 1
2 , y′(t) =

√
3 (3t2 − 6t −

1
2 ), z ′(t) =

√
3 (−2t3 + 2t − 3).

Since [r′(t) × r′′(t)] · r′′′(t) ≠ 0, this is a true space curve. Both these solutions satisfy (10) with
a(t) = t2 + 1, b(t) = t − 3 and are thus Class I RRMF quintics.
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5. Closure

A complete characterization of all quintic curves with rational rotation-minimizing frames (RRMF
quintics) has been developed, through their reduction to normal form by a spatial scaling/rotation
transformation. The characterization incorporates a succinct identification of degenerate solutions
(straight lines and planar PH curves) through condition (13). For proper RRMF quintics (true space
curves) a new set of solutions, the Class II RRMF quintics, has been identified satisfying the RRMF
condition (10) with deg(a(t), b(t)) = 1, as distinct from the previously-known Class I RRMF quintics
that satisfy (10) with deg(a(t), b(t)) = 2. As with the Class I RRMF quintics, the Class II RRMF quintics
depend upon five free parameters, and their rational RMFs are of somewhat lower degree (six rather
than eight).

However, the parameterization (23) of the set of Class II curves is more complicated than the
corresponding representation for Class I curves. Concerted efforts to derive simpler generating
formulas for Class II curves, or sufficient-and-necessary constraints on the quaternion or Hopf map
coefficients of spatial PH curves for a Class II curve (such as are available for Class I curves) have thus
far been unsuccessful. This topic deserves further investigation, due to its importance inmaking these
new RRMF curves amenable to the development of algorithms for practical use in animation, spatial
path planning, and geometric design.

Finally, a new approach to the RRMF curves has been proposed, based on considering the four
polynomials u(t), v(t), p(t), q(t) in (2) or (4) to be generated by the decomposition of a positive
polynomial f (t) as a sum of four squares. Some preliminary results concerning the construction of
Class I RRMF quintics through this approach were presented.
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