Boundedness of rough oscillatory singular integral on Triebel–Lizorkin spaces

Chen Jiecheng, Jia Houyu, Jiang Liya

Department of Mathematics, Zhejiang University, 310028, PR China

Received 4 June 2004
Available online 2 February 2005
Submitted by L. Grafakos

Abstract

We give the boundedness on Triebel–Lizorkin spaces for oscillatory singular integral operators with polynomial phases and rough kernels of the form $e^{iP(x)}\Omega(x)|x|^{-n}$, where $\Omega \in L\log^+ L(S^{n-1})$ is homogeneous of degree zero and satisfies certain cancellation condition.

Keywords: Oscillatory singular integral; Rough kernel; Triebel–Lizorkin spaces

1. Introduction

Let $\Omega(x)$ be an L^1 function over the unit sphere S^{n-1} of \mathbb{R}^n. We assume that $\Omega(x)$ is homogeneous of degree zero, and satisfies

$$\int_{S^{n-1}} \Omega(x')\,d\sigma(x') = 0. \quad (1.1)$$
Let $P(x)$ be a real polynomial, the oscillatory singular integral operator T is defined on the test function spaces $S(R^n)$ by

$$Tf(x) = \text{p.v.} \int_{R^n} e^{iP(x-y)} \Omega(x-y)|x-y|^{-n} f(y) \, dy.$$ \hspace{1cm} (1.2)

Ricci and Stein in [15] proved that if $\Omega \in C^1(S^{n-1})$ and satisfies the mean value zero condition (1.1), then T is bounded on $L^p(R^n)$, $1 < p < \infty$, and the norm of $L^p(R^n)$ of T depends only on the degree of P, not its coefficients. In fact, the operators they considered are more general, in the sense that they are not necessarily of convolution type. Later Chanillo and Christ [3] proved that these operators are also weak-type $(1,1)$. In 1992, Lu and Zhang [13] improved the result in [15] by assuming a weaker condition $\Omega \in L^r(S^{n-1})$, $1 < r \leq \infty$. And in 2000, Ojanen [14] showed that the operator T is bounded on $L^p(w)$ for certain weights $w(x)$ in a further weaker condition $\Omega \in L^1 \log^+ L(S^{n-1})$ (see also [12] for the case of $w(x) = 1$). For the boundedness of T in the Hardy space H^1, under a smoothness condition $\Omega \in C^1(S^{n-1})$, Hu [9] obtained the H^1_w boundedness of T in the one dimension case and Hu and Pan [10] obtained the same result in the case of higher dimension, where $w(x)$ is an A_1 weight.

On the other hand, the Triebel–Lizorkin space $\dot{F}_{p,q}^{\alpha,q}(R^n)$ is a unified setting of many well-known function spaces including Lebesgue space $L^p(R^n)$, Hardy space $H^p(R^n)$ and Sobolev spaces $\dot{L}^p_{\alpha}(R^n)$. It is of natural interest to extend the above mentioned results on T to the more general Triebel–Lizorkin spaces $\dot{F}_{p,q}^{\alpha,q}(R^n)$. Thus, the main purpose of this paper is to establish the $\dot{F}_{p,q}^{\alpha,q}(R^n)$ boundedness of operator T given in (1.2) with rough kernel $\Omega \in L^1 \log^+ L(S^{n-1})$. When $P(x) = 0$, T is the classical singular integral operator of convolution type and whose boundedness in various function spaces has been well-studied by many authors (see [2,4,7,8,11] and so on). However, if $P(x)$ is a polynomial and $\Omega \in L^1 \log^+ L(S^{n-1})$, the situation is more involved. To obtain our result, we find an interesting result (Proposition 2.1) which says that if a convolution operator T is bounded on all $L^q(w)$ for $w \in A_1$, then T is automatically a bounded operator in the Triebel–Lizorkin space $\dot{F}_{p,q}^{\alpha,q}$.

We recall the definition of the Triebel–Lizorkin spaces. Choose a function $\phi \in C_0^\infty(R^n)$, such that $0 \leq \phi \leq 1$. Let $\phi_j(\xi) = \phi(2^j \xi)$ satisfy supp$(\phi) \subset \{ \xi \in R^n : \frac{3}{2} \leq |\xi| \leq 2 \}$ and $\phi(\xi) > c > 0$ when $\frac{3}{4} \leq |\xi| \leq \frac{5}{2}$. We denote by S_j the convolution operator whose symbol is $\phi_j(\xi)$. For $\alpha \in R$, $1 < p, q < \infty$ and $f \in S'(R^n)/P(R^n)$, where $P(R^n)$ denotes the class of polynomials on R^n, the homogeneous Triebel–Lizorkin spaces $\dot{F}_{p,q}^{\alpha,q}(R^n)$ is the set of all f satisfying

$$\| f \|_{\dot{F}_{p,q}^{\alpha,q}(R^n)} = \left\| \sum_{j=-\infty}^{+\infty} 2^{-\alpha j q} |S_j f|^q \right\|_p^{1/q} < \infty.$$ \hspace{1cm} (1.3)

Let S_j^* be the dual operator of S_j; it is easy to see

$$\left\| \left(\sum_{j=-\infty}^{+\infty} 2^{-\alpha j q} |S_j^* f|^q \right)^{1/q} \right\|_p \sim \| f \|_{\dot{F}_{p,q}^{\alpha,q}(R^n)}.$$
The inhomogeneous version of Triebel–Lizorkin spaces is obtained by adding the term $\|\Psi \ast f\|_p$ to the right side of (1.3) and replace $\sum_{j=-\infty}^{\infty}$ with $\sum_{j\geq 1}$, where $\Psi \in S(R^n)$, supp $\Psi \subset \{\xi : |\xi| \leq 2\}$ and $|\hat{\Psi}| \geq c > 0$ if $|\xi| \leq \frac{5}{3}$. This space is denoted $F^{\alpha,q}_p (R^n)$ and it is a space of tempered distribution.

The following properties of above spaces are well-known. Let $1 < p, q < \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{q} + \frac{1}{q'} = 1$.

1) $L^p = F^{0,2}_p = \dot{F}^{0,2}_p$;
2) $F^{\alpha,q}_p \sim \dot{F}^{\alpha,q}_p \cap L^p$, and $\|f\|_{F^{\alpha,q}_p} \sim \|f\|_{L^p} + \|f\|_{\dot{F}^{\alpha,q}_p}$ for $\alpha > 0$;
3) $(F^{\alpha,q}_p)^* = F^{-\alpha,q'}_p$ and $(\dot{F}^{\alpha,q}_p)^* = \dot{F}^{-\alpha,q'}_p$;
4) $F^{\alpha,q}_p \subset F^{\alpha,q'}_p$ and $F^{\alpha,q}_p \subset F^{\alpha,q'}_p$, if $q_1 \leq q_2$.

Now, let us state our theorems.

Theorem 1.1. Let $\alpha \in \mathbb{R}$, $1 < p, q < \infty$. Let $P(x)$ be a polynomial with $\nabla P(0) = 0$, and T be defined as in (1.2). If $\Omega \in L \log L(S^{n-1})$ and satisfies condition (1.1), then T is bounded on $F^{\alpha,q}_p (R^n)$, that is

$$\|Tf\|_{F^{\alpha,q}_p (R^n)} \leq C (1 + \|\Omega\|_{L \log L(S^{n-1})}) \|f\|_{F^{\alpha,q}_p (R^n)},$$

where C is a constant which depends only on degree of $P(x)$ but not its coefficients.

Since the operator T is bounded on $L^p (R^n)$ (see [14]), applying Theorem 1.1 and the properties (2), (3), we have the following corollary.

Corollary 1.1. Suppose $\alpha \in \mathbb{R}$, $1 < p, q < \infty$. Let T, Ω and $P(x)$ be as in Theorem 1.1. Then T is bounded on $F^{\alpha,q}_p (R^n)$.

If $\nabla P(0) \neq 0$, we obtain the boundedness on the inhomogeneous space $F^{\alpha,q}_p (R^n)$ as follows.

Theorem 1.2. Let $\alpha \in \mathbb{R}$, $1 < p, q < \infty$. Let Ω and T be as in Theorem 1.1. If $P(x)$ is a polynomial with $\nabla P(0) \neq 0$, then T is bounded on $F^{\alpha,q}_p (R^n)$, that is

$$\|Tf\|_{F^{\alpha,q}_p (R^n)} \leq C (1 + \|\Omega\|_{L \log L(S^{n-1})}) \|f\|_{F^{\alpha,q}_p (R^n)},$$

where C is a constant which depends on α, p, q, n, but not on the coefficients of $P(x)$.

2. Preliminaries

First, we state the following useful proposition.

Proposition 2.1. Let $T : S \rightarrow S'$ be a convolution operator. If for some $1 < q < \infty$, the inequality $\|Tf\|_{L^q(w)} \leq A \|f\|_{L^q(w)}$ and $\|Tf\|_{L^q'(w)} \leq A \|f\|_{L^q'(w)}$ hold for all $w \in A_1$, then
where A_1 is the Muckenhoupt weight class, then for all $1 < p < \infty$, $s \in \mathbb{R}$, T is a bounded operator on $\dot{F}^{s,q}_p(\mathbb{R}^n)$, and

$$
\|Tf\|_{\dot{F}^{s,q}_p(\mathbb{R}^n)} \leq A\|f\|_{\dot{F}^{s,q}_p(\mathbb{R}^n)}.
$$

Proof. Let ϕ_j be the same as in the introduction, and assume that

$$
\sum_{j=-\infty}^{+\infty} \phi_j^2(\xi) = 1 \quad \text{for all } \xi \neq 0.
$$

Then for all $f \in S(\mathbb{R}^n)$, we have

$$
f(x) = \sum_{j=-\infty}^{+\infty} S_j^2 f(x),
$$

where $S_j^2 f = \phi_j(\xi) \hat{f}(\xi)$.

Decompose the operator Tf by

$$
Tf(x) = \sum_{k \in \mathbb{Z}} S_k T S_k f(x).
$$

For any $g \in \dot{F}^{-s,q'}_p(\mathbb{R}^n)$,

$$
|\langle Tf, g \rangle| = \left| \sum_{k \in \mathbb{Z}} \langle T S_k, S_k^* g \rangle \right| \leq \|g\|_{\dot{F}^{-s,q'}_p} \left(\sum_{k \in \mathbb{Z}} 2^{-skq} |T S_k f|^q \right)^{\frac{1}{q}}.
$$

Hence

$$
\|Tf\|_{\dot{F}^{s,q}_p(\mathbb{R}^n)} \leq \left\| \left(\sum_{k \in \mathbb{Z}} 2^{-skq} |T S_k f|^q \right)^{\frac{1}{q}} \right\|_p.
$$

If $q \leq p$, we choose a function $u(x) \in L_{\mathbb{R}^n}^{\left(\frac{q}{q'}\right)}$ with $\|u\|_{L_{\mathbb{R}^n}^{\frac{q}{q'}}} = 1$, such that

$$
\left\| \left(\sum_{k \in \mathbb{Z}} 2^{-skq} |T S_k f|^q \right)^{\frac{1}{q}} \right\|_p = \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}^n} 2^{-skq} |T S_k f|^q(x) u(x) \, dx.
$$

Pick $1 < r < \left(\frac{p}{q}\right)'$, then for a.e. $x \in \mathbb{R}^n$, $M(u')(x) < \infty$. Thus $(M(u'))^\frac{1}{r} \in A_1$. Using the L^q weighted estimate for operator T, it follows

$$
\int_{\mathbb{R}^n} |T S_k f|^q(x) u(x) \, dx \leq \int_{\mathbb{R}^n} |T S_k f|^q(x) (M(u'))^\frac{1}{r} \, dx
$$

$$
\leq A \int_{\mathbb{R}^n} |S_k f|^q(x) (M(u'))^\frac{1}{r} \, dx.
$$

Thus,
\[\sum_{k \in \mathbb{Z}} 2^{-skq} \int_{\mathbb{R}^n} |TS_k f|^q(x) u(x) \, dx \leq A \sum_{k \in \mathbb{Z}} 2^{-skq} \int_{\mathbb{R}^n} |S_k f|^q(x) (M(u'))^{\frac{1}{r}} \, dx \]
\[\leq A \sum_{k \in \mathbb{Z}} 2^{-skq} |S_k f|^q \left\| M(u') \right\|_{L^\frac{q}{q'}} \]
\[\leq A \| f \|_{\tilde{F}^q_p(\mathbb{R}^n)}. \]

Therefore \(\| Tf \|_{\tilde{F}^q_p(\mathbb{R}^n)} \leq A \| f \|_{\tilde{F}^q_p(\mathbb{R}^n)} \) holds if \(q \leq p \). By duality, we can obtain the same result if \(q \geq p \). The proof of Proposition 2.1 is completed.

Remark 2.1. If we set \(P(x) = 0 \) in (1.2), then for any \(1 < q < \infty \), \(\| T \|_{q,w} \leq C \| f \|_{q,w} \) holds for all \(w \in A_q \) provided that \(\Omega \in L^\infty(S^{n-1}) \) (see [6]). From Proposition 2.1, we see that \(T \) is bounded on \(\tilde{F}^q_p(R^n) \) for all \(s \in \mathbb{R}, 1 < p, q < \infty \).

To prove our results, we also need the following lemmas.

We denote by \(C^\rho(R^n) \) the Zygmund spaces (see [17]).

Lemma 2.1 [17, p. 141]. Let \(s \in \mathbb{R}, 0 < p < \infty, 0 < q \leq \infty \) and \(\rho > \max(s, \frac{n}{\min(p, q)} - s) \).

Then \(g \in C^\rho(R^n) \) is a multiplier for \(F^q_p(R^n) \). In other words, \(f \rightarrow gf \) yields a bounded linear mapping from \(F^q_p(R^n) \) into itself and there exists a positive constant \(c \) such that

\[\| gf \|_{F^q_p(R^n)} \leq c \| g \|_{C^\rho(R^n)} \| f \|_{F^q_p(R^n)} \]

holds for all \(g \in C^\rho(R^n) \) and all \(f \in F^q_p(R^n) \).

Lemma 2.2 (Van der Corput [16]). Suppose \(\phi(t) \) is real-valued and smooth in \((a,b) \), and that \(|\phi(t)| \geq 1 \) for all \(t \in (a, b) \). Then

\[\left| \int_a^b e^{i\lambda \phi(t)} \, dt \right| \leq C_k \lambda^{-\frac{1}{4}} \]

holds when

(i) \(k \geq 2 \), or
(ii) \(k = 1 \) and \(\phi'(t) \) is monotonic.

The bound \(C_k \) is independent of \(\phi \) and \(\lambda \).

Lemma 2.3 [15]. Let \(P(x) = \sum_{|\beta| \leq d} a_\beta x^\beta \) be a polynomial of degree \(d \) in \(\mathbb{R}^n \), and \(\varepsilon < 1/d \). Then

\[\int_{|x| \leq 1} |P(x)|^{-\varepsilon} \, dx \leq A_\varepsilon \left(\sum_{|\beta| = d} |a_\beta| \right)^{-\varepsilon}. \]

The bound \(A_\varepsilon \) depends on \(n \) and \(\varepsilon \), but not on the coefficients \(\{a_\beta\} \).
Lemma 2.4 [15]. Let $P(x) = \sum_{|\beta| = d} a_\beta x^\beta$ be a polynomial of degree d in \mathbb{R}^n, and $\varepsilon < 1/d$. Then

$$\int_{|x|=1} |P(x)|^{-\varepsilon} \, dx \leqslant A_\varepsilon \left(\sum_{|\beta| = d} |a_\beta| \right)^{-\varepsilon}.$$

The bound A_ε depends on n and ε, but not on the coefficients $\{a_\beta\}$.

Now according to [5], we decompose $\Omega(x)$ as follows. Let

$$\theta_0 = \{ x' \in S^{n-1} : |\Omega(x')| \leqslant 1 \},$$
$$\theta_d = \{ x' \in S^{n-1} : 2^{d-1} \leqslant |\Omega(x')| \leqslant 2^d \} \quad (d \geqslant 1),$$
$$\tilde{\Omega}_d(x) = \Omega(x) \chi_{\theta_d}(x),$$
$$\Omega_d(x) = \tilde{\Omega}_d(x) - \frac{\int_{S^{n-1}} \tilde{\Omega}_d(x) \, dx}{\omega_n}.$$

Then we have

$$\sum_{d \geqslant 0} \Omega_d(x) = \Omega(x), \quad \int \Omega_d(x) \, dx = 0,$$
$$\| \Omega_d \|_\infty \leqslant C 2^d, \quad \| \Omega_d \|_{L^1} \leqslant C 2^d |\theta_d|, \quad \sum_{d \geqslant 0} d 2^d |\theta_d| \leqslant C \| \Omega \|_{L^1} \log^+ L.$$

For $f \in S(\mathbb{R}^n)$, write

$$T_f(x) = \sum_{d \geqslant 0} \sum_{k \in \mathbb{Z}} e^{iP(x)} \frac{\Omega_d(x)}{|x|^n} X_{2^k-1 < |x| \leqslant 2^k} \ast f(x) = \sum_{d \geqslant 0} \sum_{k \in \mathbb{Z}} T_d^k f(x).$$

Lemma 2.5. Let $\sigma_d^k(x) = e^{iP(x)} \frac{\Omega_d^k(x)}{|x|^n} X_{2^k-1 < |x| \leqslant 2^k}(x), \quad k \in \mathbb{Z}$. Then for all $1 < p < \infty$,

there holds

$$\| | \sigma_d^k | \ast |f| \|_p \leqslant \| \Omega_d \|_{L^1} \| f \|_p.$$

Proof. We note that

$$| \sigma_d^k | \ast |f| (x) \leqslant \int_{S^{n-1}} |\Omega_d(y')| \int_{2^k-1}^{2^k} \left| f(x - ry') \right| \frac{1}{r} \, dr \, d\sigma(y').$$

Hence

$$\| | \sigma_d^k | \ast |f| \|_p \leqslant \int_{\mathbb{R}^n} \int_{S^{n-1}} |\Omega_d(y')| \int_{2^k-1}^{2^k} \left| f(x - ry') \right| \frac{1}{r} \, dr \, d\sigma(y') \, dx \leqslant \| \Omega_d \|_{L^1} \| f \|_p. \quad \square$$
Lemma 2.6. For $\alpha \in \mathbb{R}$, $1 < p, q < \infty$, there holds
\[
\| T_k^d f(x) \|_{\dot{F}_p^\alpha,\dot{Q}^q \left(\mathbb{R}^n \right)} \leq \| \Omega_d \|_{L^1} \| f \|_{\dot{F}_p^\alpha,\dot{Q}^q \left(\mathbb{R}^n \right)}.
\] (2.1)

Proof. By the same proof in Proposition 2.1, for any $g \in \dot{F}_{p'}^{-\alpha,q'}(\mathbb{R}^n)$, we have
\[
\langle T_k^d f, g \rangle = \left\| \left(\sum_j 2^{-aq(j+k)} |T_k^d S_{j+k} f|^q \right)^{\frac{1}{q'}} \left(\sum_j 2^{aq(j+k)} |S_{j+k}^* g|^q \right)^{\frac{1}{q'}} \right\|_{p'}.
\]
It follows
\[
\| T_k^d f \|_{\dot{F}_p^\alpha,\dot{Q}^q \left(\mathbb{R}^n \right)} \leq \left\| \left(\sum_j 2^{-aq(j+k)} |T_k^d S_{j+k} f|^q \right)^{\frac{1}{q'}} \right\|_{p'}.
\]
By Lemma 2.5,
\[
\sup_j 2^{-a(j+k)} |T_k^d S_{j+k} f| \leq \| \Omega_d \|_{L^1} \sup_j 2^{-a(j+k)} |S_{j+k} f| \leq \left| \tilde{\sigma}_d \right| \left(x \right) = |\sigma_d \left(-x \right)|.\] (2.2)
Since $p > 1$, there exists a function $g \in L^{p'}$ with $\| g \|_{p'} = 1$ such that
\[
\left\| \sum_j 2^{-a(j+k)} |T_k^d S_{j+k} f| \right\|_{p'} \leq \sum_j \left\| 2^{-a(j+k)} |T_k^d S_{j+k} f| \right\|_{p'} \leq \left\| \sum_j 2^{-a(j+k)} |S_{j+k} f| \right\|_{p'} \left\| g \right\|_{p'},
\]
where $|\tilde{\sigma}_d \left(x \right)| = |\sigma_d \left(-x \right)|$. Using Lemma 2.5, we obtain
\[
\left\| \sum_j 2^{-a(j+k)} |T_k^d S_{j+k} f| \right\|_{p'} \leq \| \Omega_d \|_{L^1} \left\| \sum_j 2^{-a(j+k)} |S_{j+k} f| \right\|_{p'}.\] (2.3)
Thus (2.1) follows immediately by using an interpolation between (2.2) and (2.3). \(\square\)

3. Proofs of the theorems

In this section, we will prove Theorems 1.1 and 1.2.

Let $P(x) = \sum_{|\alpha| \leq m} a_\alpha x^\alpha$. Without loss of generality we may assume that
\[
\sum_{|\alpha| = m} |a_\alpha| = 1.
\]
If this is not the case, let $A = \left(\sum_{|\alpha|=m} |a_\alpha|\right)^{1/2}$; we can write $P(x)$ as follows:

$$P(x) = \sum_{|\alpha| \leq m} \frac{a_\alpha}{A^m} (Ax)^\alpha := Q(Ax).$$

Then a change of variable gives

$$Tf\left(\frac{x}{A}\right) = \text{p.v.} \int_{\mathbb{R}^n} e^{Q(x-y)} \frac{\Omega(x-y)}{|x-y|^n} f\left(\frac{y}{A}\right) dy.$$

Since $\|f\|_{L^p(\mathbb{R}^n)} \sim A^{-\alpha + \frac{n}{p}}$, it is enough to consider the case $A = 1$.

When $m = 0$, the phase function in T is identically zero and T is the usual convolution type singular integral operator with rough kernel. Thus (1.4) holds (see [11]). In fact, using the same proof in [11], we can see, for any $\varepsilon > 0$, the truncated operator T_ε is also bounded on $\dot{F}^{\alpha,q}_p (\mathbb{R}^n)$.

Proof of Theorem 1.1. As usual, write

$$Tf(x) = e^{iP(x)} \frac{\Omega(x)}{|x|^n} \chi_{|x| \leq 1} * f(x) + e^{iP(x)} \frac{\Omega(x)}{|x|^n} \chi_{|x| > 1} * f(x)$$

$$:= T_0 f(x) + T_\infty f(x).$$

First, let us treat $T_0 f$.

Since $\nabla P(0) = 0$, we write $P(x) = \sum_{|\alpha| = m} a_\alpha x^\alpha + P_{m-1}(x)$ for $m \geq 2$, where $\text{deg}(P_{m-1}) \leq m - 1$ with $\nabla P_{m-1}(0) = 0$. We shall proceed by induction on m. When $m = 0$, (1.4) holds for T_0. Suppose that (1.4) holds for T_0 with the phase function $P_{m-1}(x)$ when $m \geq 2$. To prove T_0 satisfies (1.4) when $\text{deg}(P) = m$, rewrite

$$T_0 f(x) = \left[e^{iP(x)} - e^{iP_{m-1}(x)} \right] \frac{\Omega(x)}{|x|^n} \chi_{|x| \leq 1} * f(x) + e^{iP_{m-1}(x)} \frac{\Omega(x)}{|x|^n} \chi_{|x| \leq 1} * f(x)$$

$$:= I + II.$$

The estimate for II follows from the induction hypothesis. To treat the first term, we write it as

$$I = \sum_{d \geq 0} \sum_{k \leq 0} \int_{2^{k-1} < |x-y| \leq 2^k} \left| e^{iP(x-y)} - e^{iP_{m-1}(x-y)} \right| \frac{\Omega_d(x-y)}{|x-y|^n} f(y) dy$$

$$:= \sum_{d \geq 0} \sum_{k \leq 0} T_{0,k}^d f(x).$$

Note that $|P(x-y) - P_{m-1}(x-y)| \leq \sum_{|\alpha| = m} |a_\alpha| |x-y|^m \leq |x-y|$ when $|x-y| \leq 2^k \leq 1$, it follows, for $k \leq 0$,

$$\left| T_{0,k}^d f(x) \right| \leq \int_{2^{k-1} < |x-y| \leq 2^k} \frac{\Omega_d(x-y)}{|x-y|^n} |f(y)| dy \leq 2^k \|\Omega_d\|_\infty M(f)(x).$$
where M is the Hardy–Littlewood maximal function. For $1 < q < \infty$ and $w \in A_q$, M is bounded on $L^q(w)$. Therefore

$$
\|T_{0,k}f\|_{q,w} \leq 2^k \|\Omega_d\|_\infty \|f\|_{q,w}.
$$

(3.1)

Using Proposition 2.1, we have

$$
\|T_{0,k}f\|_{\dot{F}^{p,q}_\alpha(R^n)} \leq 2^k \|\Omega_d\|_\infty \|f\|_{\dot{F}^{p,q}_\alpha(R^n)}.
$$

(3.2)

By Lemma 2.6, we can get

$$
\|T_{0,k}f\|_{\dot{F}^{p,q}_\alpha(R^n)} \leq \|\Omega_d\|_1 \|f\|_{\dot{F}^{p,q}_\alpha(R^n)}.
$$

(3.3)

So

$$
\|I\|_{\dot{F}^{p,q}_\alpha(R^n)} \leq \sum_{d \geq 0} \sum_{k \leq 0} \|T_{0,k}f\|_{\dot{F}^{p,q}_\alpha(R^n)}
\leq \sum_{d \geq 0} \sum_{k \leq 0} \|T_{0,k}f\|_{\dot{F}^{p,q}_\alpha(R^n)} + \sum_{d \geq 0} \sum_{k \leq 0} \|T_{0,k}f\|_{\dot{F}^{p,q}_\alpha(R^n)}
:= I_1 + I_2.
$$

By (3.3),

$$
I_1 \leq \sum_{d \geq 0} \sum_{k \leq 0} \|\Omega_d\|_1 \|f\|_{\dot{F}^{p,q}_\alpha(R^n)} \leq \sum_{d \geq 0} dN 2^d |\theta_d| \|f\|_{\dot{F}^{p,q}_\alpha(R^n)}
\leq C \|\Omega\|_{L^{\log^+ L}} \|f\|_{\dot{F}^{p,q}_\alpha(R^n)}.
$$

And the estimate for I_2 follows from (3.2) if we choose N sufficiently large.

Next, we shall prove that T_∞ satisfies (1.4). Write

$$
T_\infty f(x) = \sum_{d \geq 0} \sum_{k \geq 1} e^{i P(x)} \Omega_d(x) \frac{\chi_{2^k-1 < |x| \leq 2^k}}{|x|^n} f(x) = \sum_{d \geq 0} \sum_{k \geq 1} T_{0,k}^d f(x).
$$

We will use the method in [13] to establish the L^2 norm of $T_{0,k}^d$:

$$
T_{0,k}^d f(x) = \int_{2^k-1 < |x-y| \leq 2^k} e^{i P(x-y)} \frac{\Omega_d(x-y)}{|x-y|^n} f(y) \, dy
\leq \int_{S^{n-1}} \Omega_d(\theta) \int_{2^{k-1}}^{2^k} e^{i P(r\theta)} f(x-r\theta) \frac{drd\theta}{r}.
$$

For a fixed $\theta \in S^{n-1}$, let Y be the hyperplane through the origin orthogonal to θ, we have, for $x \in R^n$, $x = z + s\theta$, with $s \in R$, $z \in Y$, and so

$$
\int_{2^{k-1}}^{2^k} e^{i P(r\theta)} f(x-r\theta) \frac{dr}{r} = \int_{2^{k-1}}^{2^k} e^{i P(r\theta)} f(z + (s-r)\theta) \frac{dr}{r}.
$$
It is easy to see
\[|M_k(u)| \leq C 2^{-k} \chi_{[0,2^{k+1}]}(|u|). \] (3.4)

Now we can write
\[P(2^k r \theta) - P(2^k r \theta - u \theta) = \sum_{|\alpha|=m} \sum_{\beta: \beta+\gamma=\alpha} 2^{k(m-1)} \mu_{\alpha} u a_{\beta+\gamma} C_{\beta \gamma} \partial_\beta \partial_\gamma + R(r,u) \]
\[= (2^k r)^{m-1} u \sum_{|\beta|=m-1} \sum_{|\gamma|=1} \theta_\beta a_{\beta+\gamma} C_{\beta \gamma} \partial_\beta \partial_\gamma + R(r,u), \]
where \(C_{\beta \gamma} \) are nonzero constants depending only on \(m \), and \(R(r,u) \) is a polynomial with degree in \(r \) strictly less than \(m-1 \). We have
\[\left(\frac{\partial}{\partial r} \right)^{m-1} \left(P(2^k r \theta) - P(2^k r \theta - u \theta) \right) = 2^{k(m-1)} (m-1)! u \sum_{|\beta|=m-1} \sum_{|\gamma|=1} \theta_\beta a_{\beta+\gamma} C_{\beta \gamma} \partial_\beta \partial_\gamma. \]

By Lemma 2.2 and using the integration by parts,
\[|M_k(u)| \leq C 2^{-k} \left(u \sum_{|\beta|=m-1} \sum_{|\gamma|=1} \theta_\beta a_{\beta+\gamma} C_{\beta \gamma} \partial_\beta \partial_\gamma \right)^{-\frac{1}{m-1}}. \] (3.5)

Combining (3.4) and (3.5), we obtain
\[|M_k(u)| \leq C 2^{-k(1+\delta)} \left(u \sum_{|\beta|=m-1} \sum_{|\gamma|=1} \theta_\beta a_{\beta+\gamma} C_{\beta \gamma} \partial_\beta \partial_\gamma \right)^{-\frac{\delta}{m-1}} \chi_{[0,2^{k+1}]}(|u|), \]
where \(\delta \in (0,1) \). Thus,
\[\int_R |M_k(u)| \, du \leq C 2^{-k \delta} \int_{|u| \leq 1} \left| u \sum_{|\beta|=m-1} \sum_{|\gamma|=1} \theta_\beta a_{\beta+\gamma} C_{\beta \gamma} \partial_\beta \partial_\gamma \right|^{-\frac{\delta}{m-1}} \, du. \]
Since \(m \geq 2 \) and \(\delta \in (0, 1) \), \(\frac{\delta}{m - 1} < 1 \). Due to Lemma 2.3, it follows
\[
\int_{R} \left| M_k(u) \right| \, du \leq C 2^{-k\delta} \left| u \sum_{|\beta|=m-1} \theta^\beta \sum_{|\gamma|=1} a_{\beta + \gamma} C_{\beta \gamma} \theta^\gamma \right|^{-\frac{2}{m - 1}}.
\]
Thus,
\[
\left\| N_k N_k \right\|_{L^2 \to L^2} \leq C 2^{-k\delta} \left| u \sum_{|\beta|=m-1} \theta^\beta \sum_{|\gamma|=1} a_{\beta + \gamma} C_{\beta \gamma} \theta^\gamma \right|^{-\frac{2}{m - 1}}.
\]
So
\[
\left\| N_k \right\|_{L^2 \to L^2} \leq C 2^{-\frac{k\delta}{2}} \left| u \sum_{|\beta|=m-1} \theta^\beta \sum_{|\gamma|=1} a_{\beta + \gamma} C_{\beta \gamma} \theta^\gamma \right|^{-\frac{2}{m - 1}}.
\]

The Minkowski’s inequality shows that
\[
\left\| T \left(\int_{R} \left| N_k \right| \, du \right) \right\|_{L^2} \leq \left(\int_{R} \left\| N_k \right| \, du \right)^{\frac{1}{2}} \, \left\| f \right\|_{L^2}
\]
\[
\leq C 2^{-\frac{\delta}{2}} \left\| f \right\|_{L^2} \left\| T \left(\int_{R} \left| N_k \right| \, du \right) \right\|_{L^2}
\]
\[
\leq C 2^{-\frac{\delta}{2}} \left\| T \left(\int_{R} \left| N_k \right| \, du \right) \right\|_{L^2} \left\| f \right\|_{L^2} \leq C 2^{-\frac{\delta}{2}} \left\| f \right\|_{L^2}.
\]

Since \(\delta \in (0, 1) \) and \(m \geq 2 \), we can see \(\frac{\delta}{2(m - 1)} < \frac{1}{m} \). Then by Lemma 2.4,
\[
\left\| T \left(\int_{R} \left| N_k \right| \, du \right) \right\|_{L^2} \leq C 2^{-\frac{\delta}{2}} \left\| f \right\|_{L^2} \left\| T \left(\int_{R} \left| N_k \right| \, du \right) \right\|_{L^2}
\]
\[
\leq C 2^{-\frac{\delta}{2}} \left\| f \right\|_{L^2} \left\| T \left(\int_{R} \left| N_k \right| \, du \right) \right\|_{L^2} \leq C 2^{-\frac{\delta}{2}} \left\| f \right\|_{L^2}.
\]

where \(C \) is a constant depending on \(m \).

On the other hand,
\[
\left| T \left(\int_{R} \left| N_k \right| \, du \right) \right| \leq \int_{R} \left| T \left(\int_{R} \left| N_k \right| \, du \right) \right| \, dy \leq C \left\| T \left(\int_{R} \left| N_k \right| \, du \right) \right\|_{L^2} \left\| f \right\|_{L^2}.
\]

For \(1 < q < \infty \) and \(w \in A_q \), we have
\[
\left\| T \left(\int_{R} \left| N_k \right| \, du \right) \right\|_{q, w} \leq \left\| T \left(\int_{R} \left| N_k \right| \, du \right) \right\|_{q, w} \left\| f \right\|_{q, w}.
\]

Since \(\left\| f \right\|_{q, w} \leq \left\| f \right\|_{L^2} \), we obtain
\[
\left\| T \left(\int_{R} \left| N_k \right| \, du \right) \right\|_{q, w} \leq \left\| T \left(\int_{R} \left| N_k \right| \, du \right) \right\|_{L^2} \left\| f \right\|_{L^2} = C \left(\int_{R} \left| N_k \right| \, du \right)^{\eta} \left\| f \right\|_{L^2}.
\]

(3.6)
For any $w \in A_q(R^n)$, there exists an $\varepsilon > 0$ such that $w^{1+\varepsilon} \in A_q(R^n)$. By the virtue of (3.7), we get, for $w \in A_q(R^n)$,

$$\|T_{\infty, k}^d f\|_{q, w^{1+\varepsilon}} \leq \|\Omega_d\|_\infty \|f\|_{q, w^{1+\varepsilon}}.$$ \hfill (3.9)

Therefore, using the interpolation theorem with change of measure (see [1, p. 115]), we interpolate between (3.8) and (3.9), and then there exists a positive constant μ such that

$$\|T_{\infty, k}^d f\|_{q, w} \leq C \|\Omega_d\|_\infty \|f\|_{q, w}.$$ \hfill (3.10)

Using (3.12) and (3.11), we get

$$I \leq C \|\Omega\|_{L \log L(S_{n})} \|f\|_{p^\mu q(R^n)} \quad \text{and} \quad II \leq C \|f\|_{p^\mu q(R^n)},$$

if we choose N sufficiently large. Therefore Theorem 1.1 is completely proved.

Proof of Theorem 1.2. It is enough to consider the case for $P(x) = x$. Write

$$S(f)(x) = p.v. \int_\mathbb{R}^n \frac{\Omega(x - y)}{|x - y|^n} f(y) dy.$$

Then $T f(x) = e^{ix} S(e^{ix} f(x))$. Noting that e^{ix} is a $C^\infty(R^n)$ function with all its derivatives in $L^\infty(R^n)$, from Lemma 2.1, we have

$$\|e^{ix} f(x)\|_{p^\mu q(R^n)} \leq C \|f(x)\|_{p^\mu q(R^n)}.$$ \hfill (3.13)

Then by Corollary 1.1, the inequality (1.5) is obtained. So the proof of Theorem 1.2 is finished.

References